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Optimal Design of Grating-Assisted Directional
Couplers

Vittorio M. N. Passaro, Member, IEEE

Abstract—In this paper, a rigorous leaky mode propagation
method has been used to investigate the influence of the grating
period and grating index profile on the design of grating-assisted
directional couplers (GADC’s). A detailed explanation of reso-
nance condition and radiation loss in terms of electromagnetic
field contribution in the grating region as a function of the
grating period and profile is given. Optimal design parameters
have been found for well-defined structures in order to achieve
either minimum coupling length or maximum coupling efficiency.
A very fast method to extract the resonance condition in any
grating-assisted structure by using a sinusoidal profile is proposed.
Numerical results are presented for both moderately and strongly
asymmetric structures in terms of normalized propagation con-
stant, mode radiation loss, coupling length and coupling efficiency.
Comparisons with grating period and coupling length predictions
obtained by other methods are also shown. The rectangular profile
with optimized duty cycle has been demonstrated to be the best
choice in order to minimize the GADC coupling length.

Index Terms—Gratings, optical directional couplers.

I. INTRODUCTION

A NUMBER of methods have been proposed in literature
for the analysis and design of grating-assisted directional

couplers (GADC’s), which are fundamental guided-wave
components for many applications including contradirectional
coupling [1], distributed Bragg reflector sources [2], optical
wavelength filtering [3], [4], wavelength-division multiplexing
(WDM) [5].

The coupled-mode theory (CMT) has been used for de-
scribing the power transfer between the two waveguides of a
GADC in terms of ideal waveguide composite modes [6], [7].
An approximated CMT method has been proposed in [8] to
calculate the radiation loss. Several higher order perturbation
methods, derived by CMT approach, have been used to predict
a number of secondary effects occurring in the GADC structure
[9]–[11]. A different approach is the transfer matrix method
(TMM) [12], which allows simple calculations of the GADC
design parameters, such as grating period and coupling length,
as well as approximated calculations of the scattering loss
induced at the grating transverse interfaces. The approxima-
tions included by both CMT and TMM methods increase
with increasing the grating depth and GADC asymmetry. The
Floquet theory, first introduced by Changet al. [13], allows
rigorous analysis of grating out-couplers. It has been also used
to analyze the radiation loss in GADC in terms of leaky mode
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propagation (LMP) [14]. The method is based on the expansion
of the composite modes of the structure in an infinite number
of space harmonics due to the presence of the grating. The
power carried by each harmonic is partially guided along the
propagation direction and partially radiated in the external
semi-infinite regions. The power exchange between each pair of
space harmonics is governed by the Floquet theorem. Recently,
the Floquet–Bloch theory has been utilized to determine the
optimal grating period (resonance condition) and other GADC
properties [15], and to design the semiconductor-glass com-
posed directional couplers [16] and metallized-grating GADC’s
[17]. However, a complete investigation of the influence of
grating index profile on the GADC performance has not yet
been considered. The aim of this paper is the analysis of both
moderately and strongly asymmetric GADC’s as a function of
the index profile. Since the LMP approach does not introduce
any theoretical approximation, it represents a powerful method
to understand how critical is the influence of the grating period
and profile on all the GADC parameters. Moreover, it allows
the accurate calculation of all the design parameters, including
power coupling length, coupling efficiency, power attenuation
coefficient and total radiation loss. Thus, the geometrical
characteristics of GADC’s, optimized with respect to different
constraints, such as minimum coupling length or maximum
coupling efficiency, can be found (optimal design).

In Section II the theoretical analysis of a GADC structure
having arbitrary grating profile is presented. In Section III nu-
merical results are presented for the analysis of a InP–InGa
AsP–InP–InGa AsP–InP GADC structure working at the
free-space optical wavelength m with TE polariza-
tion. A detailed explanation of resonance condition and mode
radiation loss is given. Comparisons of our method with CMT
and TMM are performed in terms of grating period, power cou-
pling length and efficiency for GADC’s having moderate asym-
metry. Section IV summarizes the conclusions.

