JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 7, JULY 2000 1031

The Space Filling Mode of Holey Fibers: An
Analytical Vectorial Solution

Michele Midrio, Mukesh P. Singh, and Carlo G. Someda

Abstract—We tackle holey fibers in full vectorial terms. From S,
Maxwell’s equations, we derive the dispersion relations of the
modes guided by an infinitely self-similar air hole lattice. We
focus in particular on the fundamental mode (the so-called space
filling mode), and show that previous numerical results based on S;
vector methods are accurate, but scalar ones are not. We also find
the field flow lines, intensity distribution in the cross section, and
linear polarization ratio vs. wavelegth.

Index Terms—Electromagnetic propagation in nonhomogeneous
media, optical fibers, optical fiber cladding, optical fiber theory.

. INTRODUCTION

OLEY fibers are fibers in which the field confinement
is obtained by means of a suitable pattern of circular djp 1. Schematic diagram of the infinitely self similar hexagonal lattice. The
. ashed lines labeled &5 andS; represent planes of symmetry of the structure.
holes, around a central zone of pure silica glass. As well known,
light guidance in such fibers may stem from two different phys-
ical processes. The first one is the so-calptonic bandgap quire large CPU times and memory allocations. As for scalar
effect: the air hole pattern is designed to form a honeycomb l@pproaches, we will show in this paper that at least some of them
tice, which stops propagation in any transverse direction. Ligyield effective index values that differ significantly from those
can travel just along the longitudinal direction, close to a defee@mputed using more precise vector methods. Altogether, there
introduced on purpose in the lattice [1]-[3]. The second mecha-plenty of space for trying new approaches.
nism guides light without resorting to band-gap effects. Itis usu- In this paper, we show that the cladding effective index can
ally referred to asotal internal reflection(TIR). Basically, the be evaluated using a fully analytical vector approach. While our
air hole pattern simply yields a loweffectiverefractive index, target is the so-callespace filling modéi.e., the fundamental
compared to the physical index of the central pure silica zorédadding mode) of a holey fiber, the tool that we use to this
The guidance mechanism is then essentially the same as in qaipose is an infinetely self-similar hexagonal lattice. We will
ventional fibers, the lattice acting as the cladding [4], [6]. TIRhow how to find closed-form dispersion relations for the modes
fibers are usually designed and fabricated with a hexagonal @iithis structure. We will also present information on the modal
hole lattice, but this geometry is not strictly necessary: any dield: flow lines, amplitude contour plots and polarization ratio
rangement of air holes in a silica matrix would yield a reduce®f the transverse electric field. As far as we know, these results
effective index. are new. Indeed, so far very few analytical results have been
The value of the cladding effective index is a very importartublished in the whole theory of photonic crystals and holey
design parameter. It sets the width of the spectral range ofiéers. Our results appear to yield an improved physical insight
which a holey fiber is single-mode [4]. So far, computation g#n items that affect in depth the design of single-mode holey
the cladding effective index has been performed by using &ers.
ther full-vectorial numerical techniques [3], [7], [8], or approxi-

mate scalar analytical approaches [4]. Numerical techniques re-
II. SYMMETRY PROPERTIES OF THEHEXAGONAL LATTICE
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As correctly pointed out by two referees, this procedure—i.e.,
to derive (1) from symmetry considerations and then assume
that the field is like (2)—does justify the adoption of those
boundary condition$E.(p = R) = H.(p = R) = 0) over
acircle, but leaves some doubts about the choic&of A/2
as theradius of this circle, A being the pitch of the hexagonal
lattice. In particular, at first sight this choice seems to underesti-
mate the “filling factor” (defined as the fraction of glass area to
the total area of the honeycomb cell), as it neglects the corners
of the hexagon (shaded regions in Fig. 2. When we get to numer-
ical examples (Fig. 4) in Section 1V), we will see that, in fact,
Fig.2. Schematic diagram of the sinlige cellin the hexagonal lattice. The cir¢lee choiceR = A/2 yields results in surprisingly good agree-

C is the circle where boundary conditions due to symmetry properties haverﬁbnt with very precise numerical methods, while if we choose
be appliedp andé are transverse coordinates of a cylindrical reference frame .. . "
centered on the cell axis. another value fo?, aiming at preserving the filling factor of
the original hexagon, the agreement gets worse.

