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Effects of the Nature of the Starting Population on
the Properties of Rugate Filters Designed with the

Genetic Algorithm
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Abstract—The genetic algorithm optimization technique for op-
tical filter design is applied to two starting populations, an inverse
Fourier transform population and a random population. The
refractive index profiles after convergence, and the transmittance
of the filter outside the region of support, are markedly different
in the two cases. The Fourier filter has lower sidelobes and fails
gracefully outside the region of support whereas the random
filter fails catastrophically in this wavelength region. The ripple
in the passband is higher for the random filter. Furthermore,
the average value of refractive index profile and the excursion in
refractive index are much larger for the filter generated with the
random starting population. However, most of the drawbacks of
the random starting population are eliminated by chromosome
manipulation in the spatial frequency domain. The filter proper-
ties after this intervention approximate those of the Fourier filter.

Index Terms—Chromosome manipulation, genetic algorithm,
optical filter, refractive index profile.

I. INTRODUCTION

T HE ADVENT of wavelength-division multiplexing
(WDM) in fiber-optic communication systems has led to

a requirement for various wavelength selective devices such
as narrow-band filters [1], [2]. The wavelength selectivity
can be obtained by dielectric filters, coupled wave devices
or diffractive elements such as Bragg gratings [3]. Dielectric
filters may be of the high–low stack variety or of quasicon-
tinuous inhomogeneous layers such as rugate filters. We have
a research program in the design and manufacture of rugate
filters for optical fiber applications. The design of rugate filters
is somewhat more complex than the discrete high–low index
type filters [4]. Several design techniques have evolved such
as classical rugate design [5], inverse Fourier transform [6],
[7], wavelet based design [8], and the genetic algorithm [9].
This paper reports on the effect of the nature of the starting
population on the properties of rugate filters designed with the
genetic algorithm. The genetic algorithm or GA is not strictly a
design algorithm but rather a refinement technique [9]. There-
fore, it needs a set of initial designs (the starting population)
that are subsequently refined. These starting populations have
a definite influence on the convergence rate of the algorithm
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and the quality of the final design. We present data on the
design of a 100-nm wide 50% beamsplitter centered at 980 nm,
which employs two families of starting populations. We are
also introducing a novel procedure to enhance the performance
of the GA with random starting population.

II. THE GENETIC ALGORITHM

The GA optimization technique is modeled on the evolution
of living organizms [10]. The GA presumes that the solution
to an optimization problem is an individual that can be defined
by a set of parameters [10]. Its basic building block is an al-
phabet letter or nucleotide. For a thin-film filter this represents
any physical property such as the refractive index, extinction
coefficient, positional index and thickness of a sublayer. The
combination of two or more alphabet letters forms a codon.
A codon can be, for example, the set containing the refractive
index value, the physical thickness, and the absorption coeffi-
cient of a sublayer in a filter. A set of N codons forms a chro-
mosome, with N being the number of sublayers in the filter.
Lastly, a set of chromosomes forms the starting population that
the genetic algorithm uses to generate new generations either
by mutating a single chromosome or by combining two or more
chromosomes. This population is allowed to compete in an en-
vironment in which the strongest or best individuals in the pop-
ulation have a better chance of survival into the next generation.
The GA evaluates the fitness of a chromosome by using an eval-
uation or merit function [10]. A suitable merit function used to
return a single number reflecting the total fitness of a specific
chromosome is given by [11]

(1)

with the figure of merit, the desired target transmit-
tance of the filter at wavelength , the actual transmit-
tance of the filter, and the tolerance.

III. STARTING POPULATIONS

A starting population may be compiled by a number of
methods ranging from analytical methods such as the inverse
Fourier transform and the classical rugate design, to knowl-
edge-based systems [4], and to randomly created filters [10].
For the purposes of this paper we examined two of these
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populations. The first population was compiled by using the
inverse Fourier transform synthesis technique given by [6], [7]

(2)

with an even function of the desired transmittance, a
phase function, the refractive index profile, the
free-space wave number, andtwice the optical distance from
the geometrical centre of the inhomogeneous layer

(3)

with the depth variable. Population diversity was obtained
by using several phase and functions [6], [7]. The parame-
ters in the phase functions were selected in a random fashion.
The second starting population was created by random selec-
tion of the refractive index alphabet letter in each gene for fixed
values of the corresponding thickness of the sublayer. We used
a uniform probability distribution with mean value ,
standard deviation , but limited to the refractive index
range from 1.5 to 3.2. The optical thickness alphabet letter in
each codon was set at the same fixed value for both the inverse
Fourier transform and the random starting populations. We ap-
plied quintic matching layers [12], each with an optical thick-
ness of 2 m, between the filter and the incident and exit media.