II. A NALYSIS OF THE GADC STRUCTURE

The schematic diagram of the GADC structure is shown in
Fig. 1. A periodic perturbation, having periodand length
and arbitrary index profile, is placed on the lower waveguide,
being the depth and the length direction. Each layer of the
structure is assumed isotropic, homogeneous, lossless and two-
dimensional. The scalar wave equation is given by

(1)
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Fig. 1. Schematic diagram of the GADC structure with arbitrary profile.
GADC parameters: overlayn , upper slabn , gapn , gratingn , underlayer
n , lower slabn , substraten refraction indices, and upper slabt , gapt ,
gratingt = t, underlayert , lower slabt thicknesses.d , d , d , d are
the profile parameters,� the grating period andL the grating length.

where is the appropriate electric or magnetic field-compo-
nent (i.e., for transverse electric (TE) and
for transverse magnetic (TM) polarization), is the free-space
wavenumber, designates the generic homogeneous layer,

, and is the relevant permittivity. The
permittivity function is periodical along only in the grating re-
gion, i.e., , and it can be written according to the Fourier
series expansion as

(2)

where denotes the th space harmonic, and

(3)

is the th series coefficient. Thus, the solution of (1) in the
grating region, according to the Floquet space harmonics ex-
pansion [13], [14], is

(4)

where is the th space harmonic amplitude function and
is the component alongof the relevant propagation vector.

It is well known that the th component is related to the fun-
damental harmonic by the Floquet phase relationship
[13], i.e., , where refers to the ze-
roth-order mode of the perturbed structure. Therefore, the field
in the grating region assumes the form of a superposition of
space harmonics. In order to completely describe the electro-
magnetic field in the GADC structure, we denoteasthe -com-
ponent of the e.m. field ( for TE and for
TM polarization, respectively). Similarly to (4), it results in the
grating region

(5)

where is the relevant th hsrmonic amplitude function.
Moreover, the relationships between the and field

component amplitudes have been determined by using the
Maxwell equations

(6)

where and are elements of two squared matrices, each
one depending on the permittivity coefficients. In case of TE
polarization, we have

(7)

being , Kronecker’s delta functions, and the
appropriate coefficient of Floquet series expansion. The solu-
tion of (6), together with the continuity conditions applied to
each longitudinal interface between different layers, allows to
find the propagation constants and the field distributions of all
the field space harmonics retained in the analysis. In particular,
the continuity conditions can be summarized for TE-polarized
mode [14] as

(8)

(9)

where is the grating thickness, , are the
th harmonic -components of the wave vector in the layers

and , respectively, and the coefficients , depend
on the propagation constant components in the same layers. It
must be noted that the condition (7) includes a dependence of
the solutions in the grating region on the equivalent permittivity

which is a function of both the space harmonic orderand the
grating profile. This has important consequences, as it will be
better clarified in the following. From the equation system (6)
it is clear that an arbitrary but finite number of harmonics, say

, has to be taken for numerical integration, having the
complex wave-number of the GADC com-
posite guided mode as unknown variable, where is
the mode amplitude attenuation coefficient (leakage factor). In
other words, the LMP approach explains the radiating effect
produced by the grating in terms of leaky modes, having field
space harmonics which radiate power in the semi-infinite re-
gions. In order to numerically integrate the system (6), a four-
order Runge–Kutta algorithm has been used, which gives accu-
rate results also for large grating depths when a large enough
number of iterations is used (up to 50 iterations have been used
for 0.15 m). Moreover, the complex eigenvalue has
been found by the Muller’s method. After finding , the am-
plitude coefficients of each space harmonic and, , ,

have been determined. Details of numerical procedure
can be found in [14]. Strong attention must be paid to the choice
of the starting point, i.e., the approximated propagation con-
stant, in order to avoid double roots. The problem is well de-
scribed in [15].
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Fig. 2. Real part of normalized propagation constant ofn = �1 (modeA) andn = 0 (modeB) space harmonics versus grating period for different index profiles,
+++: sawtooth,���: symmetric triangular,���: sinusoidal,. . .: symmetric trapezoidal, ***: squared (50%). GADC parameters:n = 3:18, n = 3:282,
n = 3:18,n = n = 3:282,n = 3:45, n = 3:18, t = 0:2 �m, t = 0:1 �m, t = 1:45 �m, t = 0:45 �m, t = 0:257 �m.

