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The Space Filling Mode of Holey Fibers: An
Analytical Vectorial Solution

Michele Midrio, Mukesh P. Singh, and Carlo G. Someda

Abstract—We tackle holey fibers in full vectorial terms. From
Maxwell’s equations, we derive the dispersion relations of the
modes guided by an infinitely self-similar air hole lattice. We
focus in particular on the fundamental mode (the so-called space
filling mode), and show that previous numerical results based on
vector methods are accurate, but scalar ones are not. We also find
the field flow lines, intensity distribution in the cross section, and
linear polarization ratio vs. wavelegth.

Index Terms—Electromagnetic propagation in nonhomogeneous
media, optical fibers, optical fiber cladding, optical fiber theory.

I. INTRODUCTION

H OLEY fibers are fibers in which the field confinement
is obtained by means of a suitable pattern of circular air

holes, around a central zone of pure silica glass. As well known,
light guidance in such fibers may stem from two different phys-
ical processes. The first one is the so-calledphotonic bandgap
effect: the air hole pattern is designed to form a honeycomb lat-
tice, which stops propagation in any transverse direction. Light
can travel just along the longitudinal direction, close to a defect
introduced on purpose in the lattice [1]–[3]. The second mecha-
nism guides light without resorting to band-gap effects. It is usu-
ally referred to astotal internal reflection(TIR). Basically, the
air hole pattern simply yields a lowereffectiverefractive index,
compared to the physical index of the central pure silica zone.
The guidance mechanism is then essentially the same as in con-
ventional fibers, the lattice acting as the cladding [4], [6]. TIR
fibers are usually designed and fabricated with a hexagonal air
hole lattice, but this geometry is not strictly necessary: any ar-
rangement of air holes in a silica matrix would yield a reduced
effective index.

The value of the cladding effective index is a very important
design parameter. It sets the width of the spectral range over
which a holey fiber is single-mode [4]. So far, computation of
the cladding effective index has been performed by using ei-
ther full-vectorial numerical techniques [3], [7], [8], or approxi-
mate scalar analytical approaches [4]. Numerical techniques re-
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Fig. 1. Schematic diagram of the infinitely self similar hexagonal lattice. The
dashed lines labeled asS andS represent planes of symmetry of the structure.

quire large CPU times and memory allocations. As for scalar
approaches, we will show in this paper that at least some of them
yield effective index values that differ significantly from those
computed using more precise vector methods. Altogether, there
is plenty of space for trying new approaches.

In this paper, we show that the cladding effective index can
be evaluated using a fully analytical vector approach. While our
target is the so-calledspace filling mode(i.e., the fundamental
cladding mode) of a holey fiber, the tool that we use to this
purpose is an infinetely self-similar hexagonal lattice. We will
show how to find closed-form dispersion relations for the modes
of this structure. We will also present information on the modal
field: flow lines, amplitude contour plots and polarization ratio
of the transverse electric field. As far as we know, these results
are new. Indeed, so far very few analytical results have been
published in the whole theory of photonic crystals and holey
fibers. Our results appear to yield an improved physical insight
on items that affect in depth the design of single-mode holey
fibers.

II. SYMMETRY PROPERTIES OF THEHEXAGONAL LATTICE

The exact solutions of Maxwell’s equations in a hexagonal
lattice can be chased on the grounds of simple symmetry prop-
erties. Let us focus on the pointin Fig. 1. There are two planes
of symmetry, marked and , through . Fields which ex-
hibit either an odd or an even parity with respect to either
or are unaffected if their symmetry plane is replaced either
by a perfect electric or by a perfect magnetic conductor. For the
longitudinal components of the electric and magnetic field this
translates as follows (is the unit vector orthogonal to the lat-
tice plane):
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Fig. 2. Schematic diagram of the sinlge cell in the hexagonal lattice. The circle
C is the circle where boundary conditions due to symmetry properties have to
be applied.� and� are transverse coordinates of a cylindrical reference frame
centered on the cell axis.