1) E.(P) = 0, if 5, and/orS, are perfect electric conduc- From now on, all our steps will be rigorous, without any fur-

tors; ther approximation or assumption. To make our approach as
2) H.(P) = 0, if 5 and/orS, are perfect magnetic con-general as possible, we will derive dispersion relations not only
ductors; for the fundamental mode, but also for the other modes. Still, for

3) E.(P)=0andH.(P) = 0, if 5 is a perfect magnetic higher order modes we do not have any criterion, for the time
conductor andS, a perfect electric conductor, or vice-Peing, to establish what level of inaccuracy has been introduced
versa. by the separation of variables. At the end, we will know the field

Cases 1 and 2 entail a field with a quadrant_”ke Symmetﬁyﬂy inside the circle C. To pass from it to the field in the in-

(not necessar”y @erfectquadrant Symmetry, but still a pro-ﬁnitely self-similar lattice will be a Simple matter of common
nounced resemblance of the field in the four quadrants). ThisS@Nse.

not compatible with the fundamental mode, which, as frequency

w — 0, must tend to a uniform plane wave. In fact, note that the 1. DISPERSIONRELATIONS

lattice is not invariant under a 90otation: the planes, and | the cylindrical frame of Fig. 2, the e.m. field within the unit
Sy are not equivalent to each other. These remarks imply thali| can be written as

the lattice fundamental mode must be a field for whighs an o )

electric conductor and» a magnetic conductor, or vice-versa, {Ej(p, 0,2) = &(p, 9)6_”“ =12

in any case, a field having H;(p,0,2) = H;(p,0)c*

E.(P)=H.(P)=0. 1) Where‘_j = 1 for quantities define_d i_n the < I < a region_,
7 =2ina < p < R. We use a similar notation for refractive
We will add further remarks on this point at the end of the nektdicesni, ns, with n; < no. The transverse fieldégt, ﬁt}
section, after deriving the dispersion relations for the three setgy be written as [9]
of modes which correspond to the three types of boundary con-_

ditions that we listed above. &y = —% YWV +iwpViH,; x 2F, §=1,2
We focus now on the unit cell of the infinitely self-similar %

lattice, and use the cylindrical fran{g. 6, 2} shown in Fig. 2. . )

Letus resort to separation of variables. This step is not MQOroUSy, , — — — = {yV,H.j —iwe; Vil x 2}, j=1,2

in general, the field in the unit cell can be expressed as a series Y- o

of cylindrical harmonics, each of which has its owrand 8 (4)

dependencies. However, let us stress that we are looking for the ) ) ) .
fundamental space-filling mode. As we said shortly, it must tefghereo; = —wpe;, Vi = pd/(9p) +60/(1/p)0/96, ande.;,
to a plane wave when the wavelength becomes large compaféd aré two independent solutions of a 2-D Helmholtz equation
to the lattice pitch, so, its content of higher order cylindricdPl- At » = a, continuity of tangential components reads
harmonics must be small. Bearing this in mind, we write&he

and H. field components as Ealp = a,0) = Eaalp = a.6)
00 i H;,/l(p =a, 9) = H,,Q(p =a, 9)

Ho(p,0.2) = Qg(p)ef e Eo1(p = a,0) = Eg2(p = a,0)

E.(p,8,2) = Re(p)ee™ 7. ) Hor(p = a,8) = Hoalp = a,6)

Although we do not know yet which value éfwill correspond - goyndary conditions to be appliedat= R in case 1 (electric
to the fundamental mode, we note thateap{if6} # 0, for conductor) read

any/, (1) entailst.(p = R) = H.(p = R) = 0 over the
whole circle C, once we accept that they hold in P for a field of Eaa(p=R,6) =0, OH.o
the form of (2). dp

Il
=

p=R,0



MIDRIO et al. THE SPACE FILLING MODE OF HOLEY FIBERS 1033

and in case 2 (magnetic conductor) where
) I (w) Pl(w)
agz ¥ — £ / — £
H.o(p=R,0)=0, 8p2 =0. fe(w) wl(w)’ pe(w) uPy(p =a)’
p=R.8 qz (u _ /é(u
For case 3—the most interesting one, because we will see that uQe(p = a)
it encompasses the fundamental mode—they read with
P,
E4(p=R,0)=0, H.o(p=R,0) =0. Pl =2 9 ae(p) Oy = 3%@@)
u p p=a u p p=a