III. N UMERICAL RESULTS

A. Grating Resonance Condition

The GADC structure already presented by
Marcuse [8] and considered by Sunet al. [15]
has been largely investigated. It consists in a
InP–In Ga AsP–InP–InGa AsP–In Ga AsP–InP
multilayered structure, having parameters ,

, , , ,
m, and m. The monomodal condition

[8] allows to obtain as a
function of , being the free-space optical wavelength.
The choice to have only two ideal composite modes is similar
to the TMM approach, in which only two local normal modes
are considered at each grating section [12]. As a first step, we
have calculated the composite modes of the same structure
as above, but unperturbed ( m, , = 0.5

m, , m) at m. Results give
and , being mode

(even) mainly confined in the lower slab and (odd) in the
upper one. Then, a similar structure with a grating depth of

m ( m, m) has been
investigated. It is well known that the grating period, needed
to have a high-efficiency power transfer between the ideal
composite modes of the structure, depends on the effective
index difference between the two guided modes exchanging
power along . The conventional CMT method determines the
grating period in an approximated form

m (10)

The TMM approach [12] gives in this case (strongly asym-
metric) a much more approximated value of the grating period

m (11)

being “inf” and “sup” the local sections of the grating period. In
the LMP approach, the optimal grating period is found at the res-
onance condition [15], i.e., when the deviation
from the exact synchronization condition between the modes
and , i.e., , is minimized, being the grating
wavevector and , the real parts of the fundamental (ze-
roth-order) harmonic propagation constants of modeand ,
respectively. Since , where is the real part
of 1 harmonic propagation constant of mode, the resonance
condition implies also that the EM-field distribution of1 har-
monic of mode is more similar to that of 0 harmonic of mode

or, in other words, the difference of their phase velocities is
minimal. The resulting coupling length, allowing the maximum
power transfer between the lower and upper slabs, is given by
the well-known formulation [15], [16]

(12)

which is used in the CMT approach, too [6], [18].
Fig. 2 shows the effective indices of1 (mode ) and 0

(mode ) space harmonic as a function of the grating period. A
number of different index profiles have been considered: saw-
tooth (+++, with , ), symmetric
triangular ( , , , ),
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sinusoidal ( ), symmetric trapezoidal (
, rectangular profile with a 50% duty cycle (***,

, ). The meaning of parame-
ters is illustrated in Fig. 1. From Fig. 2, it can be clearly seen
that the resonance condition occurs whenis minimal. The cal-
culations highlight a little change of resonant period for each
profile, being m for sinusoidal, trapezoidal and
triangular, 14.031 m for sawtooth, and 14.033m for rect-
angular profile, respectively. However, the change is very mod-
erate, so demonstrating that the grating period which matches to
the best the field distributions of perturbed structure modes de-
pends very slightly on the index profile, even for strongly asym-
metric GADC (in this case m).

For instance, the presence of the grating in the GADC struc-
turecauses three fundamentaleffects.The first is thateachguided
modegenerates infinitespaceharmonics(with formode

and formode ), radiatingpower in thesubstrateand in
the overlay. The second is that only two space harmonics (“fun-
damental”) carry significant guided power in the upper and lower
slabs (with and for mode and ,
for mode ). The third effect implies that the e.m. fields of space
harmonics having are confined in the grating region
(hereinafter “spurious”harmonics).Thiscircumstanceoccurs for
the harmonics having (mode ) or (mode ) for
the structures considered in this paper. These confinements de-
pends on the permittivity coefficients of the Fourier series expan-
sion (3) of the grating profile, which are contained in , and
cause a distorsion of e.m. field distribution of fundamental har-
monics from “ideal” condition in absence of grating, i.e., .
As a consequence, at the resonance the influence of spurious har-
monicsisminimalsincetheiramplitudes,dependingontheequiv-
alent permittivity, are globally minimized.

The amplitudes of spurious harmonics have been calculated
at the resonance and near the resonance for different profiles (D

sawtooth, S sinusoidal, T triangular, Q squared, TR
trapezoidal).TableIsummarizestheseamplitudesforbothmodes

and for sawtooth profile at 14.029m and 14.031 m, and
shows also the percentage difference of the amplitudes of other
profiles with respect to the sawtooth D, as calculated at 14.029

m. The alternating signs in some cases are due to the relevant
coefficients of Fourier series expansion of grating profile.