1) , if and/or are perfect electric conduc-
tors;

2) , if and/or are perfect magnetic con-
ductors;

3) and , if is a perfect magnetic
conductor and a perfect electric conductor, or vice-
versa.

Cases 1 and 2 entail a field with a quadrant-like symmetry
(not necessarily aperfectquadrant symmetry, but still a pro-
nounced resemblance of the field in the four quadrants). This is
not compatible with the fundamental mode, which, as frequency

, must tend to a uniform plane wave. In fact, note that the
lattice is not invariant under a 90rotation: the planes and

are not equivalent to each other. These remarks imply that
the lattice fundamental mode must be a field for whichis an
electric conductor and a magnetic conductor, or vice-versa,
in any case, a field having

(1)

We will add further remarks on this point at the end of the next
section, after deriving the dispersion relations for the three sets
of modes which correspond to the three types of boundary con-
ditions that we listed above.

We focus now on the unit cell of the infinitely self-similar
lattice, and use the cylindrical frame shown in Fig. 2.
Let us resort to separation of variables. This step is not rigorous:
in general, the field in the unit cell can be expressed as a series
of cylindrical harmonics, each of which has its ownand
dependencies. However, let us stress that we are looking for the
fundamental space-filling mode. As we said shortly, it must tend
to a plane wave when the wavelength becomes large compared
to the lattice pitch, so, its content of higher order cylindrical
harmonics must be small. Bearing this in mind, we write the
and field components as

(2)

Although we do not know yet which value ofwill correspond
to the fundamental mode, we note that, as , for
any , (1) entails over the
whole circle C, once we accept that they hold in P for a field of
the form of (2).

As correctly pointed out by two referees, this procedure—i.e.,
to derive (1) from symmetry considerations and then assume
that the field is like (2)—does justify the adoption of those
boundary conditions over
a circle, but leaves some doubts about the choice of
as theradiusof this circle, being the pitch of the hexagonal
lattice. In particular, at first sight this choice seems to underesti-
mate the “filling factor” (defined as the fraction of glass area to
the total area of the honeycomb cell), as it neglects the corners
of the hexagon (shaded regions in Fig. 2. When we get to numer-
ical examples (Fig. 4) in Section IV), we will see that, in fact,
the choice yields results in surprisingly good agree-
ment with very precise numerical methods, while if we choose
another value for , aiming at preserving the filling factor of
the original hexagon, the agreement gets worse.

From now on, all our steps will be rigorous, without any fur-
ther approximation or assumption. To make our approach as
general as possible, we will derive dispersion relations not only
for the fundamental mode, but also for the other modes. Still, for
higher order modes we do not have any criterion, for the time
being, to establish what level of inaccuracy has been introduced
by the separation of variables. At the end, we will know the field
only inside the circle C. To pass from it to the field in the in-
finitely self-similar lattice will be a simple matter of common
sense.

III. D ISPERSIONRELATIONS

In the cylindrical frame of Fig. 2, the e.m. field within the unit
cell can be written as

where for quantities defined in the region,
in . We use a similar notation for refractive

indices , with . The transverse fields
may be written as [9]

(3)

(4)

where , and
are two independent solutions of a 2-D Helmholtz equation

[9]. At , continuity of tangential components reads

Boundary conditions to be applied at in case 1 (electric
conductor) read
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and in case 2 (magnetic conductor)

For case 3—the most interesting one, because we will see that
it encompasses the fundamental mode—they read

We can now derive the dispersion relations. To gain space,
we will show details only for the perfect magnetic wall. This
is not the most practical case because, as we just said, it does
not encompass the fundamental mode. Still, we prefer to show
details on it, rather than on the case of (3), because it is much
simpler in terms of mathematics. Dispersion relations for the
other cases will just be quoted, leaving their derivation to the
interested reader.

The solutions of the 2-D Helmholtz equation which satisfy
the magnetic-conductor boundary conditions are

where and are complex amplitude coefficients,
to be determined later,

and

with and the -th order Bessel functions of
first and second kind, respectively, and the -th
order modified Bessel function of the first kind. Primes
denote derivatives with respect to the argument, and

with the unknown phase constant to be
determined.