We can now derive the dispersion relations. To gain SPacke superscripi/ reminds us that we are dealing with a struc-

we will show details only for the perfect magnetic wall. Th|§ure bounded by a magnetic wall

is not the most practical case because, as we just said, it do - . -
ot surprisingly, the equations we found are reminiscent of

not encompass the fundamental mode. Still, we prefer to sh%vr\ése which apply to step-index fibers [9]. This device and its

details on it, rather than on the case of (3), because itis MUE8I-known solution can be used as a checkpoint, to test the

simpler in terms of mathematics. Dispersion relations for trQl%lidity of the results that we derived here. To this purpouse,

other cases will just be quoted, leaving their derivation to ”T&R ~, oo, and interchange, with n, (refractive index in the
interested reader. '

. . . ; : o
The solutions of the 2-D Helmholtz equation which satis yiner r2eg|on h2|gher than in the outer region). &t = —w
. o ndW+< = —u”. We find then
the magnetic-conductor boundary conditions are
Lw) _ _ JHU)
Hor(p,0) = HoI, (wﬁ) ite wly(w) UJo(U)
a
Er(p.0) = B I (wg) ite and
: ) Jo(w)Yo(uR/a) — Y§(u)Jo(uR/a) Ky(w)
. 0= H 068 1 0 0 — _ 0
Healp,6) = HaQulp )‘?w R oo u(Jo(w)Yo(uR/a) — Yo(u)do(uR/a) W Ko(W)
gz?(pv 9) = EQPé(p)eZ
and the characteristic equation of TE modes becomes
whereE:, F», H; andH, are complex amplitude coefficients,Jo(U)/(UJo(U)) = —Ko(W)/(W Ko(W)), i.e. that of TE
to be determined latef,= 0, +1, ... modes of a step-index dielectric waveguide.
For¢ # 0, the4 x 4 system does not split into two inde-
Pi(p) = Je(up/a)Ye(uR/a) — Yi(up/a)Je(uR/a) pendent subsystems. The corresponding modeisydrd, like

in step-index fibers. Defining the quantity = w? + w? =
) ) w?/c?a?(n3 —n?) (v = normalized frequency), and going then
Qu(p) = Je(up/a) Yi(E)lcmursa — Ye(up/a) Je()lc—ursa  through some lengthy but trivial algebra, very similar to that of

] ) [9], the characteristic equation can be shown to read
with J,(-) and Yz(-) the ¢-th order Bessel functions of

first and second kind, respectively, anfi(-) the ¢-th [} (w) + P (w)] [er17(w) + eraq(w)] = f2(u,w, £)  (5)
order modified Bessel function of the first kind. Primes
denote derivatives with respect to the argument, aMéhere

and

w? = Wi ng — nia’/’w’ = wi(n] — nlz)a’/c? ) (1 1\ fe e
with 8 = (w/c)ney = —ivy the unknown phase constant to be [r(u,w, ) =1¢ 2t (w2 t 2 ) .

determined.

Replacing these expressions into (3), (4), and applying theEquation (5) can then be solved numerically, to find the effec-
continuity conditions, we find a system of four linear homogeive index of the modes which are bounded by a perfect magnetic
nenous equations, in the four unknown amplitulesH;, £>, conductor.

H,. For a nontrivial solution, it is necessary that &dt = 0, The dispersion relations for the two remaining sets of modes
whereM is the matrix of the linear system coefficients. Thigan be derived in a very similar way. In fact, the perfect electric
yields the characteristic equation in the unknog@nFor in- wall can be dealt with simply replacing@, with 7, and vice-
stance, let us take the cabe- 0, where thel x 4 system splits versa, in the previous steps, so the dispersion relations is

into two independert x 2 systems, one ii{; and H», one in

E, and E; only. ih(w) = —gh(u) TEP) modes
These two independent sets of equations correspond to trans- er1ip(w) = —€app(u) TM®) modes

