
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 7, JULY 2000 941

Long-Term Measurement of PMD and Polarization
Drift in Installed Fibers
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Abstract—We report the most detailed long-term measurement
of polarization mode dispersion (PMD) made to date. We measured
two separate fibers under the same time period, which makes it
possible to compare the drift properties of two similar fibers in
the same environment. The measured Jones matrices suffers from
both random and systematic errors, a generic problem which we
discuss in detail and solve. The results confirmed the well-known
statistical properties of the PMD-vector. Furthermore, the drift av-
eraged over wavelength is very well (96%) correlated between the
two fibers. We finally quantified the temporal drift by computing
the autocorrelation function of the PMD-vector analytically, both
with respect to wavelength and to drift time. The analytical theory
shows good agreement with the measurements.

Index Terms—Fiber characterization, polarization drift, polar-
ization-mode dispersion (PMD).

I. INTRODUCTION

POLARIZATION-MODE dispersion (PMD) is commonly
regarded as one of the most serious obstacles facing future

high-speed fiber transmission. It is particularly difficult to com-
pensate for since it varies with wavelength and slowly drifts with
time in a random fashion. To establish the impairments from
PMD on transmission systems, one then must resort to statis-
tics, and it is obviously important to have a clear picture of the
statistical properties of PMD.

It is the drift of the polarization properties with time that is the
most troublesome aspect of PMD from a system point of view.
A deterministic birefringence would be fairly straightforward to
compensate for (at least over moderate bandwidths), but when
the birefringence drifts the compensation scheme must adjust
and dynamically follow this drift. This tends to make realiza-
tions of effective PMD compensators complex and expensive.

Another problem with PMD is that cabled fiber in the ground
and spooled fiber in the lab differ in several important aspects,
such as the mode coupling lengths and the drift properties. It
is therefore of additional importance to characterize installed
fibers rather than lab fibers. The drift of the PMD in installed
fiber have been investigated by several groups, but several ques-
tions remain unsolved. For instance, what is the origin of the
drift? How fast is the drift, and what additional fiber properties
determines the drift? Does the PMD drift on the same time scale
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as the absolute polarization state? The purpose of this paper is
to, if not straighten out all question marks, at least shed some
light over these rather difficult issues.

A. Properties of the PMD-Vector

The effects of PMD is treated by means of thePMD-vector,
, which is a 3-component polarization vector in

Stokes space. It varies in a random fashion with fiber length,
the optical frequency and time . In a practical transmission
situation, the fiber length is constant, and only the drift and
frequency variation of are of interest. Given a constant input
polarization to the fiber, PMD will manifest as a change in
output polarization Stokes vectorwith frequency according to

. This equation might in fact be taken as the
definition of the PMD vector, but the reader should note that
the definition is restricted to the case of fibers with negligible
polarization-dependent loss (which is no serious limitation
in most transmission systems). Apart from this, the above
definition has a lot of advantages: First, it is the underlying
model for most statistical treatments of PMD [1]–[3] and thus
it forms the basis for most of the known statistical properties
of the PMD-vector. Second, it is the definition used in the
Jones-matrix method [4], which is more or less regarded
as the reference measurement method for PMD. Third, this
definition provides a very elegant concatenation rule for the
PMD-vector of a sequence of birefringent elements [5], [6].
Fourth, and finally, this definition provides a comfortable way
of calculating the PMD-induced broadening and group delay
of short polarized pulses via integrals of the PMD-vector over
the pulse spectrum [7]. For example, the group delay of a
pulse with polarization vector is , where denotes
integration over the normalized pulse spectrum. The drawback
of this definition of the PMD-vector is that the incorporation
of polarization-dependent losses (PDL) is far from straight-
forward, and a simple and elegant way of accounting for both
PMD and PDL is yet to be found. In this paper we assume PDL
to be negligible, an assumption that was also verified in the
measurements.

Obviously, the polarization states parallel and antiparallel
with the PMD-vector will (to first order in ) not change with
wavelength, and those states are called theprincipal states
of polarization (PSP’s). From the defining equation we can
also conclude that the length of the PMD vector [called the
differential group delay (DGD), ] determines the rate of
polarization change with frequency. In the time domain,
will be the group delay between light polarized along the two
PSP’s.
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B. Polarization Fluctuations in Fibers

Long-term measurements of the polarization properties of
installed fibers have been done on many instances with more
or less inconsistent results. The first such measurements were
reported in the eighties [8]–[12], and focused on the drift of the
absolute polarization state after different lengths of installed
(mostly submarine) single-mode fibers. It was found that the
drift for installed fibers was rather slow; on the order of hours
to days [8]–[12]. It was also argued theoretically [11] and
experimentally [10] that the variance of the fluctuations grew
linearly with the fiber length. More rapid drifts (on second
timescales) were observed on cables subjected to rapid environ-
mental changes, e.g., during installation of submarine cables
[13], [14], for applied vibrations [15] and other perturbations
such as stress, temperature changes, etc. [16].