IV. THE DESIGN PROCESS

The design process was implemented as follows: The de-
sired transmittance spectrum was generated over the 0.7–1.3m
wavelength range [7], called the region of support, and saved for
later reference. The following constraints were placed on the
starting populations: Each chromosome comprised 300 codons
with a total optical thickness of 22m. This translates into
a physical thickness alphabet letter of approximately 30 nm
for each sublayer. The refractive index alphabet letter was re-
stricted to any value of refractive index within the range of

. This corresponds to the values of refractive
index obtainable with SiNO grown in our electron cyclotron
resonance plasma enhanced chemical vapor deposition system
(ECR-PECVD) [13], [14]. For each of the starting populations
150 chromosomes were generated, and the tolerancewas set
equal to 1%. For the implementation of the GA, the crossover
and mutation probabilities were set at 0.6 and 0.05 respectively.
The matrix method was used to calculate the corresponding re-
flectance and transmittance of each filter chromosome [15]. The
design process was implemented in MATLAB.1

V. RESULTS AND DISCUSSION

The filter obtained by initiating the GA with the inverse
Fourier transform starting population refractive index profile
(Fourier filter) after 10 000 generations is shown in Fig. 1(a),
and its corresponding transmittance and reflectance in Fig. 1(b)
and (c) respectively. Fig. 2(a)–(c) depicts the refractive index
profile, the corresponding transmittance and the reflectance of
the filter obtained from the GA started with the random starting

1MATLAB is a registered trademark of MathWorks, Inc., Natick, MA USA.

Fig. 1. (a) Refractive index profile generated by initiating the GA with an
inverse Fourier transform starting population after 10 000 new generations.
(b) Corresponding transmittance spectrum of the filter. (c) Corresponding
reflectance spectrum of the filter.

population (stochastic filter), respectively. These results also
pertain to 10 000 generations. Fig. 3 shows the convergence
rates of the figure of merit for both filters.

We make the following observations from Figs. 1–3: The
average value of the refractive index of the Fourier filter is
2.19 in comparison with the 2.33 of the stochastic filter. Also,
the refractive index variation in the Fourier filter is between
2.05–2.39, whereas it varies from 1.60 to 3.20 for the stochastic
filter. The Fourier filter has a smaller ripple in the beamsplit
band ( % compared with %) and a lower reflectance
outside the beamsplit band (less than dB, compared
with dB for the stochastic filter). The filter obtained by
starting the GA with the inverse Fourier transform population
(Fourier filter) fails gracefully outside the region of support
(design region) from 0.7 to 1.3m. This is in sharp contrast
to the filter obtained with the random population (stochastic
filter). It has high reflectance bands between 0.6–0.7m, and
between 1.3–1.4m.

The Fourier filter has a much faster convergence rate (dashed
line) for the figure of merit than that of the stochastic filter (solid
line). After fewer than 20 new generations of the Fourier filter,
its figure of merit is already smaller than the stochastic filters
figure of merit after 10 000 new generations. The overall fitness
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Fig. 2. (a) Refractive index profile generated by initiating the GA with a
random starting population after 10 000 new generations. (b) Corresponding
transmittance spectrum of the filter. (c) Corresponding reflectance spectrum
of the filter.

Fig. 3. Convergence rates of the figure of merit for the filters with an
inverse Fourier transform starting population (dashed line), a random starting
population (solid line), and a chromosome-modified filter with random starting
population (dotted line).

of the Fourier filter , as represented by the figure
of merit after 10 000 generations, is significantly better than the
corresponding value for the stochastic filter .

Fig. 4. Power spectral density of the refractive index profiles after10 000 new
generations of (a) the Fourier filter, (b) the stochastic filter, and (c) the stochastic
filter after bandpass filtering.

