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Long-Term Measurement of PMD and Polarization
Drift in Installed Fibers
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Abstract—We report the most detailed long-term measurement as the absolute polarization state? The purpose of this paper is

of polarization mode dispersion (PMD) made to date. We measured tg, if not straighten out all question marks, at least shed some
two separate fibers under the same time period, which makes it light over these rather difficult issues

possible to compare the drift properties of two similar fibers in
the same environment. The measured Jones matrices suffers from
both random and systematic errors, a generic problem which we A, Properties of the PMD-Vector

discuss in detail and solve. The results confirmed the well-known

statistical properties of the PMD-vector. Furthermore, the drift av- The effects of PMD is treated by means of #lD-vector
eraged over wavelength is very well (96%) correlated between the Q(z, t, w), which is a 3-component polarization vector in
two fibers. We finally quantified the temporal drift by computing  giakes space. It varies in a random fashion with fiber length
the autocorrelation function of the PMD-vector analytically, both . . . L
with respect to wavelength and to drift time. The analytical theory the OP“Ca' frequency; and. timet. In a practical transmllssmn
shows good agreement with the measurements. S|tuat|0n, the f|ber |ength IS Constant, and Only the dl‘lft and
frequency variation of2 are of interest. Given a constant input
polarization to the fiber, PMD will manifest as a change in
output polarization Stokes vectervith frequency according to
§'(w) = Q x s(w). This equation might in fact be taken as the

I. INTRODUCTION definition of the PMD vector, but the reader should note that

OLARIZATION-MODE dispersion (PMD) is commonly the d.efin.ition is restricted to the c.ase.of fibers \{vith ngg[igiple
Pregarded as one of the most serious obstacles facing futBRsarization-dependent loss (which is no serious limitation
high-speed fiber transmission. It is particularly difficult to comin MOSt transmission systems). Apart from this, the above
pensate for since it varies with wavelength and slowly drifts witefinition has a lot of advantages: First, it is the underlying
time in a random fashion. To establish the impairments frofiodel for most statistical treatments of PMD [1]-{3] and thus
PMD on transmission systems, one then must resort to statiorms the basis for most of the known statistical properties
tics, and it is obviously important to have a clear picture of tHef the PMD-vector. Second, it is the definition used in the
statistical properties of PMD. Jones-matrix method [4], which is more or less re_gardeq

Itis the drift of the polarization properties with time that is thé@S the reference measurement method for PMD. Third, this
most troublesome aspect of PMD from a system point of vie@€finition provides a very elegant concatenation rule for the
A deterministic birefringence would be fairly straightforward t&MD-vector of a sequence of birefringent elements [5], [6].
compensate for (at least over moderate bandwidths), but wied¥/rth, and finally, this definition provides a comfortable way
the birefringence drifts the compensation scheme must adjgbtcalculating the PMD-induced broadening and group delay
and dynamically follow this drift. This tends to make realiza®f short polarized pulses via integrals of the PMD-vector over
tions of effective PMD compensators complex and expensivél€ pulse spectrum [7]. For example, the group delay of a

Another problem with PMD is that cabled fiber in the grounUISe with polarization vectgris (£2) - j/2, where() denotes
and spooled fiber in the lab differ in several important aspect8tégration over the normalized pulse spectrum. The drawback
such as the mode coupling lengths and the drift properties Oftthis definition of the PMD-vector is that the incorporation
is therefore of additional importance to characterize installé Polarization-dependent losses (PDL) is far from straight-
fibers rather than lab fibers. The drift of the PMD in installedorward, and a simple and elegant way of accounting for both
fiber have been investigated by several groups, but several qu¥P and PDL is yet to be found. In this paper we assume PDL
tions remain unsolved. For instance, what is the origin of t@ Pe negligible, an assumption that was also verified in the
drift? How fast is the drift, and what additional fiber propertie§'€asurements.

determines the drift? Does the PMD drift on the same time scal¢@bviously, the polarization states parallel and antiparallel
with the PMD-vector will (to first order inv) not change with

wavelength, and those states are called ghacipal states
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B. Polarization Fluctuations in Fibers ation concerning the speed of the PMD drift in installed fibers.
pme measurements report rapid time variations; over minutes

installed fibers have been done on many instances with m d shorter [17]-{23], and in a few cases the DGD have found to

or less inconsistent results. The first such measurements wi ?constant over days and more [24], [25]. The consensus on the

reported in the eighties [8]-[12], and focused on the drift of ths(:“ugject is that rapid variations occur for transmission lines (or

absolute polarization state after different lengths of install s t_hereof [18]) Wh'Ch have been ex_pog,gd to mechz_anlcal per-
(mostly submarine) single-mode fibers. It was found that t grbatlons (e.g. aerial cables [22], or significant day-mght tem-
drift for installed fibers was rather slow; on the order of hourgerature changes [17], [%8]' The stgble cables were buneq under
to days [8]-[12]. It was also argued theoretically [11] anﬁround [25], or sub-marine [24]. .It is also commonly believed
experimentally [10] that the variance of the fluctuations grew at the rate of temporal change increases with the pable length
linearly with the fiber length. More rapid drifts (on secon nd the PMD, although there are not yet any theoretical founda-

timescales) were observed on cables subjected to rapid envircl:?\rjes \tt/);\t/r;ig.nlzItrr]f:IrI])tlétrCZIivaesr%gei(r:fst::gvlv)netc? k())(\a/?]::rzu:rl(l::aesr:gn-
mental changes, e.g., during installation of submarine cab g