It is not obvious that this kind of fluctuations of the abso-
lute polarization state also will affect the PMD, since it is well-
known that the DGD is unaffected by, e.g., the presence of a
polarization controller at one end of a fiber under PMD mea-
surement. However, the PMD-vector is not unaffected by such
a polarization controller, and we will therefore discuss this in
some more depth.

We first consider a single pointwise fluctuation (it can be
thought of as a fluctuating polarization controller) at a distance
from the source, along a fiber of length. The total PMD-vector
of the fiber can be written as a vector sum of the PMD vector
of the first part (call it ) and the PMD-vector of the second
part (call it ). For an exact concatenation rule we refer to the
appendix or Ref [6]. Here it suffices to state that the total PMD
vector will be , where is some arbitrary
rotation (or Mueller) matrix. From a simple geometrical picture
it is evident that the maximum and minimum values of the total
DGD will be the sum and difference of the two partial
DGD:s, i.e., , and the average
will be the quadratic sum, i.e., . It
is straightforward to show that the maximum fluctuation in the
length of (the total DGD) will occur for , i.e.
when . The direction of the PMD vector will in this
case only fluctuate , i.e., within a half plane. In the other
limit, when the point of fluctuation is at either end point (
or ) the length of the total PMD is unchanged, but the di-
rection might vary over the entire 360of the Poincaré sphere.
Hence, depending on the position of the fluctuation, the DGD
and the PSP’s are affected in various amounts. Now, in a re-
alistic fiber the fluctuation points are likely to be evenly dis-
tributed over the entire fiber length, so fluctuations are likely
to arise in both the length and the direction of the PMD-vector
at the same time. Moreover, any polarization fluctuation (inde-
pendently of ) will affect also theabsoluteoutput polarization
state and cause it to vary randomly over the Poincaré sphere. The
time scale of such fluctuations will therefore be slightly faster
but on a similar time scale as the PMD-vector fluctuations.

C. Motivation and Outline of This Work

This paper aims to investigate the fluctuations of the PMD-
vector in installed fibers in more detail. When investigating the
literature on this subject [17]–[26] one finds an interesting vari-

ation concerning the speed of the PMD drift in installed fibers.
Some measurements report rapid time variations; over minutes
and shorter [17]–[23], and in a few cases the DGD have found to
be constant over days and more [24], [25]. The consensus on the
subject is that rapid variations occur for transmission lines (or
parts thereof [18]) which have been exposed to mechanical per-
turbations (e.g. aerial cables [22], or significant day-night tem-
perature changes [17], [18]. The stable cables were buried under
ground [25], or sub-marine [24]. It is also commonly believed
that the rate of temporal change increases with the cable length
and the PMD, although there are not yet any theoretical founda-
tions for that. Finally, the average of the DGD over a sufficiently
wide wavelength interval has been shown to be more or less un-
affected by temporal drifts [26]. Here “sufficiently wide” means
that it should occupy several autocorrelation lengths of the PMD
vector, which was recently calculated to be of the order of the
inverse average DGD [6].

In order to investigate the drift properties further, we have
conducted a long-term PMD measurement on two fibers in the
same cable simultaneously. This measurement, which we be-
lieve is the most detailed to date, provides us with sufficiently
many measured points to reliably check the statistical properties
of the PMD vector and its drift. We also aim at a more detailed
theoretical understanding of the drift, in terms of a correlation
time of the PMD-vector.

The second section of this paper contains a detailed de-
scription of the measurement and the analysis we performed
on the measured data. The latter is nontrivial, because the
measured Jones matrices were found to contain both systematic
and random errors, the handling of which we believe is of
general interest. The third section discusses the result of
the measurement, verifies (for the first time) the isotropicity
of the PMD vector and demonstrates the good correlation
between the two fibers with respect to drift. The fourth and
final section discusses the drift in terms of auto correlation
functions (ACF:s), and compares the measured ACF with the
theoretically predicted one. A comprehensive derivation of the
ACF with discussions on basic assumptions and validity of the
theory is deferred to the Appendix. Here we also can find a
confirmation of the “common belief” that the fluctuations due
to the drift increases with the PMD and the fiber length, and the
theory will also connect the fluctuation times of the absolute
polarization state with that of the PMD-vector.

