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General IIR Optical Filter Design for WDM
Applications Using All-Pass Filters

C. K. Madsen

Abstract—A general design algorithm is presented for infinite
impulse response (IIR) bandpass and arbitrary magnitude re-
sponse filters that use optical all-pass filters as building blocks.
Examples are given for an IIR multichannel frequency selector,
an amplifier gain equalizer, a linear square-magnitude response,
and a multi-level response. Major advantages are the efficiency
of the IIR filter compared to finite impulse response (FIR) filters,
the simplicity of the optical architecture, and its tolerance for
loss. A reduced set of unique operating states is discussed for
implementing a reconfigurable multichannel selection filter.

Index Terms—All-pass filters, bandpass filters, optical wave-
guide filters.

I. INTRODUCTION

OPTICAL filters are an enabling technology for dense
wavelength-division-multiplexed (DWDM) systems

for performing channel (de)multiplexing, add–drop, spectral
monitoring, gain equalization, and dispersion compensation.
As the channel spacing decreases, the bitrates increase, and
point-to-point systems evolve into networks, more filters and
filters with more ideal characteristics will be required. In this
paper, we discuss infinite impulse response (IIR) filters that
can be made quite compact and require significantly fewer
stages than comparable finite impulse response (FIR) filters.
The IIR architecture is based on decomposing the desired filter
response into a sum (or difference) of two all-pass filters. The
filter responses are periodic, which is advantageous for WDM
systems with many channels since the same filter can be used
in different bands [1]. The period is called the free spectral
range (FSR). Previous work showed that single-passband (per
FSR) elliptic, Chebyshev and Butterworth designs can be
implemented using optical all-pass filters in a Mach–Zehnder
interferometer (MZI) [2]. In this paper, the design algorithm
is generalized so that any magnitude response can be approxi-
mated with such an architecture. In particular, the need to have
a symmetric magnitude response is overcome.

In Section II, the general design algorithm is presented. An
IIR multichannel frequency selector is developed in Section III,
and the impact of loss and variations on the filter parameters is
investigated. Then, we shift the focus from designing bandpass
filters to approximating an arbitrary magnitude response. Ex-
amples are given in Section IV for a gain equalization filter and
a filter with a linear power response, which may be useful for
frequency discrimination or modulation. Finally, a special case
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of the architecture where one arm is a delay line is discussed in
Section V. Examples are presented for a notch filter and a mul-
tilevel filter response.

II. GENERAL DESIGN ALGORITHM

We are interested in IIR filters with power complementary
frequency responses and that can be decomposed
into the sum or difference of two all-pass filters, and

, as shown in Fig. 1(a) for a discrete time filter [3]. These
filters have a very simple optical implementation as shown in
Fig. 1(b)–(d) [2]. The conditions on and for such
a decomposition to exist are derived as part of the synthesis algo-
rithm in this section. To establish the mathematical relationships
between the various frequency responses and filter parameters,
we begin by discussing discrete time and optical all-pass filters
and their transforms.

All-pass filters consist of a single input and output with one
or more feedback paths. Basic single-stage optical all-pass fil-
ters are shown in Fig. 2 [4]. Traveling wave (ring resonators)
or standing wave (Gires-Tournois interferometer [5]) feedback
paths are used to implement the optical all-pass filters. Power
splitters such as directional couplers, multimode interference
couplers [6], or reflectors determine the degree of coupling to
the feedback path. Tunable all-pass filters, requiring two phase
shifters per stage, were demonstrated using a MZI to replace
the single coupler of the basic ring design [7]. Reflection-based
tunable all-pass filters using microelectromechanical (MEMS)
technology have also been demonstrated [8], whereby the partial
reflectance is voltage controlled and the cavity phase is temper-
ature controlled. More general all-pass filter architectures are
discussed in [9]. For wideband applications, the wavelength de-
pendence of the coupling ratios must be considered. Since there
are many ways to reduce the wavelength dependence in prac-
tice, we shall assume wavelength-independent coupling for sim-
plicity.