The question of whether the two filters generated from the
two different starting populations approach the same global
solution still remains to be answered. Although the transfer
functions look very similar in the region of support, it is difficult
to compare the refractive index profiles. The stochastic filter has
a large random component that masks the filter chromosome.
The underlying structure of the chromosome is conveyed much
better in the spatial frequency domain. Fig. 4(a) and (b) shows
the power spectral density of the refractive index profiles of the
Fourier and stochastic filter respectively. It is clear from these
spectra that the key spatial frequency information lies in the
spatial frequency range of approximately 0.2–0.42 (normalized
with respect to the Nyquist frequency). This point is illustrated
well by filtering the refractive index profile of the stochastic
filter. Fig. 4(c) shows the power spectral density obtained by
processing the data with a 20th-order Butterworth bandpass
filter with a passband of 0.2–0.42. Similar to the Fourier filter,
this spectrum also contains three prominent peaks around
the normalized frequency of 0.3. The filtered refractive index
profile and its transmittance and reflectance are displayed in
Fig. 5(a)–(c) respectively. Although it is clearly not the same
refractive index profile, there are similarities in the envelopes.
The stochastic filter seems to be an approximate transpose of
the Fourier filter. We think this similarity is fortuitous. It is
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Fig. 5. (a) Refractive index profile generated by initiating the GA with a
random starting population. The profile generated after 10 000 generations
was bandpass filtered with a 20th-order Butterworth filter with a passband
from 0.2 to 0.42. (b) Corresponding transmittance spectrum of the filter. (c)
Corresponding reflectance spectrum of the filter.

well known [16] that the inverse problem (i.e., synthesis of
the refractive index profile from a given reflectance function)
is unique only if a minimum phase function (zeros restricted
to one half of the complex frequency plane) is assumed. As
we do not have control over the phase function in the genetic
algorithm, the solution space consists of numerous minima
corresponding to arbitrary phase functions.

We tested the robustness of the GA by initializing the algo-
rithm with 46 different random populations and by running each
population for 2000 generations. All of the filters have figures
of merit that cluster around a mean value of 1.56. The standard
deviation is 0.15. These results confirm that the GA is very ro-
bust as it apparently reached one of the global minima for each
of the 46 random starting populations used.

VI. CHROMOSOMEMANIPULATION

The process of bandpass filtering of the refractive index pro-
file as discussed in the previous paragraphs suggests a novel
procedure to enhance the performance of the GA with random
starting populations. If the chromosomes can be modified by
bandpass filtering early in the evolutionary cycle, the stochastic

Fig. 6. Power spectral density of the refractive index profile of (a) the
stochastic filter after 100 generations, and (b) the chromosome-manipulated
filter after 8000 new generations. The chromosome manipulation was
performed after 100, 200, and 400 generations.

Fig. 7. (a) Refractive index profile of the CGMA after 8000 new generations.
(b) Corresponding transmittance spectrum of the filter. (c) Corresponding
reflectance spectrum of the filter.
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Fig. 8. Effect of normally distributed random perturbations in the refractive
index profile on the transmittance of the filter generated by initiating the
GA with (a) and inverse Fourier transform starting population, (b) a random
starting population, and (c) a random starting population with chromosome
manipulation after 100, 200, and 400 generations. The dashed curves depict
transmittance for the perturbed filters.

or noise components of the population can be reduced. This
should improve the convergence, the final figure of merit and
the performance outside the region of support. It is clear from
Fig. 6(a) that the signal component and the noise component of
the refractive index power spectral density can be clearly dis-
tinguished after as few as 100 generations. Based on this ob-
servation we implemented the stochastic GA with chromosome
manipulation (CMGA) as follows: the entire population was fil-
tered after 100 generations with the bandpass filter as described
in Section V. This procedure was repeated after 200 and again
after 400 generations, and then the GA was allowed to evolve
for a total of 8000 generations.