[13], [14], for applied vibrations [15] and other perturbation% et(.:ttetrj] bylgemporal drifts [2|6].tHere sluft'fluelntlytwhldefme%r:\j[)
such as stress, temperature changes, etc. [16]. atitshould occupy several autocorreiation lengths of the

. : L : vector, which was recently calculated to be of the order of the
It is not obvious that this kind of fluctuations of the abso-
o X : L inverse average DGD [6].
lute polarization state also will affect the PMD, since it is well- In order to investiaate the drift properties further. we have
known that the DGD is unaffected by, e.g., the presence of a 9 prop '

polarization controller at one end of a fiber under PMD meé:pnducted a long-term PMD measurement on o fibers in the

surement. However, the PMD-vector is not unaffected by sugfme cable simultaneously. This measurement, which we be-

o ; . ; .ﬁeve is the most detailed to date, provides us with sufficiently
a polarization controller, and we will therefore discuss this in . . - .

many measured points to reliably check the statistical properties
some more depth.

We first consider a single pointwise fluctuation (it can b f the PMD vector and its drift. We also aim at a more detailed

. R , eoretical understanding of the drift, in terms of a correlation
thought of as a fluctuating polarization controller) at a distdnce .
. time of the PMD-vector.
from the source, along a fiber of length The total PMD-vector ; . . .
. . The second section of this paper contains a detailed de-
of the fiber can be written as a vector sum of the PMD vector

of the first part (call it€2;) and the PMD-vector of the secondscnptIon of the measurement and the analys!s we performed
n the measured data. The latter is nontrivial, because the

part (call itS2,). For an exact concatenation rule we refer to trg easured Jones matrices were found to contain both systematic
appendix or Ref [6]. Here it suffices to state that the total pmB Y

. - : : and random errors, the handling of which we believe is of
vector will be€dio, = € + MYy, whereM is some arbitrary eneral interest. The third section discusses the result of

rotation (or Mueller) matrix. From a simple geometrical picturﬁ1 - ! ; . -
L ) . - e measurement, verifies (for the first time) the isotropicity
it is evident that the maximum and minimum values of the total

DGD 6. il b e sum and dference ofhe o pariafy S "0 VeFe 0 femoretetes e oend cobiaten
DGD:s, i.e.,||[€2:1] £ |Q2]| = |Any £ A7z, and the average P '

. . . final section discusses the drift in terms of auto correlation
. Q = VATE + ATS. . !
will be the quadratic sum, i.£|$2] - EAT U g ctions (ACF:s), and compares the measured ACF with the
is straightforward to show that the maximum fluctuation in th . ; . L
. . theoretically predicted one. A comprehensive derivation of the
length of 2, (the total DGD) will occur forAr, = A, i.e. L . . . -
Lo . ACF with discussions on basic assumptions and validity of the
whenh = L/2. The direction of the PMD vector will in this theory is deferred to the Appendix. Here we also can find a
case only fluctuaté80°, i.e., within a half plane. In the other YIS B ppenc . .
o . o . . confirmation of the “common belief”’ that the fluctuations due
limit, when the point of fluctuation is at either end poiht£ 0

orh = L) the length of the total PMD is unchanged, but the di_o the drift increases with the PMD and the fiber length, and the

. : . : . heory will also connect the fluctuation times of the absolute
rection might vary over the entire 360f the Poincaré sphere. larizati tate with that of the PMD-vect
Hence, depending on the position of the fluctuation, the pGy'arization state wi atotthe vector.
and the PSP’s are affected in various amounts. Now, in a re-
alistic fiber the fluctuation points are likely to be evenly dis- [l. M EASUREMENT AND DATA ANALYSIS
tribut.ed over the entire fiber Iength,' S0 fluctuations are likelX Measurement Setup
to arise in both the length and the direction of the PMD-vector ] o )
at the same time. Moreover, any polarization fluctuation (inde- "€ Setup is shown in Fig. 1. A continuously wavelength tun-
pendently oft) will affect also theabsoluteoutput polarization able laser source is used together with a commermal polarimeter
state and cause it to vary randomly over the Poincaré sphere. fhgeasure the Jones matrices of the two fibers under test. The

time scale of such fluctuations will therefore be slightly fastdfSer scans from 1505 to 1565 nm in steps of 0.1 nm, and then
but on a similar time scale as the PMD-vector fluctuations. the switch toggles and the measurement is repeated on the other

fiber under test (FUT). Each FUT is 127 km long and actually a
concatenation of two fibers (out of 48) in a 58 km long buried (in
1991), terrestrial cable in J6nkdping, Sweden. The fiber is dis-
This paper aims to investigate the fluctuations of the PMIpersion-shifted with dispersion zero at approximately 1548 nm.
vector in installed fibers in more detail. When investigating th€he length of the FUT:s were limited by the available power
literature on this subject [17]-[26] one finds an interesting varand the sensitivity of the polarimeter. The emitted power was

Long-term measurements of the polarization properties%

C. Motivation and Outline of This Work
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Fig. 1. The measurement set-up.