To describe an all-pass filter mathematically, it is convenient
to define a nominal feedback path delay, called the unit delay

, which is related to the nominal feedback path lengthand
group index by . The unit delay has a frequency
response where is the optical radian frequency. By sub-
stituting , we obtain a transform description of
the optical filter. The transform notation allows us to describe
a linear, time-invariant filter’s transfer function as a ratio of two
polynomials in . The roots of the numerator are called the
zeros, and the roots of the denominator are the poles. The
frequency response is found by evaluating the transfer function
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Fig. 1. A general bandpass filter architecture using all-pass filter decomposition in the (a) discrete time and (b) optical domain. A specific sixth-order architecture
implemented with (c) a cascade of single-stage ring resonators in each MZI arm and (d) three coupled cavities is depicted. Only half the phase is required by each
phase shifter in (d) compared to (c) since the light makes a double pass through each one.

Fig. 2. Basic single-stage optical all-pass filters.

at . The frequency response is periodic with a pe-
riod given by FSR = 1/T. A discrete time all-pass filter has a
single-stage transfer function given by

(1)

The superscript denotes the reverse polynomial, defined by
for an th-order polynomial .

A reverse polynomial is obtained by reversing and conjugating
the coefficients of the “forward” polynomial. The magnitudes
are the same, i.e., , but the phases are dif-
ferent. Note that , so the filter passes all frequen-
cies. An optical all-pass filter has the following transfer function
for a single stage [4], [10]:

(2)

Note the extra phase term not associated with discrete time
all-pass filters. There are two degrees of freedom for each
stage, and . They are related to the splitting ratio or
partial reflectance and feedback path phase

where is the deviation of the
optical feedback path length from . To model the impact
of loss on the response, one simply substitutes for
where the loss for one pass around the feedback path is given
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by in dB. The phase and group delay response of
a single-stage all-pass filter are given by

(3)

(4)

On-resonance, where is an integer, and the
group delay is a maximum with a value

. Off-resonane, , and the group delay
has a minimum value of .

We now describe the discrete time transfer function for
Fig. 1(a). The output transfer functions are defined by

and (5)

where the subscripts and refer to the sum and difference,
respectively. The discrete time all-pass functions are defined by

and (6)

where the denominator polynomial in (5) is given by
. The numerator polynomials

and were previously assumed [2] to have either even
or odd symmetry and real coefficients. We now allow the
coefficients to be complex so that multiple passbands can be
obtained and arbitrary magnitude responses approximated. By
introducing the new phase termwhich is discussed below, the
decomposition into all-pass functions is generalized as follows:

(7)

(8)

Given a lossless filter with two outputs and a desired
response, the magnitude response can be found from
power conservation

(9)

For an optical filter, any lossless 2 2 splitter (and combiner,
by reciprocity) has a relative phase between the output
ports [10] that must be included. For a directional coupler, let
the cross-port field transmission be denoted by and the
bar-port by . Ideally, the couplers forming the MZI have

. The optical transfer functions, designated by the bar
and cross-ports of the interferometer, are

(10)

(11)

Note that the magnitude responses of the discrete time and op-
tical filters are related by and

Fig. 3. General optical IIR filter synthesis algorithm using all-pass filter
decomposition.

, so that the phase difference between (8) and (10), or
(7) and (11), is inconsequential.

The general synthesis algorithm is outlined in Fig. 3. The
input is the desired magnitude response specified over
some optical bandwidth. The outputs are the parameters’s
and ’s) that define a specific optical implementation. The
FSR is set equal to or slightly larger than the bandwidth, and
the number of filter stages is specified. The optical frequency
is normalized to the FSR, so the desired response is specified
as a function of the normalized frequency FSR where

, and the design algorithm proceeds in the digital
domain. Depending on the desired “goodness” of the approxi-
mation, more stages may be required. The intervening steps start
with an initial digital design guess, refine that guess until an
acceptable approximation is obtained, decompose the transfer
functions into all-pass filters, and then translate the discrete time
all-pass filter designs into optical ones.