II. M EASUREMENT AND DATA ANALYSIS

A. Measurement Setup

The setup is shown in Fig. 1. A continuously wavelength tun-
able laser source is used together with a commercial polarimeter
to measure the Jones matrices of the two fibers under test. The
laser scans from 1505 to 1565 nm in steps of 0.1 nm, and then
the switch toggles and the measurement is repeated on the other
fiber under test (FUT). Each FUT is 127 km long and actually a
concatenation of two fibers (out of 48) in a 58 km long buried (in
1991), terrestrial cable in Jönköping, Sweden. The fiber is dis-
persion-shifted with dispersion zero at approximately 1548 nm.
The length of the FUT:s were limited by the available power
and the sensitivity of the polarimeter. The emitted power was
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Fig. 1. The measurement set-up.

3 dBm, and the received power was around55 dBm. The
high degree of polarization of the received signal, 99.5%, was a
good indication of that the signal was not too noisy. We also took
considerable care to ensure mechanical stability by sticking and
taping all loose fiber pieces and patch cords. This, we believe,
reduces (if not removes) all rapid fluctuations of the polariza-
tion and leave the slower drifts to our investigation. It should
be noted, however, that in a real operational system such a me-
chanical stability can be difficult to maintain, and this will put
hard demands on PMD compensators. In our measurement, it
was necessary to have short-term (over minutes) stability to en-
sure that the relatively slow Jones-matrix method would work.

Every 60 nm scan gave 601 Jones matrices and took slightly
more than an hour to acquire. The measurement was run for
36 days, which resulted in 388 temporal wavelength traces per
fiber. Hence, a total of nearly half a million Jones matrices were
acquired during the measurement period. We believe that this is
one of the most comprehensive polarization measurements on
installed fiber ever performed.

B. Data Analysis

From what will be explained below the data analysis (i.e., to
obtain the PMD-vectors from the measured Jones-matrices) was
rather cumbersome, involving five steps:

1) identification and removal of erroneous points;
2) identification and removal of sign jumps;
3) sliding average;
4) normalization and removal of PDL;
5) differentiation of Jones matrices and calculation of the

PMD-vector.
These steps will be motivated and explained below, but it is in-
structive to first consider a raw data example. Assume the mea-
sured Jones matrix is denoted by

(1)

where the matrix elements and are complex num-
bers. A typical example of traces of some received Jones ma-
trix data can be seen in Fig. 2, which shows the real and imag-
inary parts of the Jones matrix elementover a 20 nm band,
corresponding to 200 measured wavelength points. Ten succes-
sive temporal measurements are shown, each separated by ap-
proximately 2.2 h. It is evident that the measured data suffers
from two kinds of problems, i) erroneous points (around, e.g.,
1509–1510 and 1518 nm and ii) sign jumps (at 1508, 1511,
1516, 1516.5, 1519 and 1522 nm). We believe the source of

Fig. 2. Example of the measured Jones.matrix raw data. The solid (dashed)
line is the real (imaginary) part of the Jones matrix elementA. The plot shows
ten subsequent measurements (which corresponds to almost a 24-h period) in a
20-nm range, and each 20-nm scan contains 200 points.

those errors to be intrinsic in most Jones matrix measurements,
and hence of interest to the “PMD-community,” so we will de-
vote some space to a discussion around them.

1) Erroneous Points:The really surprising fact about the er-
roneous points are that they tend to group in certain wavelength
intervals and reappear for also the subsequent measurements
(which took place more than two hours later). We have never ob-
served any mode hops in the tunable laser, and are quite certain
that that is not the source of error. Instead we trace the erroneous
points back to the way the polarimeter determines the Jones
matrix. This is done by a method proposed originally by Jones
[27], and later used by Heffner [4] in the first paper describing
the Jones-matrix measurement method applied to PMD. Before
the light is launched into the fiber under test, it is propagated
through a polarizer which is oriented at three different positions,
45 apart. The three corresponding Jones vectors after the fiber
are measured, and from that data the Jones matrix can be deter-
mined, to within a complex constant. Three measurements of
the polarization state is therefore necessary, and it is enough
that one of these three measurements is wrong to render the
complete Jones matrix erroneous. Since the power level is low,
the noise background cannot be neglected, and it is plausible
that some polarization states are not measured with the same
signal-to-noise ratio (SNR) as others. In addition, for certain
Jones matrices, small errors in one of the three measured po-
larization states might give rise to large errors in the computed
Jones matrix. Hence some Jones matrices have a greater prob-
ability of being wrong than others. Since the temporal change
is quite slow (as can be seen in Fig. 2), the erroneous points
tend to reappear around certain points in wavelength. In partic-
ular, around maxima of the real part of the ( )-element (see
Fig. 2), the erroneous points seem to be more frequent.