—3 dBm, and the received power was arounds dBm. The s}
high degree of polarization of the received signal, 99.5%, was sl :
good indication of that the signal was not too noisy. We also too L 1
considerable care to ensure mechanical stability by sticking ar - Lt

) ) X X J -1505 1507 1500 15‘11 15‘13 15‘15 15’17 15‘19 15‘21 1523 1526
taping all loose fiber pieces and patch cords. This, we beliewi wavelangth (nr]

reduces (if not removes) all rapid fluctuations of the polariza-

tion and leave the slower drifts to our investigation. It shoulelg. 2. Example of the measured Jones.matrix raw data. The solid (dashed)

be noted, however, that in a real operational system such a rive-is the real (imaginary) part of the Jones matrix eleménthe plot shows

; i e o : ; en subsequent measurements (which corresponds to almost a 24-h period) in a
chanical stability can be difficult to maintain, and this will pu 0-nm range, and each 20-nm scan contains 200 points.

hard demands on PMD compensators. In our measurement, it

was necessary to have short-term (over minutes) stability to en-

sure that the relatively slow Jones-matrix method would workhose errors to be intrinsic in most Jones matrix measurements,
Every 60 nm scan gave 601 Jones matrices and took slighagd hence of interest to the “PMD-community,” so we will de-

more than an hour to acquire. The measurement was run ¥Yot€ some space to a discussion around them.

36 days, which resulted in 388 temporal wavelength traces peil) Erroneous Points:The really surprising fact about the er-

fiber. Hence, a total of nearly half a million Jones matrices wefe@neous points are that they tend to group in certain wavelength

acquired during the measurement period. We believe that thigtervals and reappear for also the subsequent measurements

one of the most comprehensive polarization measurements(gfiich took place more than two hours later). We have never ob-

installed fiber ever performed. served any mode hops in the tunable laser, and are quite certain
that that is not the source of error. Instead we trace the erroneous
B. Data Analysis points back to the way the polarimeter determines the Jones

From what will be explained below the data analysis (i.e., {§&trx- This is done by a method proposed originally by Jones

obtain the PMD-vectors from the measured Jones-matrices) wagl: and later used by Heffner [4] in the first paper describing
rather cumbersome, involving five steps: the Jones-matrix measurement method applied to PMD. Before

1) identification and removal of erroneous points; the light is Iaupched if“o _the fiber under test,. itis propag_ated
2) identification and removal of sign jumps: ' through a polarizer which is orleqted at three different posmons,
3) sliding average: ' 45° apart. The three corresponding Jones vector; after the fiber
4) normalization a,nd removal of PDL: are measurgd,_ and from that data the Jones matrix can be deter-
5) differentiation of Jones matrices a'md calculation of thtmmed’ to. W't.hm a complex constant. Three measqre_ments of
PMD-vector. fe polarization state is therefore necessary, and it is enough

h i . lai | . that one of these three measurements is wrong to render the
These steps will be motivated and explained below, but itis igg 1 hjete Jones matrix erroneous. Since the power level is low,

structive to first co_ns_idera raw data example. Assume the MRS noise background cannot be neglected, and it is plausible
sured Jones matrix is denoted by that some polarization states are not measured with the same
A B signal-to-noise ratio (SNR) as others. In addition, for certain
J = [C D} (1) Jones matrices, small errors in one of the three measured po-
larization states might give rise to large errors in the computed
where the matrix element$, B, C, andD are complex num- Jones matrix. Hence some Jones matrices have a greater prob-
bers. A typical example of traces of some received Jones nadility of being wrong than others. Since the temporal change
trix data can be seen in Fig. 2, which shows the real and imag-quite slow (as can be seen in Fig. 2), the erroneous points
inary parts of the Jones matrix elemettover a 20 nm band, tend to reappear around certain points in wavelength. In partic-
corresponding to 200 measured wavelength points. Ten sucagar, around maxima of the real part of the ()-elementA (see
sive temporal measurements are shown, each separated byFap-2), the erroneous points seem to be more frequent.
proximately 2.2 h. It is evident that the measured data suffersThe way to trace and treat the majority of the erroneous points
from two kinds of problems, i) erroneous points (around, e.ds simple. We use the fact that the fiber has negligible polariza-
1509-1510 and 1518 nm and ii) sign jumps (at 1508, 151tign-dependent loss. Then it can be shown that the modulus of
1516, 1516.5, 1519 and 1522 nm). We believe the sourceadlffour complex Jones matrix elements must be less than unity.
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If some element is above unity that matrix is deemed erroneoasdl’ is a unitary matrix accounting for the polarization rotation
and a new one is obtained by interpolating its nearest (nonerthis is known as Jones theorem [28]). We aim to exttacBy
neous) neighbors. multiplying 7" with its conjugate transposE’ we get7'7T =