Several approaches can be used to obtain an initial guess at a
discrete time filter design. Examples are given in later sections
dealing with specific designs. A simple way to determine
and , especially for bandpass filters, is by finding suitable
zeros. For now, we assume that the zeros of and are
defined. If we multiply (9) by and divide by ,
we obtain [11]

(12)

In the -domain, is called the char-
acteristic function. By evaluating on the unit circle, the
magnitude response is defined. Similarly, dividing by



MADSEN: DESIGN FOR WDM APPLICATIONS USING ALL-PASS FILTERS 863

instead of , the magnitude response
is obtained. The characteristic function for is .
Thus, the characteristic function, which is defined solely by the
zeros of the numerator polynomials, defines the magnitude re-
sponses for both and .

The next step is to find , and then and . It is
important to note that only the magnitudes of and
are determined by (12), leaving a constant phase for each re-
sponse undetermined. Since only the relative phase is important,
let represent the phase difference so that the all-pass functions
are now defined as follows:

and

(13)

From [5], we know that if has odd order and symmetry,
. If it has even order and symmetry, then .

For the general case, we must determine. Setting
at an arbitrary frequency, say , results in

. Let the phase of
and be represented by and , then is given

by

(14)

where is an integer. Equation (14) is equivalent to the con-
dition for the phases of any 2 2, lossless device whose trans-
mission can be described by a unitary matrix [10]. The roots of
the denominator polynomials can now be determined by multi-
plying the relationships in (7), (8) by to obtain

(15)

(16)

For (15), the minimum-phase roots of the left-hand side
are used to define and the maximum-phase

roots to define . A scale factor is then deter-
mined for and to satisfy (9). The denominator of

and are fully defined as well as the roots of the
numerators. There is, however, a constant phaseassociated
with each all-pass filter that must be determined. The phase is
found by evaluating (13) at a particular frequency, for example

(17)

(18)

The design parameters for an optical ring (or cavity) implemen-
tation are obtained from the discrete time all-pass responses.
The relative phase between the MZI arms is .
The coupling (or reflection strengths for the cavity design) and
phases for each all-pass filter are then determined as discussed
in [2]. For a simple cascade of rings, as shown in Fig. 1(c), the
roots of and are related to the optical parameters

Fig. 4. Schematic of a multichannel frequency selector for add and drop, and
the corresponding binary representation of the drop and through states.

by and . The total phase from
the extra phase term in (2) for an optical all-pass filter must be
compensated by adding to each arm.

The conditions on and required for all-pass de-
composition can be understood by expressing the numerator
polynomials as follows:

(19)

(20)

By defining the reverse polynomials, it is easily shown that
and ; thus, the numer-

ator polynomials are linear-phase [10]. Linear-phase polyno-
mials have their roots on the unit circle or have pairs
of roots located reciprocally about the unit circle .
The denominator polynomial must be minimimum-phase (all

for a stable, causal filter.

III. M ULTICHANNEL FREQUENCYSELECTOR

A multichannel frequency selector drops (or adds) any of
incoming channels while passing the remaining channels

through the device as illustrated in Fig. 4. For a given output
port, each channel is either on or off, which can be represented
by a “1” or “0.” The other output has the complementary re-
sponse by power conservation. Add/drop filters must satisfy
strict requirements on the passband flatness so that many filters
can be cascaded in the system without reducing the passband
width. In addition, the filters must meet tight requirements on
crosstalk. The crosstalk may result from leakage of adjacent or
nonadjacent channels into the output for a particular channel. A
greater concern is leakage of a dropped channel into the through
path that may interfere with an added channel at the same wave-
length later in the system. A periodic filter capable of selecting
multiple channels within one FSR that are not necessarily adja-
cent is discussed. The multichannel frequency selector concept
was first proposed and demonstrated for an eight channel se-
lector using a transversal FIR filter structure [12]. The major
drawback was the achievable crosstalk for a given number of
filter stages and channels. More recently, single-passband lat-
tice FIR filters have been demonstrated [13], [14], capable of
operating on four channels per FSR.