Replacing these expressions into (3), (4), and applying the
continuity conditions, we find a system of four linear homoge-
nenous equations, in the four unknown amplitudes

. For a nontrivial solution, it is necessary that det ,
where is the matrix of the linear system coefficients. This
yields the characteristic equation in the unknown. For in-
stance, let us take the case , where the system splits
into two independent systems, one in and , one in

and only.
These two independent sets of equations correspond to trans-

verse electric (TE) and transverse magnetic (TM) modes, re-
spectively, with characteristic equations

TE modes

TM modes

where

with

The superscript reminds us that we are dealing with a struc-
ture bounded by a magnetic wall.

Not surprisingly, the equations we found are reminiscent of
those which apply to step-index fibers [9]. This device and its
well-known solution can be used as a checkpoint, to test the
validity of the results that we derived here. To this purpouse,
let , and interchange with (refractive index in the
inner region higher than in the outer region). Let
and . We find then

and

and the characteristic equation of TE modes becomes
, i.e. that of TE

modes of a step-index dielectric waveguide.
For , the system does not split into two inde-

pendent subsystems. The corresponding modes arehybrid, like
in step-index fibers. Defining the quantity

( normalized frequency), and going then
through some lengthy but trivial algebra, very similar to that of
[9], the characteristic equation can be shown to read

(5)

where

Equation (5) can then be solved numerically, to find the effec-
tive index of the modes which are bounded by a perfect magnetic
conductor.

The dispersion relations for the two remaining sets of modes
can be derived in a very similar way. In fact, the perfect electric
wall can be dealt with simply replacing with , and vice-
versa, in the previous steps, so the dispersion relations is

TE modes

TM modes

for , and

(6)

for .
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For the most interesting case, namely an electric and a mag-
netic symmetry plane, the dispersion relations can be found
from the previous ones noticing that has to be replaced by

, not vice-versa. Hence, the characteristic equations read

TE modes

TM modes

for , and

(7)

for . The superscript reminds us that we are dealing with
the case where the whole electromagnetic (EM)-field is, on the
outer circle C, transverse with respect to the direction of propa-
gation. Incidentally, the characteristic equation of TEmodes
coincides with that of TE modes. This is not an occasional
coincidence: by definition, the longitudinal electric field of TE
modes is zero everywhere, including the outer circle. There-
fore, TE modes and TE modes satisfyde factothe same
boundary conditions on the outer circle. Similarly, the charac-
teristic equations of TM modes and TM modes are the
same.

It is easy to check that (5)–(7) are invariant with respect to the
change . Hence, any of their solutions corresponds to a
pair of degenerate modes. This allows us to assume from
now on.

IV. HYBRID MODES: THE FUNDAMENTAL MODE

Our purpose is now to identify the fundamental mode, among
all the solutions of the characteristic equations found in the pre-
vious section. Let us first show that their solutions can be di-
vided into two sets, analogous to the HE and EH modes of
step-index fibers. To this end, we regard (5)–(7) as second-order
algebraic equations in, solve them, and then use Bessel func-
tion recurrence relations, following a procedure whose rather
lengthy details can be found in [9, pp. 381–385]. The final re-
sults are

(8)

and

(9)

where the quantities called and are functions of , and
read

for `` '' modes

for `` '' modes

for `` '' modes

Fig. 3. Dispersion curves for some of the modes allowed to propagate in the
lattice. Plate (a) refers to modes bounded by a perfect magnetic conductor.
Whereas plates (b) and (c) refers to the case of modes bounded by a perfect
electric conductor, and by a surface imposing null values to the longitudinal
component of both the electric and the magnetic field. In all the plates, solid
line is for theEH mode, dashed line for theHE mode, dotted line for the
TM mode, and dashed-dotted line for theTE mode.

By analogy with step-index fibers, we will call “ ” those
modes which correspond to solutions of (8), “ ” those which
correspond to solutions of (9).