2) Sign Jumps:The above method to calculate the Jonesm& UTUH = H?, sinceUt = U~ andH" = H per definition.
trices suffers from the problem that the calculated matrices @ utilizing the properties of Hermitian matrices, we could then
not determined with respect to a complex constant [4], [2Aniquely extractd and H~* from H?, and finally obtainl/
Even though the polarimeter we used normalized the deterrdfiom H 7. The purist might argue that this way of extracting
nant of the matrix to unity, the Jones matrix is still undetermindd from 7" is not the only way to do it. Itis true that other methods
with respect to sign. The sign is given by the internal algorithmight be possible, but the fact is that the PDL-part was in all
in the polarimeter, which in our case seems to force the remlses very small; or mathematicalli/: was in all cases very
part of the element to be positive, see Fig. 2. Whenever thatlose to the identity matrix.
element attempts to cross zero, the sign of the entire Jones ma&) Differentiation of Jones MatricesThe final step to ob-
trix changes, and obviously most of the other elements will ltain the PMD-vector is to differentiate the Jones matrices, thus
discontinuous at such a sign jump. In the calculated DGD, thastaining the PMD-vector frord?’/dwT~! (see [5] for details).
kind of discontinuities will manifest as spurious peaks. Thoda commercial software for PMD measurement, the numerical
peaks seem artificial to the user by being discontinuous poimtifferentiation is usually done by the straightforward two-point
on an otherwise continuous plot, but since they are very repderivative:z!, = (x,,+1 — x,,)/h. However, for small step sizes
ducible, the user might be convinced that they are real data.this derivative is very sensitive to erroneous points and other
However, they are indeed artifacts. We believe that this issaurces of noise in the signal. There are two ways to improve the
generic problem afflicting many commercial instruments usirgjtuation. The first is to use a multipoint differentiation formula,
Jones matrix eigenanalysis, of which not many people (marand we use here the six-point formulg; = (x,, 43 — zp—3 —
facturers as well as end users) might be aware. So, rather thén, > — x,—2) + 45(x41 — 2n—1))/60h. The second way
leaving the sign of the Jones matrix undetermined, we emplodimprovement is to use a “fork-derivative,” that is, to use, for
size thatthe sign must be determined by the fact that all Jonexample, every fifth point of the samples in the differentiation
matrix elements shall be continuous functions of scheme. This decreases the sensitivity to noise by increasing

To detect the sign jumps we simply compared the differenbait still retains a good resolution in the sense that nearby points
and sum between the elements of two consecutive (in waveve not be computed from the same data. This idea was re-
length) matrices. At the detected jump points we multiplied atlently applied to PMD-measurements by Jopsbal.[29]. The
following (in wavelength) matrices with-1. six-point differentiation formula could then be writter) =

3) Sliding Aveage: The above data treatment was almoste,+15—n—15—9(Znt+10—Zn—10)+45(Tnt5—2n_5))/300h,
enough but not completely. A few special cases such as manyaare this was used for our data.
roneous points in a row, or erroneous points occurring at or nexfThe obvious drawback of this kind of “fork-"differentiation
to a sign jump we deemed “hopeless,” and we used a five-poisithat the resolution might be reduced, similar to low-pass fil-
sliding average (in wavelength) to reduce the influence of sutdring or sliding average. We took considerable effort to check
points. Note that we put all this effort in reducing discontinuitiethat this was not the case for our data. We compared the plot
in the raw Jones matrix data, since they will become very disf DGD as a function of wavelength for increasing number of
turbing peaks in the final plots of the PMD-vectors. Two pointsamples separating the points in the differentiation formula, just
should be emphasized here: i) The five-point average is not witkemake sure that we did not filter away the fine structure of the
enough to destroy the fine structure of the measurements sim@velength variation in the PMD. We found that in our case,
the PMD correlation length is greater than ten points (1 nnthe six-point differentiation scheme on every fifth point did a
We will show in the appendix that the correlation length of thgood job of removing spurious peaks due to measurement er-
PMD vector in our case is approximately 3 nm. ii) It is thereforeors without reducing the resolution.
not very many points that will be significantly affected by this
sliding average apart from the really “hopeless” cases, which
will be smoothed. lll. M EASUREMENT RESULTS

4) PDL Removal: The measured Jones matrices might con-
tain a small amount of PDL due to measurement errors, everfter the above data treatment, we are ready to analyze the
after the above data treatment, and this has to be removed data. Contour plots of the measured DGD versus wavelength
fore the PMD-vectors could be computed. Mathematically, tlend time are shown in Fig. 3. There is nothing unusual in those
Jones matrix must be unitary if the PMD-vector is to be prolots besides the fact that some very sudden changes occur (for
erly defined, but the measured matrices might contain a smiadith fibers) around days 8, 18, 20, 30, and 36. We discuss those
amount of PDL that, if not removed will give rise to complexXeatures in some more detail below.
rather than real PMD-vector components. Some straightforward averages were also done right away on

The mathematical problem is thus: from an arbitrary Jon#se data. The DGD averaged over wavelength and time was
matrix (in fact any arbitran2 x 2 complex matrix), pick the found to be 2.75 and 2.89 ps for the two fibers, which corre-
unitary matrix that is “closest” to the one at hand. We did thisponds to PMD-coefficients of 0.24 and 0.26+8km. The av-
in the following way. Every Jones matrik can be writteri” = erage over wavelength variegll0% around those values. The
UH, whereH is a Hermitian matrix accounting for the PDL,average over time showed a more significant fluctuation as can
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Fig. 3. DGD versus time and wavelength of fiber 1.