The synthesis algorithm is now used to design a multiple pass-
band filter so that several wavelengths, not necessarily adjacent,
can be selected per FSR for adding or dropping in a similar
fashion to the FIR frequency selector of [12]. As an example,
a 12th-order filter was designed to drop channels 1 and 4 out
of eight channels equally spaced across the FSR. Since 100%
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Fig. 5. Power complementary responses for a 12th-order, eight-channel IIR
(solid) and FIR (dashed) frequency selector for the (top) [1 0 01 0 0 0 0] and
(bottom) [0 1 1 0 1 1 1 1] states.

TABLE I
DESIGN PARAMETERS FOR A 12TH-ORDER

IIR MULTICHANNEL FREQUENCYSELECTOR FORSTATE [1 0 0 1 0 0 0 0].
THE RELATIVE PHASES ARE� = 3:585, �1 = �2:962, AND

�2 = �2:964 RADIANS

transmission is desired for the passband frequencies of one re-
sponse, the zeros of the opposite response were located on the
unit circle across the respective stopbands for an initial guess.
Locating the zeros on the unit circle produces linear-phase nu-
merator polynomials as required for the all-pass decomposition.
The solution was refined by numerical optimization in a least
squares sense to yield the spectral responses shown in Fig. 5.
For comparison, the response for a 12th-order FIR filter was op-
timized in a similar fashion. The target was to achieve a 30-dB
stopband rejection over a channel width equal to 40% of the
channel spacing. The stopband was extended between adjacent
off-channels. A slightly better stopband rejection and passband
width can be obtained by localizing the stopband around each
channel. The stopbands used in the optimization are indicated
by the shaded regions. The IIR selector meets the design re-
quirements for both responses. The IIR response decomposes
into two, sixth-order all-pass filters. The coupling ratios and
phases for each all-pass filter are listed in Table I. All of the
coupling ratios are distinct and fall within a reasonable fabrica-
tion range, . The FIR filter offers good rejection
over a localized frequency region but fails to meet the speci-
fied design requirements for either response. Tradeoffs can be
made between the passband flatness and stopband rejection for

TABLE II
UNIQUE STATES DEPENDING ON THENUMBER OF CHANNELS (N) PER FSR

WHERECHANNEL ON = 1 AND OFF = 0. THE NULL STATE (ALL CHANNELS ON

OR OFF) WAS EXCLUDED

FIR filters. Separate multistage filters may be required to obtain
both, as demonstrated in [13] where a seven-stage filter with
good passband flatness on the drop channels was cascaded with
a five-stage filter to improve the add-to-drop channel isolation.
We note that other design approaches have been investigated for
discrete time multiband filters [15].

A versatile multichannel selection filter can be configured to
drop any channel or number of channels. The number of dif-
ferent filter states that must be generated and satisfy the design
requirements (passband width, stopband rejection, etc.) depends
on the number of channels per FSR. Forchannels, there are
2 possible states; however, it is only necessary to consider a
subset. The remaining states can be obtained by the following
transformations: 1) the power complementary response is ob-
tained by changing the phase between the arms of the MZI by