The way to trace and treat the majority of the erroneous points
is simple. We use the fact that the fiber has negligible polariza-
tion-dependent loss. Then it can be shown that the modulus of
all four complex Jones matrix elements must be less than unity.
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If some element is above unity that matrix is deemed erroneous,
and a new one is obtained by interpolating its nearest (nonerro-
neous) neighbors.

2) Sign Jumps:The above method to calculate the Jones ma-
trices suffers from the problem that the calculated matrices are
not determined with respect to a complex constant [4], [27].
Even though the polarimeter we used normalized the determi-
nant of the matrix to unity, the Jones matrix is still undetermined
with respect to sign. The sign is given by the internal algorithm
in the polarimeter, which in our case seems to force the real
part of the element to be positive, see Fig. 2. Whenever that
element attempts to cross zero, the sign of the entire Jones ma-
trix changes, and obviously most of the other elements will be
discontinuous at such a sign jump. In the calculated DGD, this
kind of discontinuities will manifest as spurious peaks. Those
peaks seem artificial to the user by being discontinuous points
on an otherwise continuous plot, but since they are very repro-
ducible, the user might be convinced that they are real data.
However, they are indeed artifacts. We believe that this is a
generic problem afflicting many commercial instruments using
Jones matrix eigenanalysis, of which not many people (manu-
facturers as well as end users) might be aware. So, rather than
leaving the sign of the Jones matrix undetermined, we empha-
size thatthe sign must be determined by the fact that all Jones
matrix elements shall be continuous functions of.

To detect the sign jumps we simply compared the difference
and sum between the elements of two consecutive (in wave-
length) matrices. At the detected jump points we multiplied all
following (in wavelength) matrices with 1.

3) Sliding Average: The above data treatment was almost
enough but not completely. A few special cases such as many er-
roneous points in a row, or erroneous points occurring at or next
to a sign jump we deemed “hopeless,” and we used a five-point
sliding average (in wavelength) to reduce the influence of such
points. Note that we put all this effort in reducing discontinuities
in the raw Jones matrix data, since they will become very dis-
turbing peaks in the final plots of the PMD-vectors. Two points
should be emphasized here: i) The five-point average is not wide
enough to destroy the fine structure of the measurements since
the PMD correlation length is greater than ten points (1 nm).
We will show in the appendix that the correlation length of the
PMD vector in our case is approximately 3 nm. ii) It is therefore
not very many points that will be significantly affected by this
sliding average apart from the really “hopeless” cases, which
will be smoothed.

4) PDL Removal:The measured Jones matrices might con-
tain a small amount of PDL due to measurement errors, even
after the above data treatment, and this has to be removed be-
fore the PMD-vectors could be computed. Mathematically, the
Jones matrix must be unitary if the PMD-vector is to be prop-
erly defined, but the measured matrices might contain a small
amount of PDL that, if not removed will give rise to complex
rather than real PMD-vector components.

The mathematical problem is thus: from an arbitrary Jones
matrix (in fact any arbitrary complex matrix), pick the
unitary matrix that is “closest” to the one at hand. We did this
in the following way. Every Jones matrix can be written

, where is a Hermitian matrix accounting for the PDL,

and is a unitary matrix accounting for the polarization rotation
(this is known as Jones theorem [28]). We aim to extract. By
multiplying with its conjugate transpose we get

, since and per definition.
By utilizing the properties of Hermitian matrices, we could then
uniquely extract and from , and finally obtain
from . The purist might argue that this way of extracting

from is not the only way to do it. It is true that other methods
might be possible, but the fact is that the PDL-part was in all
cases very small; or mathematically: was in all cases very
close to the identity matrix.

5) Differentiation of Jones Matrices:The final step to ob-
tain the PMD-vector is to differentiate the Jones matrices, thus
obtaining the PMD-vector from (see [5] for details).
In commercial software for PMD measurement, the numerical
differentiation is usually done by the straightforward two-point
derivative: . However, for small step sizes

, this derivative is very sensitive to erroneous points and other
sources of noise in the signal. There are two ways to improve the
situation. The first is to use a multipoint differentiation formula,
and we use here the six-point formula:

. The second way
of improvement is to use a “fork-derivative,” that is, to use, for
example, every fifth point of the samples in the differentiation
scheme. This decreases the sensitivity to noise by increasing,
but still retains a good resolution in the sense that nearby points
have not be computed from the same data. This idea was re-
cently applied to PMD-measurements by Jopsonet al.[29]. The
six-point differentiation formula could then be written

,
and this was used for our data.