In case of sinusoidal profile, the amplitudes of the real part
of field component of spurious harmonics for (mode

) and (mode ) are dominant (in absolute value) with respect
to the other harmonics, and are at least two orders of magnitude
lower than the amplitudes of fundamental harmonics. In fact,
when (mode ) and (mode ), the equivalent permittivity
assumes a minimum value because the sinusoidal profile admits
only one spatial frequency, i.e., , , . There-
fore, the guided spurious harmonics are weaker in the grating
region for than , giving stronger guiding, less
coupling with the two slabs and much lower amplitudes with
increasing . In a similar way, the resonance condition (=
14.031 m) for sawtooth profile arises when the spurious har-
monics in the grating region have minimum amplitudes. This
can be seen in Table I by comparing the amplitudes for saw-
tooth profile calculated at 14.029m and 14.031 m. Since
the Fourier series expansion of sawtooth profile has its permit-

TABLE I
AMPLITUDES OF SPURIOUS HARMONICS

FOR VARIOUS PROFILES

tivity components in rigorously decreasing order, the space har-
monic amplitudes are in decreasing order with increasing, too
(see Table I). Therefore, in Fig. 2 we observe that the curve for

(mode ) is closer to that for (mode ) in
case of sawtooth rather than for the sinusoidal profile, because
the amplitudes of sawtooth spurious harmonics are smaller than
those of the sinusoidal profile. In fact, the zeroth-order compo-
nent is larger in the sinusoidal than in the sawtooth profile,
so contributing to a weaker guiding of the spurious harmonics
in the grating region, a stronger coupling with the two slabs
and larger amplitudes of spurious harmonics. In case of saw-
tooth profile, it can be noted from Table I that the amplitudes
are globally (for both modes and ) smaller than those for
other profiles at the same period (14.029m). As a conclusion,
the curves in Fig. 2 are explained by considering that the contri-
bution of spurious harmonics to the total e.m. field is minimum
at the resonance condition for sawtooth profile, while this con-
tribution is increasingly greater for triangular, sinusoidal, trape-
zoidal and rectangular (50%) profile.

In particular, the rectangular profile exhibits a Fourier se-
ries expansion like a sinc() function, so giving both positive
and negative not ordered components. This can be clearly seen
from the amplitudes of space harmonics for modeand mode
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Fig. 3. Mode radiation loss (dB/mm) versus grating period for different index profiles, +++: sawtooth,���: symmetric triangular,���: sinusoidal,. . .:
symmetric trapezoidal, ***: squared (50%). GADC parameters:n = 3:18, n = 3:282, n = 3:18, n = n = 3:282,n = 3:45, n = 3:18, t = 0:2

�m, t = 0:1 �m, t = 1:45 �m, t = 0:45 �m, t = 0:257 �m.

, as changed with respect to those of sawtooth profile (see
Table I). Amplitudes larger than those occurring in sawtooth,
sinusoidal, triangular or trapezoidal profile have been obtained.
Therefore, the resonance condition occurs with a larger devia-
tion wavenumber.

B. Mode Radiation Loss

The mode radiation loss depends strongly on the grating pro-
file, as it can be seen in Fig. 3, where the radiation losses of
both modes ( and ) are given versus the grating period for
the index profiles above described.

The behavior of radiation loss curves can be explained
by considering the amplitudes of radiating harmonics. For
sawtooth profile, the amplitudes of radiating harmonics are
in strictly decreasing order as those of spurious ones, then
the harmonic for mode and for mode

are dominant with respect to the others. In Fig. 4, the
normalized radiation efficiency of space harmonics scattering
in the substrate () and in the overlay ( ) is sketched as a
function of the grating period for the sawtooth profile. The
normalization is referred to the net sum of all the radiation
harmonics for each mode. It demonstrates that the dominant
harmonics radiate the most of lost optical power in the substrate
and in the overlay ( and for , and
and for , respectively), i.e., the space harmonics
having propagation constant closer to guided harmonics radiate
the most of optical power. Therefore, the curves of radiation
loss for sawtooth profile (Fig. 3) follow the behavior of these
dominant harmonics with changing the period. It must be noted