be seen in Fig. 4. This indicates that over the 36 days measwksamples far out in the wings, and partly by measurement er-
ment period, the temporal drift was not significant enough twrs. However, it might also be that a more refined theory is
realize any reliable statistical averages. In the wavelength deeded to explain the deviations in the wings of the Gaussians,
rection, however, this was the case. but for the moment we lack other explanations of these devia-
Another interesting point, that has so far received very littliions from the theory.
attention in the literature, is the isotropicity of the PMD-vector. The basic aim with the setup was to compare the temporal
That is, is any direction in Stokes space preferred, or is thefts between the two fibers. We found it most relevant to com-
PMD-vector isotropically distributed, as most theoretical agpute the changes in the PMD-vector from one time point to the
proaches assume? This is by no means obvious, since telecaxt, and then average this change over the entire wavelength
fibers are believed not to have any intrinsic circular birefrincange. For the length of the PMD vector (the DGD) we thus
gence [3]. The isotropicity has only been verified on few occaomputed
sions, and then with very limited data [30]. According to the sta-
tistical theory for PMD [1], each of the three components of the E H |2t + A, V| - [92(F V)] } @)
PMD-vector is a superposition of many small random variables, At A

Gaussian distribution. Moreover, if the PMD-vector is isotropigime petween two successive measurement instants, which was
then the three components would have identical Gaussian prgBproximately 2.2 hours. For the angular changes, i.e., the PSP

ability distribution functions. In Fig. 5, we verify this, and it isqyift, we computed the average angle between two successive
evident that histograms over the three components of the mgqsp vectors, i.e.

sured PMD-vectors are very close to the theoretically predicted

Gaussian (dashed line in the figures). The agreement is fairly E [arCCOS < Q(t + At N) - QN ) i} ) (3)
good, although not excellent. Particularly in the wings of the |2t + AL, M| [Q(E, )] ) Aty

distributions significant deviations from the Gaussians can he, averaged change in DGD and in PSP-angles are shown in
found. This implies that the DGD has a Maxwellian dIStrIbuI':ig. 6. It is clear from these plots that there is a remarkable

tion, apart from in the wings. Deviations from the Maxwelliarb reement between the two fibers with respect to the average
distribution in the wings have also been seen in other measu&%énge of both the PSP’s and the DGD. In fact. we calculated

ments [21]. Partly this can be expected from the limited amougtcorrelation coefficient between the two fibers of 96%, both
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Fig. 4. Top: The DGD averaged over time and plotted as a function &fg. 5. Histograms over the three PMD-vector components (solid) for each
wavelength. Bottom: The DGD averaged over wavelength and plotted adileer. The dashed lines are Gaussian fits.
function of time. The solid line is fiber 1 and the dashed line is fiber 2.

) ] relation between the temperature changes and the PMD-change.
for the change in DGD and the change in PSP. Even though #1gs might seem surprising since the air temperature should not
fibers are located in the same cable, they are distinct, and igiect a buried cable. However, at 6 hub stations along the 58 km
a bit surprising to find the PMD drift in the two fibers to becaple, the cable enters the air for some tens of meters. We be-
so well correlated. From Fig. 6, we can also quantify the a)aye that this exposure to air temperature is enough to cause the
erage drift to be around 10% per day for the DGD, and to kgt and this fact have also been verified in previous measure-
around20° per day for the angular change of the PSP:s. Alsgyents by De Angelist al.[18]. Therefore, a submarine cable in
we note that there is a strong correlation between the changgsstable environment at the bottom of the ocean would not give
in DGD and PSP. A large change in the DGD is accompanigde to very much drift, but the parts of the cable leaving or en-
with a large change in the PSP’s, and this is just in agreemegfing the deep ocean are exposed to water currents and temper-
with the discussion on polarization drift from Section |-B aboveyyre changes and might therefore contribute to the PMD-drift.
where it was argued that perturbations around the middie of 8, the other hand, aerial fiber cables are heavily exposed to me-
FUT affects the DGD most, and perturbations near the endpoigfnical perturbations from wind, in addition to the temperature

mostly affects the PSP’s. If the perturbations are evenly di§hanges, and the PMD of such cables can be expected to vary
tributed along the fiber, then we will see changes in the DGE}, 3 very short time scale.

and PSP:s simultaneously. The physical reason for the drifts we
attribute to changes in the temperature during the measurement
period. Since we observed very few rapid changes of the PMD,

we believe mechanical perturbations to have been more or les§Vhen discussing the properties of the temporal drift it is two
eliminated by carefully sticking all loose fibers. The temperahings that must be distinguished. They are first, the drift of the
ture data in Fig. 6 indicates that there is a certain amount of cabsolute polarization state, and secondly the drift of the PMD-

IV. STATISTICAL PROPERTIES OF THEDRIFT
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the input polarization state into the fiber. The derivatioraf

is lengthy and deferred to the appendix. We quote here two im-
portant special cases, namely when the polarization states are at
the same timét; = t,) or at the same frequendy; = w-).
Hence, the decorrelation in time will be