The obvious drawback of this kind of “fork-”differentiation
is that the resolution might be reduced, similar to low-pass fil-
tering or sliding average. We took considerable effort to check
that this was not the case for our data. We compared the plot
of DGD as a function of wavelength for increasing number of
samples separating the points in the differentiation formula, just
to make sure that we did not filter away the fine structure of the
wavelength variation in the PMD. We found that in our case,
the six-point differentiation scheme on every fifth point did a
good job of removing spurious peaks due to measurement er-
rors without reducing the resolution.

III. M EASUREMENTRESULTS

After the above data treatment, we are ready to analyze the
data. Contour plots of the measured DGD versus wavelength
and time are shown in Fig. 3. There is nothing unusual in those
plots besides the fact that some very sudden changes occur (for
both fibers) around days 8, 18, 20, 30, and 36. We discuss those
features in some more detail below.

Some straightforward averages were also done right away on
the data. The DGD averaged over wavelength and time was
found to be 2.75 and 2.89 ps for the two fibers, which corre-
sponds to PMD-coefficients of 0.24 and 0.26 ps/km. The av-
erage over wavelength varied10% around those values. The
average over time showed a more significant fluctuation as can
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Fig. 3. DGD versus time and wavelength of fiber 1.

be seen in Fig. 4. This indicates that over the 36 days measure-
ment period, the temporal drift was not significant enough to
realize any reliable statistical averages. In the wavelength di-
rection, however, this was the case.

Another interesting point, that has so far received very little
attention in the literature, is the isotropicity of the PMD-vector.
That is, is any direction in Stokes space preferred, or is the
PMD-vector isotropically distributed, as most theoretical ap-
proaches assume? This is by no means obvious, since telecom
fibers are believed not to have any intrinsic circular birefrin-
gence [3]. The isotropicity has only been verified on few occa-
sions, and then with very limited data [30]. According to the sta-
tistical theory for PMD [1], each of the three components of the
PMD-vector is a superposition of many small random variables,
which, according to the central limit theorem, would give them a
Gaussian distribution. Moreover, if the PMD-vector is isotropic,
then the three components would have identical Gaussian prob-
ability distribution functions. In Fig. 5, we verify this, and it is
evident that histograms over the three components of the mea-
sured PMD-vectors are very close to the theoretically predicted
Gaussian (dashed line in the figures). The agreement is fairly
good, although not excellent. Particularly in the wings of the
distributions significant deviations from the Gaussians can be
found. This implies that the DGD has a Maxwellian distribu-
tion, apart from in the wings. Deviations from the Maxwellian
distribution in the wings have also been seen in other measure-
ments [21]. Partly this can be expected from the limited amount

of samples far out in the wings, and partly by measurement er-
rors. However, it might also be that a more refined theory is
needed to explain the deviations in the wings of the Gaussians,
but for the moment we lack other explanations of these devia-
tions from the theory.

The basic aim with the setup was to compare the temporal
drifts between the two fibers. We found it most relevant to com-
pute the changes in the PMD-vector from one time point to the
next, and then average this change over the entire wavelength
range. For the length of the PMD vector (the DGD) we thus
computed

(2)

where denotes averaging over wavelength, andis the
time between two successive measurement instants, which was
approximately 2.2 hours. For the angular changes, i.e., the PSP
drift, we computed the average angle between two successive
PMD vectors, i.e.

(3)

The averaged change in DGD and in PSP-angles are shown in
Fig. 6. It is clear from these plots that there is a remarkable
agreement between the two fibers with respect to the average
change of both the PSP’s and the DGD. In fact, we calculated
a correlation coefficient between the two fibers of 96%, both
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Fig. 4. Top: The DGD averaged over time and plotted as a function of
wavelength. Bottom: The DGD averaged over wavelength and plotted as a
function of time. The solid line is fiber 1 and the dashed line is fiber 2.

for the change in DGD and the change in PSP. Even though the
fibers are located in the same cable, they are distinct, and it is
a bit surprising to find the PMD drift in the two fibers to be
so well correlated. From Fig. 6, we can also quantify the av-
erage drift to be around 10% per day for the DGD, and to be
around per day for the angular change of the PSP:s. Also,
we note that there is a strong correlation between the changes
in DGD and PSP. A large change in the DGD is accompanied
with a large change in the PSP’s, and this is just in agreement
with the discussion on polarization drift from Section I-B above,
where it was argued that perturbations around the middle of the
FUT affects the DGD most, and perturbations near the endpoints
mostly affects the PSP’s. If the perturbations are evenly dis-
tributed along the fiber, then we will see changes in the DGD
and PSP:s simultaneously. The physical reason for the drifts we
attribute to changes in the temperature during the measurement
period. Since we observed very few rapid changes of the PMD,
we believe mechanical perturbations to have been more or less
eliminated by carefully sticking all loose fibers. The tempera-
ture data in Fig. 6 indicates that there is a certain amount of cor-