; 2) the response is translated in frequency by changing all of
the phases by a fixed amount; or 3) the response is reversed by
conjugating the filter parameters. Table II lists the unique states
as a function of the number of channels. The null state, con-
sisting of all channels on or off, was not included. The null state
can be achieved by changing the MZI coupling ratios to “0” or
“1” so that the input goes into one arm of the interferometer.
For , there are 18 unique states (including the null state)
compared to 256 total states, thus the design space that must be
optimized and the complexity of the control algorithm are sub-
stantially reduced. All states for the case can be obtained
from three, symmetric responses. For higher channel counts per
FSR, nonsymmetric cases must be realized for a completely ver-
satile selector. The advantage of symmetric states is that the
symmetry is also present in the all-pass decomposition, so fewer
unique coupling ratios and phases have to be realized. For ex-
ample, the design parameters for the three states of the
case are given in Table III for an eighth-order response. Each
state decomposes into fourth-order all-pass filters in each arm.
The coupling ratios are identical for and , while
the phases are opposite in sign. The corresponding spectra are
shown in Fig. 6. The design requirements are met with margin
for all states. For a reconfigurable multichannel selector, it is
important that all of the states decompose into all-pass filters
of the same order in each arm. We note that a sixth-order filter
meets the above design requirements on stopband rejection and
passband width; however, the [1 0 1 0] state decomposes into a
fourth-order and second-order all-pass filter. Thus, a filter with
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TABLE III
DESIGN PARAMETERS FOR ANEIGHTH-ORDER IIR MULTICHANNEL

FREQUENCYSELECTOR FORSTATES s1 = [1 0 0 0],s3 = [1 1 0 0], ands5 = [1
0 1 0]. NOTE THAT � = �� AND � = �

Fig. 6. Output spectra for three states of an eighth-order, four-channel IIR
frequency selector.

a three-stage all-pass filter in each arm would not be able to re-
alize this response.

Next, we explore the design sensitivity to variations in the
coupling ratios, loss and phases using the nominal all-pass filter
designs for state from Table III in (10), (11) as the starting
point. To maintain a stopband rejection of 30 dB on an eight-
stage filter with a nominal 35 dB rejection, the coupling ratios
must be within 0.002 and the phases within0.002 . The
worst case stopband rejection over 1000 runs, assuming a uni-
form distribution on the coupling ratios and phases, is shown
in Fig. 7. For a four-stage filter with a minimum 30 dB rejec-
tion, the coupling tolerance is0.003 and the phase tolerance is

0.005 The lower-order filter is substantially more tolerant to
phase errors. Waveguide heaters have demonstrated phase toler-
ances better than0.01 [16]. The impact of a 0.5- and 1.0-dB
loss per feedback path is shown in Fig. 8. The passband trans-
mission decreases proportional to the feedback path loss, but
the stopband response is maintained. The tolerance to loss re-
sults because the passband and stopband occur off-resonance

Fig. 7. Worst case spectra of 1000 runs for uniformly varying random phase
and coupling ratio on an eighth-order, four-channel IIR frequency selector
response.

Fig. 8. Impact of loss on an eighth-order, four-channel IIR frequency selector
response.

for the all-pass filters. Feedback path losses of 1 dB have been
achieved in practice [17], and lower losses are anticipated. For
a 30-dB stopband rejection, the coupling ratios of the MZI must
be tightly controlled, . In practice, each
coupler may be realized with a symmetric MZI having a phase
shifter in one arm to tune the effective coupling ratio.

As a specific example, consider a filter with a 100-GHz FSR
designed to separate channels spaced on a 25 GHz grid. For
a waveguide effective index of , the nominal feed-
back path length is mm. Next, we consider the toler-
ances on the coupling ratios and phases for operation over a
wavelength range of . An added benefit byproduct of using
MZI’s to implement tunable couplers is that the effective cou-
pling wavelength dependence can be made negligible, for ex-
ample over 100 nm [18]. The nominal
phases are set using heaters, so we need only consider the wave-
length dependent phase error. Let ,
then the tolerance on the feedback path length is

. For nm and nm,
m which is commensurate with tolerances for

waveguide grating routers [19].
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IV. FILTERS WITH ARBITRARY MAGNITUDE RESPONSES

The all-pass filter decomposition architecture is not limited to
bandpass designs. A simple modification of the bandpass design
is to replace the 3-dB couplers in the MZI with other values. The
square magnitude response depends on the coupling ratios and
all-pass filter phase responses as follows:

(21)

where . For example, let the coupling ratios
be given by = 0.3 (5.2 dB) and assume that each arm has
a four-stage all-pass filter designed for an eighth-order elliptic
filter response. The spectral response shape can be made the
same as shown in Fig. 6, except that has a maximum
equal to 0.8 dB while its power complementary response has
a minimum of 8 dB. Thus, each spectral response has two
levels that can be varied by choosing the splitting and combining
coupling ratios of the MZI.