Elsty) - s(t2)] = exp<—@) @)

ty
whereAt = t; — t5, andty is the typical drift time for the
absolute polarization states. This is a coefficient that is unique
for each fiber, and has to be measured. How it scales with PMD
and fiber length, together with the assumptions leading up to
this formula is discussed in the Appendix. The decorrelation in
wavelength will be

Blswr) st = e -BA7150) @)

3
whereAw = w; — we. This result is remarkably useful as it
directly demonstrates how the decorrelation in frequency (or
wavelength) is related to the average DGD of the fiber. We will
defer a thorough discussion of this relation to future work, since
here we are more interested in the effects of the temporal drift,
i.e., (4). The assumptions leading to that formula are i) that we
are in the strong mode-coupling regime where the DGD grows
with the square root of the fiber length and ii) temperature vari-
ations in the index difference between the fast and slow polar-
ization states is the main cause of the drift.

The next step is to derive the ACF for the PMD-vector. This
can also be done in time and wavelength, but the wavelength
ACF was recently derived in Ref [6], so we focus here on the
temporal drift properties. Again the details can be found in the

appendix, and the main result is
(%)
1 —exp e
L6

|At|/td

E[Q(t,) - Q(t2)] = E[ATY

By comparing the functional forms of the two derived auto cor-
relation functions [(4) and (6); we see that the Mueller ACF is
slightly more peaked and has an exponential decay, whereas the
PMD ACF has a slower, algebraic decay. This is evident from
Fig. 7, in which the two functions are compared. They are, how-

(upper) and PSP (middle) with time for fiber 1 (solid) and fiber 2 (dotted%%er’ both determined by the timescaleo this resultis in good

The bottom figure plots the air temperature in the Jénkoping area over @greement with the discussion in Section I-B.
measurement period.

The coefficient; gives a measure of the average drift time of
both the absolute polarization states and the PMD-vector of ain-

vector. We will consider these drifts separately, and also shatalled fiber. This parameter cannot be expected to be predicted

how they are related.
From a mathematical point of view, it is convenient to treanstallation-specific data such as the amount of environmental

the drift in terms of correlation functions, i.e. to answer thperturbations and disturbances. In the appendix we show that

question “How well are two polarization states at time instanceepends on the PMD vigy = 2¢,/(3w?E[A7?]), wherew is

t; andt, correlated?”. We define the auto correlation functiothe carrier frequency, artd is a measure of the drift time of the

(ACF) for the absolute polarization states (or more specificallgdex difference in the birefringent element used to model the

for the Mueller matrices) a&'yy = E[M* (w1, t1)M(wa, t2)],

or estimated from known fiber parameters, since it depends on

fiber. This relation clearly shows that the typical drift timg

where superscriptdenotes transpose. A measure of the corrdecreases with the PMD. The paramétgis an individual pa-
lation between two polarization states at those time instangaseter characterizing any installed fiber, but itis more practical
and frequencies would then be their statistically expected scaiadirectly measure; thant, for all systems of interest. The rel-
product, i.e.,F[s(wy, t1) - s{wa, t2)] = shGarrso Wheresg is  evance of our theoretical analysis lies in i) that it shows explic-
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V. CONCLUSION

In conclusion, we have described the result of what we be-
lieve to be the most detailed long-term measurement of PMD
ever reported. We have discussed the treatment of the measured
data and identified some crucial points that should be of in-
terest to manufacturers as well as end users. Then we focused
the discussion on the temporal drift, and derived a theory to ac-
count for both the drift of the absolute polarization state, and
that of the PMD-vector. Perhaps more importantly, we showed
how the drift time is related to the well-known fiber properties,
like the PMD-coefficient. The theory was found to agree rea-
sonably well with measurements.

APPENDIX
i DERIVATION OF THE AUTOCORRELATION FUNCTIONS

Fig. 7. A comparison between the derived temporal ACF's for the absolute [N Order to fur_ther qua_ntify the drift we will fi!‘St Compl_Jte
polarization state [(4), dotted], and the PMD vector [(6), solid], show that téne auto correlation function of the Mueller matrix of the fiber

former has a much more rapid exponential decay. (which will give information about the drift of the absolute po-
larization state). In a second stage we will compute the drift and
10— : : . . T . autocorrelation properties of the PMD-vector. Recently, this was

done with respect to wavelength [6], but now we will generalize
that approach to account also for the temporal drift.