Fig. 5. Histograms over the three PMD-vector components (solid) for each
fiber. The dashed lines are Gaussian fits.

relation between the temperature changes and the PMD-change.
This might seem surprising since the air temperature should not
affect a buried cable. However, at 6 hub stations along the 58 km
cable, the cable enters the air for some tens of meters. We be-
lieve that this exposure to air temperature is enough to cause the
drift, and this fact have also been verified in previous measure-
ments by De Angeliset al.[18]. Therefore, a submarine cable in
the stable environment at the bottom of the ocean would not give
rise to very much drift, but the parts of the cable leaving or en-
tering the deep ocean are exposed to water currents and temper-
ature changes and might therefore contribute to the PMD-drift.
On the other hand, aerial fiber cables are heavily exposed to me-
chanical perturbations from wind, in addition to the temperature
changes, and the PMD of such cables can be expected to vary
on a very short time scale.

IV. STATISTICAL PROPERTIES OF THEDRIFT

When discussing the properties of the temporal drift it is two
things that must be distinguished. They are first, the drift of the
absolute polarization state, and secondly the drift of the PMD-
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Fig. 6. The average (over wavelength) change in the PMD-vector angle
(upper) and PSP (middle) with time for fiber 1 (solid) and fiber 2 (dotted).
The bottom figure plots the air temperature in the Jönköping area over the
measurement period.

vector. We will consider these drifts separately, and also show
how they are related.

From a mathematical point of view, it is convenient to treat
the drift in terms of correlation functions, i.e. to answer the
question “How well are two polarization states at time instances

and correlated?”. We define the auto correlation function
(ACF) for the absolute polarization states (or more specifically
for the Mueller matrices) as ,
where superscriptdenotes transpose. A measure of the corre-
lation between two polarization states at those time instances
and frequencies would then be their statistically expected scalar
product, i.e., where is

the input polarization state into the fiber. The derivation of
is lengthy and deferred to the appendix. We quote here two im-
portant special cases, namely when the polarization states are at
the same time or at the same frequency .
Hence, the decorrelation in time will be

(4)

where , and is the typical drift time for the
absolute polarization states. This is a coefficient that is unique
for each fiber, and has to be measured. How it scales with PMD
and fiber length, together with the assumptions leading up to
this formula is discussed in the Appendix. The decorrelation in
wavelength will be

(5)

where . This result is remarkably useful as it
directly demonstrates how the decorrelation in frequency (or
wavelength) is related to the average DGD of the fiber. We will
defer a thorough discussion of this relation to future work, since
here we are more interested in the effects of the temporal drift,
i.e., (4). The assumptions leading to that formula are i) that we
are in the strong mode-coupling regime where the DGD grows
with the square root of the fiber length and ii) temperature vari-
ations in the index difference between the fast and slow polar-
ization states is the main cause of the drift.

The next step is to derive the ACF for the PMD-vector. This
can also be done in time and wavelength, but the wavelength
ACF was recently derived in Ref [6], so we focus here on the
temporal drift properties. Again the details can be found in the
appendix, and the main result is

(6)

By comparing the functional forms of the two derived auto cor-
relation functions [(4) and (6); we see that the Mueller ACF is
slightly more peaked and has an exponential decay, whereas the
PMD ACF has a slower, algebraic decay. This is evident from
Fig. 7, in which the two functions are compared. They are, how-
ever, both determined by the timescaleso this result is in good
agreement with the discussion in Section I-B.

The coefficient gives a measure of the average drift time of
both the absolute polarization states and the PMD-vector of a in-
stalled fiber. This parameter cannot be expected to be predicted
or estimated from known fiber parameters, since it depends on
installation-specific data such as the amount of environmental
perturbations and disturbances. In the appendix we show that
depends on the PMD via , where is
the carrier frequency, and is a measure of the drift time of the
index difference in the birefringent element used to model the
fiber. This relation clearly shows that the typical drift time
decreases with the PMD. The parameteris an individual pa-
rameter characterizing any installed fiber, but it is more practical
to directly measure than for all systems of interest. The rel-
evance of our theoretical analysis lies in i) that it shows explic-
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Fig. 7. A comparison between the derived temporal ACF’s for the absolute
polarization state [(4), dotted], and the PMD vector [(6), solid], show that the
former has a much more rapid exponential decay.