Now, we consider the design of a filter with an arbitrary IIR
spectral response using all-pass decomposition. The problem is
to determine and so that one of the filter responses
closely approximates the desired square magnitude response,

. The filter order is equal to the sum of the number of
stages in and . If the desired response fluctuates
between two levels, a bandpass filter design approach can be
used with the MZI coupling ratios chosen using (21) and power
conservation for the other response. For more general filter func-
tions, the characteristic function approach is used to set the zeros
for the numerator polynomials, and . The numer-
ator polynomials must be linear-phase so that (17) and (18) are
satisfied for the same value of. In general, setting the zeros
for any two of the three polynomials or defines
the zeros for the remaining polynomial as a result of the power
conservation relationship extended analytically to thedomain
[10], the linear-phase condition on and , and the
stability requirement on .

A. Linear Power Response

As an example, a filter with a linear square magnitude re-
sponse over was designed. Only frequencies
within this range were used in the numerical optimization. The
square magnitude response for a second-order filter is shown in
Fig. 9. The response is linear to within0.005 over a frequency
range of 0.64 FSR. By comparison, an asymmetric MZI re-
sponse has an approximately linear response over a much nar-
rower range of the FSR. The IIR filter contains a single-stage
all-pass filter in each arm of the MZI. The pole magnitudes
and phases (rad) for the all-pass filters are 0.29250.0088
and 0.7865 0.0099. The remaining design parameters are

, and radians. Potential
applications for such a response include frequency discrimina-
tors for laser wavelength tracking and stabilization and modu-
lators that respond linearly to the input signal for analog trans-
mission.

B. Gain Equalization Filter

Next, we design an IIR filter to approximate a desired gain
equalization function to within 0.1 dB. The desired response is

Fig. 9. Linear power response for an IIR filter with a single-stage all-pass filter
in each arm of a MZI.

Fig. 10. Gain equalization filter response.

TABLE IV
DESIGNPARAMETERS FOR AFOURTH-ORDERGAIN EQUALIZATION IIR FILTER

taken from a 20-nm portion of an erbium-doped fiber amplifier
spectrum. For a starting point, the output of an all-pole (or au-
toregressive filter) model [10] is used for the pole locations, and
the zeros are set at . An optimization routine is then used
to find the best fit in a least squares sense for a given order IIR
response. The shortest IIR filter amenable to all-pass decom-
position to meet the above criterion is fourth-order. The magni-
tude response is shown in Fig. 10, and the filter design values are
given in Table IV. To avoid large coupling ratios , the
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Fig. 11. Notch filter response compared to a single-ring filter response.

peak filter transmission was reduced from 100% to 89% (0.5 dB
loss). The combination of poles and zeros in one filter allows a
lower order filter (thus a simpler and potentially more compact
implementation) to be used to meet the same requirements of an
all-zero or all-pole filter. For a lossy filter, the loss changes the
spectral shape, so it is necessary to include the loss as part of
the design optimization. Similar design parameters and fit were
obtained for the above IIR filter by optimizing for a 0.5 dB loss
per feedback path round-trip.

V. SPECIAL CASE: A DELAY LINE IN ONE ARM

We now consider IIR filters using all-pass decomposition
where one arm is a simple delay line. Two examples with
potential applications for WDM systems are given: a notch
filter and a multistep response filter.