The space filling mode of the hexagonal lattice is, by defini-
tion, that solution, among all those we found so far, which ex-
hibits the highest effective index. Analogy with step-index fibers
might be misleading; to be on the safe side, we prefer to iden-
tify it by solving numerically (8), (9), with the three possible
boundary conditions listed above. We choose the following pa-
rameters, that correspond to an example already available in the
literature [8]: an air-silica hexagonal lattice where the radius of
the air holes is m; the distance between centers of
neighboring holes (or lattice pitch) is m, so

m. The refractive index of silica is taken to be .
Dispersion curves for some low-order modes are shown in

Fig. 3, where part a) refers to “M” modes, part b) to “E” modes,
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Fig. 4. Dispersion relation for the fundamentalEH (T ) mode (solid), as
compared to numerically computed SFM effective index (open diamonds, after
Ref. [8]). The dashed line is the dispersion relation computed by imposing the
boundary condition on the circle passing through the hexagon vertices). The two
remaining curves give the SFM effective index, as computed on the basis of a
scalar approach. The dotted line is the effective index following [4], the open
squares give the index computed by means of a scalar finite-difference code.

and part c) to “T” modes. We see that, in agreement with the in-
tuitive arguments developed in Section 2, the fundamental mode
belongs to the “T” set. In particular, it is the mode. The
space filling mode of the lattice is then a two-fold degenerate
mode. This point will be dealt with again in the next Section,
where we show field flow lines and amplitude contour plots.

Fig.4 is an expanded view of the dispersion curve, where the
-mode effective index found in this way (for two choices

of the radius of the circle where we impose the boundary
conditions) is compared with results calculated using two previ-
ously published methods. We see that there is very good agree-
ment between our results corresponding to and the
dispersion relation computed by Ferrandoet al.using a very ac-
curate, full vectorial numerical method—the plane-wave expan-
sion method [8]. Further details on the comparison between this
method and ours will be presented in the section after the next
one. On the contrary, we note large discrepancies between the
vectorial results on one side (ours and those from [8]) and, on
the other side, those obtained using either a semianalytic scalar
theory taken from [4], or a scalar finite-difference scheme [5].
Also note that, if we choose for the boundary a larger radius (in
particular, the dashed curve refers to the circle passing through
the hexagon vertices), then the results given by our technique
depart from those given by [8], which, in our opinion, are the
most accurate published so far.

We know from the literature [6] that the difference between
vector and scalar approaches becomes much less pronounced, if
what one aims at is the dispersion curve of a mode guided by a
lattice defect. The different behavior of scalar approaches, when
applied to these two problems, may be explained, at least in
part, as follows. Compared to a vector approach, a scalar theory
underestimates the influence of sharp index discontinuities on
the EM-field. A mode guided by a defect in the lattice is mainly
confined within a region where the index is constant, and senses
index discontinuities only through its small evanescent tails. The
cladding mode that we are investigating, on the contrary, spreads
out throughout the whole lattice, hence it is influenced by sharp
index changes located where most of its energy is located. This
may also explain why discrepancies between scalar and vector
approaches is wavelength sensitive, and also why the results of

Fig. 5. Transverse electric field vectors for the fundamental mode at the
wavelength� = 1:5 �m. Panel (b) is an expanded view of panel (a).

our method becomes closer to the scalar ones if we choose a
radius which yields a higher filling factor, i.e., reduces the
effect of air holes.

A. Field Profile of the Space Filling Mode

Once the characteristic equation has been solved, we can go
back to (3) and (4), and find the transverse field of the space
filling mode. Fig.5 shows the flow lines of the transverse elec-
tric field vector, for the mode, at m. We see
that it is essentially a linearly polarized field. Part b) is a blow-up
of the central region of part a); its purpose is to stress the minute
deviations from linear polarization along theaxis that are ex-
perienced near the air-silica interface.