verse electric (TE) and transverse magnetic (TM) modes, re-

spectively, with characteristic equations for £ = 0, and

ip(w) = —po(u) TEM) modes [t (w) + qe(w)] [ (w) + rapp (w)] = f2(u,w,£)  (6)
er1ip(w) = —eragh(u)  TMP) modes for ¢ # 0.
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For the most interesting case, namely an electric and a mag-

netic symmetry plane, the dispersion relations can be found b 1AL
from the previous ones noticing th&, has to be replaced by %
P, not vice-versaHence, the characteristic equations read B o140l
()
in(w) = —ph(v) TET) modes % L3
er1ih(w) = —€oph(v)  TMP) modes & '
84
_ 3ol . M . ,
for £ = 0, and 04 06 08 10 12 14 16
i) + )] [era () + rap(w)] = F(w,0,0) (7) Wavelength (um)
. . _ . IR Sy — E®
for £ # 0. The superscrigf’ reminds us that we are dealing with 5 ~, ‘5
the case where the whole electromagnetic (EM)-field is, on the "g | \\ """ ™M,
outer circle C, transverse with respect to the direction of propa- '; L40 A b) \\
gation. Incidentally, the characteristic equation of PEmodes 2 \\ N\,
coincides with that of TEY) modes. This is not an occasional O o1st N e
coincidence: by definition, the longitudinal electric field of TE ao N TE"(‘E) \,
modes is zero everywhere, including the outer circle. There- 84 N HE,; N,
fore, TEM) modes and TE” modes satisfgle factothe same 13— TEETERVERD
boundary conditions on the outer circle. Similarly, the charac-
teristic e)(/quations of TM? modes and TNF modyes are the Wavelength (um)
same. 1.45
Itis easy to check that (5)—(7) are invariant with respect to the 5
change — —£. Hence, any of their solutions corresponds to a 'g
pair of degenerate modes. This allows us to asstipé) from '; Laor
now on. 2
g 135}
IV. HYBRID MODES THE FUNDAMENTAL MODE 'ﬁ
Our purpose is now to identify the fundamental mode, among 1.30 . . .  —— ]
all the solutions of the characteristic equations found in the pre- 04 06 08 10 12 14 16
vious section. Let us first show that their solutions can be di- Wavelength (um)

vided into two sets, analogous to the HE and EH modes of
step-index fibers. To this end, we regard (5)—(7) as second-order

algebraic equations 'ﬂj solve them. and then use Bessel fun(lEig. 3. Dispersion curves for some of the modes allowed to propagate in the
' ' attice. Plate (a) refers to modes bounded by a perfect magnetic conductor.

tion recurrence relations, following a procedure whose I’ath\%'\ereas plates (b) and (c) refers to the case of modes bounded by a perfect

lengthy details can be found in [9, pp. 381-385]. The final retectric conductor, and by a surface imposing null values to the longitudinal
component of both the electric and the magnetic field. In all the plates, solid

sults are line is for theE H,; mode, dashed line for thE £, ; mode, dotted line for the
Ié—l—l (w) / w / o TMy; mode, and dashed-dotted line for th&,; mode.
Lw) w2 <A£ o Bf)
5 5 By analogy with step-index fibers, we will callEPH” those
_ w\/l <A’ _ G2 B’) + S, w, £) ©) modes which correspond to solutions of (8 E” those which
A\ et €rl correspond to solutions of (9).
and The space filling mode of the hexagonal lattice is, by defini-
Io_y(w) ﬁ _w < 'y €r2 B’) tion, that solution, among all those we found so far, which ex-
I(w)y ~w 2\ e ¢ hibits the highest effective index. Analogy with step-index fibers