A. The ACF for the Mueller Matrices

We will base the derivation of the ACF on the discrete model
of the fiber, in which the fiber is modeled as a concatenation of
birefringent pieces each having a constant birefringence. Then
we will perform the statistical average (by averaging over all
possible birefringence axes), and finally go to a continuous-fiber
limit by allowing each fiber piece to shrink to an infinitesimal
length. This final step is not necessary, but it provides some
very elegant and compact formulas which, as we shall see, agree
s : . quite well with experiments. This approach have also the benefit

X . . ) ) ) of resolving a problem (the Stratonovich—Ito ambiguity) con-
s 0 T rmedws 10 * nected with the integration of stochastic infinitesimals [1]. The
drawback of this approach is that it is restricted to the strong
Fig. 8. The measured autocorrelation function of the DGD for the two fibersiode-coupling limit only, where the DGD grows as the square
(solid) and the theoretical autocorrelation function from (6) (dashed). We hay§ot of the fiber length.
used the characteristic drift times equal to respectivgly 3.0 and 5.7 days Hence, in terms of Mueller matrices, the fiber consist&Vof
birefringent pieces of length,. The average squared DGD of
ity how the temporal driftt; scales with the amount of PMD such a concatenation can be writteF&\72] = NL3An?/c2,
and ii) that it shows how the drift time of the absolute polarizawhere An is the index difference between the slow and fast
tion state is connected to the drift time of the PMD-vector. Thexes of each birefringent fiber piece, amdthe speed of
absolute drift is much easier to measure than the PMD-vectight in vacuum. Each element in the concatenation has a
drift, so this might be of practical interest. Moreover, the outadsrefringence axise; in Stokes space, so that its Mueller
time [21] in a PMD-limited system can be expected to be of theatrix M; can be written conveniently using the matrix
order of this drift time. In Fig. 8 we have plotted the measuregkponential asM; = exp[y(w)erx]. Here the notation
and theoretical ACF's for the PMD-vectors, usiig= 3.0and exx = (21, ¥k, 21 )X should be interpreted as the skew-sym-
5.7 days for the respective fibers. The agreement is quite goatktric matrix corresponding to the cross-product operator (see
but the reader should note that we have had a free fitting paraeng. Refs. [6], [7]), and the matrix exponential is defined by its
eter int,. The explanation for the difference in drift times forTaylor expansion. The retardation.(w) equalswAngLo/c,
the two fibers is that not all of the fibers in the cable enter all hulshere we allow for the possibility of having differedin in
stations, so different fibers are exposed to different amountsezch piece. The Mueller matrix of the entire fiber we denote by
temperature changes. This is another indication of that the tim&", and it isSM = MyMpy_; --- MyM; .
scale is an important, individual characteristic parameter thatAt this point, we should stop to discuss the physical model.
should be measured together with the PMD for all fibers.  We will make a few simplifying assumptions. Firstly, we assume




KARLSSONet al: LONG-TERM MEASUREMENT OF PMD AND POLARIZATION DRIFT 949

that the index differencé\n and the birefringence axis, are expansionf(At) = 1 — |At| /¢, the ACF for the Mueller ma-
independent of the optical frequency. This is no crucial restritrixes reduces to
tion, since any fiber can be realized by including sufficiently

many small birefringent pieces. The second assumption is that gym = exp<—M> (10)
the time dependence enters via arandom drift in the index differ- ta
ence only. In principle, the birefringence axes might also drifyyhere the typical drift timety; = o/« is an individual

but this is more complex to treat analytically, so we limit thigarameter that has to be measured for each link under
work to a drift in An only. This is also physically consistentsy,gy. However, we can draw one general conclusion from
with the fact that for birefringent waveplates and polarizatiop, — o/ (302 E[AT?]) = 2to/(3w2PMD?z), where PMD is
maintaining fibers, a temperature change (which we identify gg pMD-coefficient (in ps/km) of the fiber. This is that the
the main source of the drift) will cause a change in the inde¥itt is more rapid for long fibers and high PMD, something

difference rather than the polarization eigenaxes. which has been conjectured but not proven until now. We note
We are now ready to calculate the autocorrelation functi%{@lmn the main assumptions leading to this conclusion; 1) that
G, n of the first V Mueller matrices the index difference is the main cause of the drift and 2) we
are in the strong mode-coupling regime. A similar result was
Gn =E[M (t, w) (MY (ta, wo)) ] obtained in a theoretical study by Imai and Matsumoto [11].
A + 2E[cos(An)] They_ copsidered the varia_nce gf the randqm mqtiqn of the
= H I - 3 (7)  polarization state on the Poincaré sphere, using a similar model
k=1 as the one here (i.e., modeling the fiber as a concatenation

of shorter pieces). Their model is slightly more limited since
several simplifying assumption limiting the motion to be small
on the sphere were necessary. Our model is more general in
fat it computes the ACF explicitly, accounts for frequency
deviations between the Mueller matrices, and directly connects
the drift with the average PMD of the fiber. The important
conclusions regarding how the drift scales with fiber length is
however the same between the two models.

where A, = (w1 Ang(t1) — w2Ang(t2))Lo/c, I is the unity
matrix, and the expectation valdg] | means averaging over
birefringence axes and index differences. The last equal
arose from averaging the birefringence alisuniformly over
all possible directions. This was done by utilizing the formul
exp(abx) = I + sin(a)b x +(1 — cos(a))b x bx (see e.g.
[31]) together withE[bx] = 0 and E[b x bx] = —21/3. The
next step is to average thes(Ay)-term, which is simplified
if we assume the_ n_umper of independent_ fiber piede$0 g The ACF for the PMD-Vector

be very large. This implies that, = L/N is so small that ) o )
cos(Ar) ~ 1 — A2/2. Taking the expectation value of this We will now apply a similar method a_sthe one ab_ove to derive
yields E[A2] = (E[Ar2]/N)(w? + w? — 2wiwa f(t — t2)), the ACF for the P_MDvector. Mathematically speaking, what we
where f(t; — t5) = f(At) = E[An(t1)An(t:)]/E[An?] is &M to compute is

e e o TP AT 092X g ) = HR, ) )] 01

) that is the expectation of the scalar product of two PMD-vec-
Wi + w2 — 2wiwa f(AL) N 8 tors at different frequencies and/or times. We assume the same
3N ) (8) concatenated fiber model as above. The PMD-ve@foof the
first & fiber pieces can now be written in terms of the Mueller