Fig.6 shows amplitude contour plots of the(part a) and
(part b) components of the electric field of the fundamental

mode. Note the four-lobe pattern of the small component,
strongly reminiscent of the mode of a step-index fiber
(the lobes change sign across the verical and horizontal planes
of symmetry). This property is preserved, as expected, when
the hole at the center of the lattice is filled up with silica, then
low butt-coupling loss can be predicted between a holey fiber,
and a standard single-mode fiber.

Finally, Fig. 7 shows the linear polarization ratio (LPR) of the
fundamental mode. It reconfirms that it is essentially apolar-
ized mode, with an LPR which decreases at large wavelengths.

These figures, in particular Fig. 5, easily explain why the
fundamental mode is two-fold degenerate, as we pointed out
in the previous section. In fact, given the symmetry of the
boundary conditions on the circle C, our polarized field
must have an polarized twin. Still, the hexagonal cell we
started from does not exhibit a quadrant symmetry. Hence, one
might wonder whether the two-fold mode degeneracy is an
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Fig. 6. Contour plots of transverse electric field of the fundamental mode. The
mode isy polarized, as in Fig. 5.(a)E field. (b)E field.

artefact, introduced by our boundary conditions. Actually, the
degeneracy is real: the hexagonal structure cannot distinguish
between right-handed and left-handed circular polarizations.
Or in other words, as pointed out by one referee, rotation of
a mode pattern by radians around the-axis generates
another mode, degenerate with the previous one. The two
modes are not orthogonal, but are linearly independent and
therefore they can be orthogonalized.

B. Comparison with the Plane Wave Expansion Method

One useful consequence of the availability of rigorous analyt-
ical expressions for the computation of the SFM effective index
in the hexagonal lattice is the possibility of estimating the ac-
curacy of numerical models that are customarily used for wave
propagation in photonic crystal fibers. In particular, the method
whose accuracy we are going to check here is the so-called
“plane wave expansion method”: the field is represented as a
sum of plane waves whose wave vectors belong to the set of
centers of the reciprocal lattice, and Maxwell’s equations are
replaced by a homogeneous system of linear equations where
the unknown coefficients are the amplitude of the plane waves
used for the field expansion, and the corresponding propagation
vector. As discussed in [10], the computation of the effective
index with this method requires the diagonalization of a matrix
twice as large as the number of plane waves used in the expan-
sion of each field component.

To get insight on the accuracy of this method, we imple-
mented it and computed the effective index of the space filling
mode for a lattice with the same parameters as at
nm, nm and nm. The number of plane
waves ranged from to . Fig. 8 shows
the results of our comparison between the plane wave numer-

Fig. 7. Linear polarization ratio (LPR) vs. wavelength for the fundamental
mode.

Fig. 8. Absolute error of the space filling mode effective index computed by a
fully vectorial plane wave expansion method versus the number of plane waves
used in the field expansion.

ical method and our analytical method, in terms of the error we
found for the various cases. We see that the accuracy of the nu-
merical method depends strongly on the wavelength, and de-
creases for increasing wavelengths. For instance, for an accu-
racy of in the evaluation of the cladding index, an
expansion over is required at nm;
the number grows to for nm, and to

for nm.

V. CONCLUSION

We investigated the guiding properties of an infinitely
self similar dielectric structure, where low-index holes are
embedded in a high-index substrate to form a hexagonal lattice.
By resorting to simple symmetry considerations, we solved
analytically, for the first time, Maxwell’s equations in the
lattice, in a closed form. This allowed us to provide analytical
formulas to derive the dispersion relations of all the modes
that may be guided by the structure and, in particular, that of
the fundamental mode, often referred to as the “space filling
mode”.

The expressions we found were also used to analyze the elec-
tromagnetic nature of the SFM, and to give a quantitative exti-
mate of the accuracy of theplane wave expansiontechnique, a
numerical model which is widely used to study holey fibers. Our
results indicate that, in a silica air-lattice having a pitch-to-wave-
length ratio of about 1.5, field expansion over roughly 1000
plane waves is required to get a accuracy in the extima-
tion of the mode effective index. Increasing the ratio to values
around 2 or around 4, the same set of plane waves provides an
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extimated effective index with an error equal to and
, respectively.
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