1 . 2 £2(u,w,0) might be misleading; to be on the safe side, we prefer to iden-
+wy /= <A’£ 2 BZ) + 21727 (9) tify it by solving numerically (8), (9), with the three possible
“r1 erl boundary conditions listed above. We choose the following pa-
" , , . rameters, that correspond to an example already available in the
\r’\égzre the quantities called; and B; are functions of., and literature [8]: an air-silica hexagonal lattice where the radius of
the air holes isz = 0.3 um; the distance between centers of
Con Lo —n neighboring holes (or lattice pitch) s = 2.3 um, soR = 1.15
Ay(w) = py(u),  By(u) = g;(u) for "M" modes pum. The refractive index of silica is taken to he = 1.46.
! / o
. By(u) = pi(v) for "E" modes Dispersion curves for some low-order modes are shown in
Ay(u) = By(u) = py(u) for "T" modes Fig. 3, where part a) refers to “M” modes, part b) to “E” modes,
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Q 14507 / ith \
] i { tt i ;
g pm 0 || vy ]
5] | L1 /
1445 : 5t _
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pm
Fig. 4. Dispersion relation for the fundamenfaH,(7') mode (solid), as 04 o .
compared to numerically computed SFM effective index (open diamonds, after b) %;;UL _wa 3;
Ref. [8]). The dashed line is the dispersion relation computed by imposing the (17145 “W
boundary condition on the circle passing through the hexagon vertices). The two i
remaining curves give the SFM effective index, as computed on the basis of a t ]
scalar approach. The dotted line is the effective index following [4], the open f i
squares give the index computed by means of a scalar finite-difference code. pm 0 ! !
and part c) to “T” modes. We see that, in agreement with the in- T L
oy . . B REH] !
tuitive arguments developed in Section 2, the fundamental mode .04 L
belongs to the “T” set. In particular, it is thﬁH]ElT) mode. The -04 0 0.4
space filling mode of the lattice is then a two-fold degenerate pm

mode. This point will be dealt with again in the next Section,
where we show field flow lines and amplitude contour plots. Fig. 5. Transverse electric field vectors for the fundamental mode at the
: . . . . avelengthh = 1.5 pm. Panel (b) is an expanded view of panel (a).

Fig.4 is an expanded view of the dispersion curve, where the
EHl(lT)-mode effective index found in this way (for two choices ,
of the radiusR of the circle where we impose the boundanPl method becomes closer to the scalar ones if we choose a
conditions) is compared with results calculated using two prevdius £t which yields a higher filling factor, i.e., reduces the
ously published methods. We see that there is very good agr%g‘-act of air holes.
ment between our results correspondingc= A/2 and the ) ) -
dispersion relation computed by Ferraret@l. using a very ac- A. Field Profile of the Space Filling Mode
curate, full vectorial numerical method—the plane-wave expan-Once the characteristic equation has been solved, we can go
sion method [8]. Further details on the comparison between thiack to (3) and (4), and find the transverse field of the space
method and ours will be presented in the section after the néiking mode. Fig.5 shows the flow lines of the transverse elec-
one. On the contrary, we note large discrepancies between tifiefield vector, for theEHflT) mode, ath\ = 1.5 um. We see
vectorial results on one side (ours and those from [8]) and, tratitis essentially a linearly polarized field. Part b) is a blow-up
the other side, those obtained using either a semianalytic scalfthe central region of part a); its purpose is to stress the minute
theory taken from [4], or a scalar finite-difference scheme [Sfleviations from linear polarization along theaxis that are ex-
Also note that, if we choose for the boundary a larger radius (derienced near the air-silica interface.
particular, the dashed curve refers to the circle passing throughrig.6 shows amplitude contour plots of the(part a) and
the hexagon vertices), then the results given by our techniguépart b) components of the electric field of the fundamental
depart from those given by [8], which, in our opinion, are thenode. Note the four-lobe pattern of the small component,
most accurate published so far. strongly reminiscent of thé/ £/;; mode of a step-index fiber