A. A Notch Filter

A notch filter removes a single frequency in the FSR. Such a
response can be achieved by using a single-stage all-pass filter
in one arm of a MZI and a delay in the other arm as indicated
in the inset of Fig. 11. Both arms have the same delay if
for the all-pass filter. Multiple notches per FSR can also be used
by adding more all-pass stages [20]. By varying the ring cou-
pling ratio, the finesse of the response changes. The response is
very similar to a single-pole, or autoregressive (AR), response
obtained from a ring with two couplers; however, it has a zero in
the transfer function that improves the stopband rejection. The
notch filter is compared to a ring resonator response in Fig. 11
assuming the coupling to the ring is in both cases and
that the loss per round-trip for the feedback path is 0.5 dB. The
through-path response for the ring has a single pole and zero,
making it an IIR or moving-average autoregressive (ARMA)
response. If there were no loss, then the power complemen-
tary responses would have a notch with zero transmission. With
loss, however, the notch depth is substantially reduced in both
cases. As the finesse increases, the peak transmission decreases
for both filters in the presence of loss. The peak transmission is

6.8 and 10.6 dB for the AR and notch filter responses, re-
spectively.

Fig. 12. Multistep architecture and response for (a) a single-stage and (b)
double-stage all-pass filter withN = 4 andM = N � 1.

B. A Multistep Filter

A multistep response is easily obtained using all-pass filters
in one arm and a delay in the other arm. Let the all-pass filter
delay be and the delay line be . Over one FSR, the
all-pass filter goes through periods and has a total phase
change of , while the delay line phase changes linearly
by . By choosing the phase slope (i.e., group delay) of
the all-pass filter equal to that of the delay line over some portion
of its period, the magnitude response of the MZI stays constant
over that region. Furthermore, choosing means
that the phase difference between the arms after one FSR is 2
and that the delay line is shorter than the all-pass filter feedback
path. The off-resonance group delay of the all-pass filter
is then set equal to the group delay of the delay line by choosing

according to (4). For a single ring with and , a
three-level response results as shown in Fig. 12. The ring cou-
pling is = 0.1429. By adding another all-pass filter stage, the
width of each step can be increased while decreasing the transi-
tion band. The response using a two-stage all-pass filter in one
MZI arm and lengthening the delay line so that
is also shown in Fig. 12. The two-stage all-pass filter was op-
timized for constant delay over 0.6 FSR and has the design
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parameters 3.1102 and 6.2517.
The architecture is advantageous for ring implementations since
a larger ring diameter, proportional to N/FSR instead of 1/FSR,
is required. This same design approach can be used to extend
the passband width of a multiport filter incorporating all-pass
filters [21]. Larger values of (with increase the
number of levels in the response. Discrete time arbitrary-level
filters are discussed in [22], [23].

VI. DISCUSSION

In summary, an all-pass filter decomposition algorithm was
defined for the design of multiple-passband filters. The pre-
vious single-passband algorithm was modified by introducing
two phase terms,and , and the characteristic function. The
resulting IIR multichannel frequency selector has substantially
better passband flatness and stopband rejection than is possible
with an FIR filter having the same number of stages. Architec-
tures using all-pass filters can also be used to realize arbitrary
functions such as those required for gain equalization, linear,
and multistep responses. While these structures are quite tol-
erant to loss, good control over the coupling and phases is re-
quired just as for FIR filters like the waveguide grating router.
Reconfigurable IIR filters can be realized using tunable all-pass
filters as building blocks.

The filter theory presented is general and can be imple-
mented in many different technology platforms. While ring
implementations in planar waveguides are attractive from
a compact device and integration viewpoint, they require
high core-to-caldding index contrasts to obtain the ring radii
required for some applications. Demonstrations of microcavity
rings [24], [25] show that FSR’s suitable for multichannel filter
applications in WDM systems are achievable. Coupling from a
low to high index contrast waveguide must be addressed as well
as minimizing polarization dependence. These challenges must
also be addressed for photonic bandgap (PBG) structures. PBG
structures provide an opportunity for integrated, standing-wave
cavity all-pass filters using partially reflecting Bragg gratings
instead of couplers. The challenge for standing-wave cavity
filters is to fabricate the desired partial reflectance with a small
wavelength dependence, to separate the incoming and reflected
signal, and to realize cascaded or coupled cavities. Besides
planar integration, the architectures discussed in this paper can
be implemented using optical MEM’s devices [8] and thin film
filters [26].
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