Fig. 8. The measured autocorrelation function of the DGD for the two fibers
(solid) and the theoretical autocorrelation function from (6) (dashed). We have
used the characteristic drift times equal to respectivelyt = 3:0 and 5.7 days

itly how the temporal drift scales with the amount of PMD
and ii) that it shows how the drift time of the absolute polariza-
tion state is connected to the drift time of the PMD-vector. The
absolute drift is much easier to measure than the PMD-vector
drift, so this might be of practical interest. Moreover, the outage
time [21] in a PMD-limited system can be expected to be of the
order of this drift time. In Fig. 8 we have plotted the measured
and theoretical ACF’s for the PMD-vectors, using and
5.7 days for the respective fibers. The agreement is quite good,
but the reader should note that we have had a free fitting param-
eter in . The explanation for the difference in drift times for
the two fibers is that not all of the fibers in the cable enter all hub
stations, so different fibers are exposed to different amounts of
temperature changes. This is another indication of that the time
scale is an important, individual characteristic parameter that
should be measured together with the PMD for all fibers.

V. CONCLUSION

In conclusion, we have described the result of what we be-
lieve to be the most detailed long-term measurement of PMD
ever reported. We have discussed the treatment of the measured
data and identified some crucial points that should be of in-
terest to manufacturers as well as end users. Then we focused
the discussion on the temporal drift, and derived a theory to ac-
count for both the drift of the absolute polarization state, and
that of the PMD-vector. Perhaps more importantly, we showed
how the drift time is related to the well-known fiber properties,
like the PMD-coefficient. The theory was found to agree rea-
sonably well with measurements.

APPENDIX

DERIVATION OF THE AUTOCORRELATIONFUNCTIONS

In order to further quantify the drift we will first compute
the auto correlation function of the Mueller matrix of the fiber
(which will give information about the drift of the absolute po-
larization state). In a second stage we will compute the drift and
autocorrelation properties of the PMD-vector. Recently, this was
done with respect to wavelength [6], but now we will generalize
that approach to account also for the temporal drift.

A. The ACF for the Mueller Matrices

We will base the derivation of the ACF on the discrete model
of the fiber, in which the fiber is modeled as a concatenation of
birefringent pieces each having a constant birefringence. Then
we will perform the statistical average (by averaging over all
possible birefringence axes), and finally go to a continuous-fiber
limit by allowing each fiber piece to shrink to an infinitesimal
length. This final step is not necessary, but it provides some
very elegant and compact formulas which, as we shall see, agree
quite well with experiments. This approach have also the benefit
of resolving a problem (the Stratonovich–Ito ambiguity) con-
nected with the integration of stochastic infinitesimals [1]. The
drawback of this approach is that it is restricted to the strong
mode-coupling limit only, where the DGD grows as the square
root of the fiber length.

Hence, in terms of Mueller matrices, the fiber consists of
birefringent pieces of length . The average squared DGD of
such a concatenation can be written as ,
where is the index difference between the slow and fast
axes of each birefringent fiber piece, andthe speed of
light in vacuum. Each element in the concatenation has a
birefringence axis in Stokes space, so that its Mueller
matrix can be written conveniently using the matrix
exponential as . Here the notation

should be interpreted as the skew-sym-
metric matrix corresponding to the cross-product operator (see
e.g. Refs. [6], [7]), and the matrix exponential is defined by its
Taylor expansion. The retardation equals ,
where we allow for the possibility of having different in
each piece. The Mueller matrix of the entire fiber we denote by

, and it is .
At this point, we should stop to discuss the physical model.

We will make a few simplifying assumptions. Firstly, we assume
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that the index difference and the birefringence axis are
independent of the optical frequency. This is no crucial restric-
tion, since any fiber can be realized by including sufficiently
many small birefringent pieces. The second assumption is that
the time dependence enters via a random drift in the index differ-
ence only. In principle, the birefringence axes might also drift,
but this is more complex to treat analytically, so we limit this
work to a drift in only. This is also physically consistent
with the fact that for birefringent waveplates and polarization
maintaining fibers, a temperature change (which we identify as
the main source of the drift) will cause a change in the index
difference rather than the polarization eigenaxes.