We know from the literature [6] that the difference betwee(the lobes change sign across the verical and horizontal planes
vector and scalar approaches becomes much less pronounced, iymmetry). This property is preserved, as expected, when
what one aims at is the dispersion curve of a mode guided byha& hole at the center of the lattice is filled up with silica, then
lattice defect. The different behavior of scalar approaches, whHew butt-coupling loss can be predicted between a holey fiber,
applied to these two problems, may be explained, at leastaind a standard single-mode fiber.
part, as follows. Compared to a vector approach, a scalar theoryinally, Fig. 7 shows the linear polarization ratio (LPR) of the
underestimates the influence of sharp index discontinuities famdamental mode. It reconfirms that it is essentially@olar-
the EM-field. A mode guided by a defect in the lattice is mainlized mode, with an LPR which decreases at large wavelengths.
confined within a region where the index is constant, and senseJhese figures, in particular Fig. 5, easily explain why the
index discontinuities only through its small evanescent tails. Tfiendamental mode is two-fold degenerate, as we pointed out
cladding mode that we are investigating, on the contrary, spreagshe previous section. In fact, given the symmetry of the
out throughout the whole lattice, hence it is influenced by shappundary conditions on the circle C, oyr polarized field
index changes located where most of its energy is located. Thisist have anc polarized twin. Still, the hexagonal cell we
may also explain why discrepancies between scalar and vedtarted from does not exhibit a quadrant symmetry. Hence, one
approaches is wavelength sensitive, and also why the resultsrifht wonder whether the two-fold mode degeneracy is an
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Fig. 7. Linear polarization ratio (LPR) vs. wavelength for the fundamental
mode.
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Fig. 6. Contour plots of transverse electric field of the fundamental mode. The 250 500 750 1000 1250 1500 1750
mode isy polarized, as in Fig. 5.(a. field. (b) E, field. Number of plane waves

. . Fig. 8. Absolute error of the space filling mode effective index computed by a
artefact, introduced by our boundary conditions. Actually, thelly vectorial plane wave expansion method versus the number of plane waves

degeneracy is real: the hexagonal structure cannot distinguiggd in the field expansion.

between right-handed and left-handed circular polarizations.

Or in other words, as pointed out by one referee, rotation gl method and our analytical method, in terms of the error we

a mode pattern byr/3 radians around the-axis generates found for the various cases. We see that the accuracy of the nu-

another mode, degenerate with the previous one. The tgrical method depends strongly on the wavelength, and de-

modes are not orthogonal, but are linearly independent agig¢ases for increasing wavelengths. For instance, for an accu-

therefore they can be orthogonalized. racy of 5 x 10~% in the evaluation of the cladding index, an
expansion ovengy, =~ 600 is required ath\ = 632.8 nm;

B. Comparison with the Plane Wave Expansion Method ~ the number grows ta,;, =~ 720 for A = 1064 nm, and to

One useful consequence of the availability of rigorous analﬁPlW = 980 for A = 1550 nm.

ical expressions for the computation of the SFM effective index
in the hexagonal lattice is the possibility of estimating the ac-
curacy of numerical models that are customarily used for waveWe investigated the guiding properties of an infinitely
propagation in photonic crystal fibers. In particular, the methagklf similar dielectric structure, where low-index holes are
whose accuracy we are going to check here is the so-calldbedded in a high-index substrate to form a hexagonal lattice.
“plane wave expansion method”: the field is represented a8y resorting to simple symmetry considerations, we solved
sum of plane waves whose wave vectors belong to the setaofalytically, for the first time, Maxwell's equations in the
centers of the reciprocal lattice, and Maxwell's equations alatice, in a closed form. This allowed us to provide analytical
replaced by a homogeneous system of linear equations whiemenulas to derive the dispersion relations of all the modes
the unknown coefficients are the amplitude of the plane wavsat may be guided by the structure and, in particular, that of
used for the field expansion, and the corresponding propagattbe fundamental mode, often referred to as the “space filling
vector. As discussed in [10], the computation of the effectivaode”.
index with this method requires the diagonalization of a matrix The expressions we found were also used to analyze the elec-
twice as large as the number of plane waves used in the expmomagnetic nature of the SFM, and to give a quantitative exti-
sion of each field component. mate of the accuracy of th@ane wave expansiaechnique, a

To get insight on the accuracy of this method, we implaiumerical model which is widely used to study holey fibers. Our
mented it and computed the effective index of the space fillingsults indicate that, in a silica air-lattice having a pitch-to-wave-
mode for a lattice with the same parameters asat 632.8 length ratio of about 1.5, field expansion over roughly 1000
nm, A\ = 1064 nm and\; = 1550 nm. The number of plane plane waves is required to get & 10~* accuracy in the extima-
waves ranged from,,, = 61 to n,,, = 1765. Fig. 8 shows tion of the mode effective index. Increasing the ratio to values
the results of our comparison between the plane wave numareund 2 or around 4, the same set of plane waves provides an

V. CONCLUSION
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