The rate of convergence is significantly improved as can be
seen from the dotted curve in Fig. 3. The figure of merit reached
a value of 0.96 after 8000 generations. This compares favorably
with the figure of merit of 0.91 of the Fourier filter after the same
number of generations, and it is significantly better than the sto-
chastic filter after 10 000 generations. Fig. 6(b)
depicts the power spectral density of the chromosome manipu-
lated stochastic filter after 8000 generations. Its refractive index
profile and transmittance and reflectance are shown in Fig. 7.

Fig. 9. Distribution of the changes in the figure of merity for normally
distributed perturbations in the refractive index profile of filters generated by
initiating the GA with (a) an inverse Fourier transform starting population,
(b) a random starting population, and (c) a random starting population with
chromosome manipulation after 100, 200, and 400 generations.

We make the following observations from Fig. 7. The av-
erage value of the refractive index of the CMGA filter is 2.13
in comparison to the 2.33 of the stochastic filter. The refrac-
tive index variation of the CMGA filter is between 2.00–2.25,
whereas it varies from 1.60 to 3.20 for the stochastic filter. The
CMGA filter has a somewhat smaller ripple in the beamsplit
band ( % compared with %) and lower reflectance out-
side the beamsplit band (less than16.5 dB compared with

15.9 dB for the stochastic filter). Similar to the Fourier filter,
the CMGA also fails gracefully outside the region of support
(design region) from 0.7 to 1.3m, except for a single peak at
0.69 m.

VII. SENSITIVITY

One can expect random variations in the refractive index pro-
file of ECR-PECVD grown films of up to 1%. We have studied
the effect of process variations on the three filters numerically
by using a normal distribution of refractive index variations with
a standard deviation equal to 1% of the mean value of the refrac-
tive index profile. This implies in practice that refractive index
variations of up to 4% will occur. This is larger than can be rea-
sonably expected, but it was chosen to make the effects more
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visible. Each of the filter profiles were perturbed with these
random variations, and the reflectance, transmittance and figure
of merit were computed. This procedure was repeated a thou-
sand times. The effect of such perturbations on the Fourier trans-
form, stochastic and chromosome-manipulated filters is shown
for a typical filter in Fig. 8(a)–(c), respectively. Fig. 9(a)–(c)
shows the distributions of the changes in the figure of merit for
each of these filters. These distributions are skew and cannot be
well represented by Gaussian functions. We obtained the best
fits in the least squares sense by beta functions of the form [17]

(4)

where and are adjustable constants. The average figure of
merit for the Fourier transform starting population is degraded
by , for the stochastic filter by , and
for the chromosome-manipulated stochastic filter by

. The corresponding standard deviations were 0.37, 0.35,
and 0.36. These deleterious effects are mostly manifested by
an increase in the passband ripple to0.22 dB for the Fourier
filter, to 0.45 dB for the stochastic filter, and to0.35 dB for
the chromosome-manipulated filter. The mean values of the re-
flectance changed from3.0 dB to 3.1 dB, 3.2 dB, and 3.4
dB, respectively. We do not as yet have an explanation for the
detailed behavior of the three filter types with random perturba-
tions applied to their refractive index profiles.

VIII. C ONCLUSION

The starting population used in the GA optimization technique
hasamarked influenceon the final refractive indexprofileaswell
as the transmittance of the filter outside the region of support,
and the ripple in the passband. This was demonstrated by a 3-dB
beamsplitterdesignedfor980nm.Furthermore, the filter realized
by application of the GA to the stochastic starting population has
large refractive index excursions in consecutive layers. This can
bedetrimental to the filterperformanceas itmay lead to increased
film stress which may lead to delamination at high power densi-
ties. In addition, it will complicate the manufacturing process as
the film composition will have to change drastically from sub-
layer to sublayer. The sensitivity of the filters to random changes
in the refractive index of the sublayers is not overly influenced by
the nature of the starting population.

We introduced a new technique of chromosome manipula-
tion where a random starting population was used and the chro-
mosomes were subjected to a bandpass filter early in the evo-
lutionary cycle. This intervention improved the rate of conver-
gence of the merit function, the final figure of merit and the
ripple in the passband. The variation in the refractive index pro-
file became much smaller, and the filter failed gracefully outside
the region of support. For instances where the inverse Fourier
transform synthesis technique is not appropriate to generate a
starting population, the CMGA technique could be used as an
alternative.
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