We are now ready to calculate the autocorrelation function
of the first Mueller matrices

(7)

where , is the unity
matrix, and the expectation value means averaging over
birefringence axes and index differences. The last equality
arose from averaging the birefringence axisuniformly over
all possible directions. This was done by utilizing the formula

(see e.g.
[31]) together with and . The
next step is to average the -term, which is simplified
if we assume the number of independent fiber piecesto
be very large. This implies that is so small that

. Taking the expectation value of this
yields ,
where is
the autocorrelation function of the temporal drift of the index
difference. Hence, we end up with

(8)

and in the limit we are left with
where is the Mueller matrix ACF,

given by

(9)

From this expression we can extract some important information
about the polarization drift properties of the fiber. Putting, e.g.,

gives .
In this expression, the dimensionless factor is
usually very large, since the DGD is in the picosecond range and
the optical period is 5.2 fs at a wavelength of m.
Hence, is around for most cases of interest. This
reflects the fact that only a very small change in the index differ-
ence will give rise to a large change in the absolute polarization
state. Then, obviously only the parts of the functionthat are
close to unity is of interest, and if we write it using its Taylor

expansion , the ACF for the Mueller ma-
trixes reduces to

(10)

where the typical drift time is an individual
parameter that has to be measured for each link under
study. However, we can draw one general conclusion from

PMD , where PMD is
the PMD-coefficient (in ps/ km) of the fiber. This is that the
drift is more rapid for long fibers and high PMD, something
which has been conjectured but not proven until now. We note
again the main assumptions leading to this conclusion; 1) that
the index difference is the main cause of the drift and 2) we
are in the strong mode-coupling regime. A similar result was
obtained in a theoretical study by Imai and Matsumoto [11].
They considered the variance of the random motion of the
polarization state on the Poincaré sphere, using a similar model
as the one here (i.e., modeling the fiber as a concatenation
of shorter pieces). Their model is slightly more limited since
several simplifying assumption limiting the motion to be small
on the sphere were necessary. Our model is more general in
that it computes the ACF explicitly, accounts for frequency
deviations between the Mueller matrices, and directly connects
the drift with the average PMD of the fiber. The important
conclusions regarding how the drift scales with fiber length is
however the same between the two models.

B. The ACF for the PMD-Vector

We will now apply a similar method as the one above to derive
the ACF for the PMD vector. Mathematically speaking, what we
aim to compute is

(11)

that is the expectation of the scalar product of two PMD-vec-
tors at different frequencies and/or times. We assume the same
concatenated fiber model as above. The PMD-vectorof the
first fiber pieces can now be written in terms of the Mueller
matrices as [1]: , and it is possible
to derive the Gisin–Pellaux recursion relation [5] for theth
PMD-vector according to:

(12)

This formula is a very elegant result for concatenation of PMD-
vectors and it can be generalized and stated as:The PMD vector
of a concatenation of birefringent elements is the vector sum of
all ingoing PMD-vectors, transformed by the adequate Mueller
matrices to the same position. It is quite remarkable that the
reduction of the rather complicated formula given by Gisin and
Pellaux to the above simple and physically appealing form was
unnoticed until [6]. However, a particular integral form of the
concatenation rule, although less general than above, was given
by Mollenauer and Gordon in 1994 [32].

We will now calculate the ACF of the PMD-vector
after fiber pieces, i.e.,

. By using the recursion formula, (12) and
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carrying out the averaging process over, we get a recursion
relation for the autocorrelation

(13)

where and is defined as
above. The remaining average expressed in this equation is over

, and we note that when the number of birefringent fiber
pieces is large enough we can Taylor expand the functionso
that

(14)

This average was performed previously in connection with (8).
We are finally in position to solve the recursion equation (13).
The solution is

(15)

Finally, we take the limit so that the final PMD-vector
ACF can be expressed in terms of the Mueller-
matrix ACF from (9) as

(16)

where is the index-difference ACF that was defined in
connection with (9).

The special case was investigated in [6], where it
was found that the frequency ACF had a width of the order of
the inverse average DGD. In the measurements reported in the
previous section was approximately 2.8 ps, which corre-
sponds to a bandwidth of 2.7 nm. Hence, the PMD vector varies
randomly with a correlation length of almost 3 nm, which veri-
fies that a signal manipulation such as the sliding average over a
0.5-nm band discussed in Section II will not significantly affect
the measured data.

We focus now instead on the pure temporal drift, i.e., the spe-
cial case . Just as in the discussion on the proper-
ties of above, the coefficient is very large,
and the ACF can then be approximated with

(17)

We should at this point stress a few known statistical properties
of the stochastic vector process [1], [2], and what new in-
formation we have gained. First,consists of threeindependent
stochastic processes: so that
cross correlations among those are zero, e.g.,

. Second, due to the fact that all bire-
fringence vectors are uniformly directed in space, the statis-
tical properties of will be spherically symmetric. Therefore

. This isotropicity would not hold if
the fiber were modeled differently, e.g., if the birefringence axes

were randomly distributed in the plane only. In fact it
has been shown that the absolute polarization state will approach
the uniform spread in that kind of model [3]. It is therefore plau-
sible that at sufficiently long distances, the PMD vector of also
such a model would be uniformly distributed over the Poincaré
sphere.
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