2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Design and Analysis of Silicon Antiresonant Reflecting Optical Waveguides for Evanscent Field Sensor

Francisco Prieto, Andreu Llobera, David Jiménez, Carlos Doménguez, Ana Calle and Laura M. Lechuga

Page 966.

Abstract:

Silicon based antiresonant reflecting optical waveguides (ARROW's) have been designed in order to obtain a high sensitive optical transducer for sensing applications. The designed sensor has an integrated Mach-Zehnder interferometer configuration. The optical waveguides that form its structure have to verify two conditions: monomode behavior and high surface sensitivity. In this paper, we present a theoretical modeling of the propagation characteristics and surface sensitivity of the ARROW structure.

References

  1. J. Janata, M. Josowicz, P. Vanysek and D. M. De Vaney, "Chemical sensors", Anal. Chem. , vol. 70, pp.  179R-208R, 1998.
  2. R. P. H. Kooyman and L. M. Lechuga, "Immunosensors based on total internal reflectance,"in Handbook of Biosensors and Electronic Noses, E. Kress-Rogers, Ed. New York: CRC Press, 1997, pp.  169-196. 
  3. W. Lukosz, "Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing", Biosen. Biolectron., vol. 6, pp.  215-225, 1991.
  4. M. A. Duguay, Y. Kokubun and T. L. Koch, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures", Appl. Phys. Lett., vol. 49, pp.  13-15,  July  1986.
  5. T. Baba, Y. Kokubun, T. Sakaki and K. Iga, "Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration", J. Lightwave Technol., vol. 6, pp.  1440-1445, 1988.
  6. T. Baba and Y. Kokubun, "Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides: Numerical results and analytical espressions", IEEE J. Quantum Electron., vol. 28, pp.  1689 -1700, 1992.
  7. W. Huang, M. S. Raed, A. Nathan and Y. L. Chow, "The modal characteristics of ARROW structures", J. Lightwave Technol, vol. 8, pp.  1015-1022, 1992.
  8. E. Bartolomé, M. Moreno, J. Muñoz and C. Domínguez, "Multilayer analysis of ARROW structures", Microwave Opt. Technol. Lett., vol. 10, 1995 .
  9. A. Kumar and K. Thyagarajan, "Analysis of rectangular-core dielectric waveguide: An accurate perturbation approach", Opt. Lett., vol. 8, pp.  63-65, 1983 .
  10. P. N. Robson, and P. C. Kendall, Eds., Rib Waveguide Theory by the Spectral Index Method, New York: Research Studies/Wiley, 1990.
  11. C. M. Kim and R. V. Ramaswamy, "Modeling of graded-index channel waveguides using nonuniform finite difference method", J. Lightwave Technol, vol. 7, pp.  1581-1589, 1989.
  12. C. Domínguez, J. A. Rodríguez, F. J. Muñoz and N. Zine, "Plasma enhanced CVD silicon oxide films for integrated optic applications", Vacuum, vol. 52, pp.  395-400, 1999.
  13. I. Garcés, F. Villuendas, J.A. Vallés, C. Domínguez and M. Moreno, "Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides", J. Lightwave Technol., vol. 14, pp.  798-805, 1996.
  14. K. Tiefenthaler and W. Lukosz, "Sensitivity of grating couplers as integrated-optical chemical sensors", J. Opt. Soc. Amer. B, vol. 6, pp.  209-220, 1989.
  15. O. Parriaux and G. J. Veldhuis, "Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors", J. Lightwave Technol., vol. 16, pp.  573-582, 1998.
  16. F. A. Muhammad, G. Stewart and W. Jin, "Sensitivity enhancement of D-fiber methane gas sensor using high-index overlay", Proc. Inst. Elec. Eng.-Pt. J, vol. 140, pp.  115-118, 1993.