Gun=1 <1 — E[ATY

and in the limt~N — oo we are left withGy = matrices as [1]Q%x = dM*/dw(M*)~!, and it is possible
Ign(wr, wo, At) where gy is the Mueller matrix ACF, to derive the Gisin—Pellaux recursion relation [5] for thi
given by PMD-vector according to:
. dy 4
grr(w1, wa, At) ot = o+ 08 (12)
2 2 w
B 0 Wi + w3 — 2wiws f(AL)
= exp <_E[AT ] 3 - O Thisformulaisa very elegant result for concatenation of PMD-

vectors and it can be generalized and statedlasPMD vector
From this expression we can extract some important informatioha concatenation of birefringent elements is the vector sum of
about the polarization drift properties of the fiber. Putting, e.ga)l ingoing PMD-vectors, transformed by the adequate Mueller
w1 = we = w givesg = exp(—E[ATw?(1 — f(At))2/3). matrices to the same positioit is quite remarkable that the
In this expression, the dimensionless factoe= E[A7%)w? is  reduction of the rather complicated formula given by Gisin and
usually very large, since the DGD is in the picosecond range aRdllaux to the above simple and physically appealing form was
the optical perio®r/w is 5.2 fs at a wavelength df55 pm. unnoticed until [6]. However, a particular integral form of the
Hence,« is around10? — 10® for most cases of interest. Thisconcatenation rule, although less general than above, was given
reflects the fact that only a very small change in the index diffelby Mollenauer and Gordon in 1994 [32].
ence will give rise to a large change in the absolute polarizationWe will now calculate the ACF of the PMD-vector
state. Then, obviously only the parts of the functijpthat are after N fiber pieces, i.e..E[QY (w1, t1) - QY (wa, t2)] =
close to unity is of interest, and if we write it using its Taylowg, y (w1, wa, t1, £2). By using the recursion formula, (12) and
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carrying out the averaging process oegr we get a recursion e,, were randomly distributed in the — 4 plane only. In fact it

relation for the autocorrelation
dyn dyn
oo =F | — t1)— t
g, N 7o (wi, t1) 7o (w2, t2)

+a(AN)gn—1(w1, w2) (13)

wherea(Ayn) = (1 4+ 2 cos(An))/3 and Ay is defined as

has been shown that the absolute polarization state will approach
the uniform spread in that kind of model [3]. Itis therefore plau-

sible that at sufficiently long distances, the PMD vector of also
such a model would be uniformly distributed over the Poincaré
sphere.
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A%
Elaas)]~ 1+ 8| 5¥]. a9
This average was performed previously in connection with (8).[2]
We are finally in position to solve the recursion equation (13)

The solution is

dyn dyn

[4]
dw g Wt dw

(15)

1 — Ela]
go,n =FE (w2, t2):| 1 [a]

— Eld] -

Finally, we take the limitV — oo so that the final PMD-vector %
ACF gq (w1, w2, At) can be expressed in terms of the Mueller- ()

matrix ACF gy, from (9) as -
7

Ear)f(an@e =1 )

111( 4)
where f[A¢] is the index-difference ACF that was defined in
connection with (9).

The special casé\¢t = 0 was investigated in [6], where it
was found that the frequency ACF had a width of the order o
the inverse average DGD. In the measurements reported in the
previous sectiod’[A7] was approximately 2.8 ps, which corre-
sponds to a bandwidth of 2.7 nm. Hence, the PMD vector varieg2]
randomly with a correlation length of almost 3 nm, which veri-
fies that a signal manipulation such as the sliding average over, (5]
0.5-nm band discussed in Section Il will not significantly affect
the measured data.

We focus now instead on the pure temporal drift, i.e., the SP€ri4
cial casev; = wo = w. Just as in the discussion on the proper-
ties of gys above, the coefficient = E[A72]w? is very large,
and the ACF can then be approximated with

o (12)

|At|/tg
We should at this point stress a few known statistical propertieg7]
of the stochastic vector proce&%w) [1], [2], and what new in-
formation we have gained. Fir§2 consists of threendependent
stochastic processeQ{w) = (24(w), Qy(w), Q.(w)) so that
cross correlations among those are zero, @.g.(w1, w2) =
E[Q,(w1)Q,(w2)] = 0. Second, due to the fact that all bire-
fringence vectors are uniformly directed in space, the statis-
tical properties of2 will be spherically symmetric. Therefore [20]
Jez = Gyy = 9=z = ga/3. This isotropicity would not hold if
the fiber were modeled differently, e.g., if the birefringence axes

ga = (16)

PO]

[15]
1at

ta (16]

go = E[A7?]

(17)

(18]

[19]
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