that small values of period support the power scattering from
lower to upper slab, while with large periods ( m)
the power scattering is favored in the opposite direction. This
explains the decreasing (increasing) behavior of radiation loss
for mode ( ). Moreover, the radiation loss of Fig. 3 is very
small for both modes (sawtooth profile), even in the presence
of a large number of harmonics ( , i.e., 19 harmonics,
have been considered). This is due to the fact that, as depicted
in Fig. 4, the structure with sawtooth profile radiates power
with changing the period in an orderly way, the space
harmonic efficiency of mode being always larger
than and , the efficiency of harmonic of mode

being larger than and , and so on.
More symmetric profiles than sawtooth, as triangular or si-

nusoidal, also exhibit losses quite low, but an increasing con-
tribution to total loss of the mode with respect to occurs,
since the dominant radiating harmonic of mode( , see
Fig. 5 for triangular profile) scatters more power (compare with
Fig. 4). It is immediate to think that index profiles described by
a larger number of harmonics presents an increasing radiation
effect, as confirmed by the curves relevant to the rectangular
(50%) profile (***) in Fig. 3. Here, the losses of both modes are
larger than in other profiles, since a significant power is radi-
ated by a number of space harmonics, ranging from to

(mode ) and from to (mode ). The curves of radia-
tion losses are characterized by an increasing (decreasing) and
then decreasing (increasing) behavior for mode( ), as it is
clear in the curves of rectangular profile and, more slightly, in
the others. This behavior can be understood from Fig. 6, where
the normalized radiation efficiency is reported as a function of



978 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 7, JULY 2000

Fig. 4. Normalized radiation efficiency of space harmonics in the overlay (A) and substrate (S) versus grating period for sawtooth profile (modesA andB).

the grating period. A comparison of curves in Fig. 6 with those
in Fig. 3 clearly shows that constitutes the dominant space
harmonic of the mode . By similar considerations, the curve
of radiation loss for mode mainly depends on space har-
monic, which is dominant too. Then, the strong increase of mode
radiation loss (Fig. 3) for the rectangular profile with respect
to other profiles (in particular, sawtooth) is connected to larger
radiation efficiency of dominant harmonics and larger number
of harmonics radiating significant power at each grating period
(i.e., stronger power mixing among the higher order harmonics).

Results for sinusoidal profile demonstrate that the small loss
decrease for mode (see Fig. 3) is due to the behavior of
harmonic radiating in the substrate , which strongly de-
creases up to m, and then increases. Since the
behavior of harmonic radiating in the overlay is ab-
solutely symmetric, the radiation loss curve demonstrates that

radiating in the substrate again constitutes the dominant
space harmonic for modeand, similarly, the curve of radiation
loss for mode A depends on space harmonic. The curves
of radiating efficiency for triangular profile (Fig. 5) confirm that
the dominant harmonic is for mode and for mode

. This profile has intermediate characteristics between saw-
tooth and rectangular both for shape, coefficients of Fourier se-
ries expansion and harmonic amplitudes, and the distribution
of radiation efficiency presents intermediate properties, too. In
fact, the radiated power mixing among the harmonics increases
from sawtooth to triangular to rectangular profile.

C. Coupling Length and Efficiency

The electric field -component for the modes ( , in-
cluding the and “0” space harmonics) and ( ,

with and ) have been calculated at the resonance for
a number of profiles, i.e., sinusoidal, sawtooth, rectangular and
triangular. For example, in case of sinusoidal profile it is clear
that the overlapping of these field distributions pro-
duces the field reinforcement in the upper slab and the field re-
duction in the lower guide (first case). The contrary occurs in
the second case, when .

Since each guided mode is given by only two space har-
monics, we can write

(13)

and the total EM-field is

(14)

where , are the relevant leakage factors. Since
, (14) can be rearranged in the form

(15)

In , we have

(16)



PASSARO: OPTIMAL DESIGN OF GRATING-ASSISTED DIRECTIONAL COUPLERS 979

Fig. 5. Normalized radiation efficiency of space harmonics in the overlay (A) and substrate (S) versus grating period for triangular profile (modesA andB).

Fig. 6. Normalized radiation efficiency of space harmonics in the overlay (A) and substrate (S) versus grating period for rectangular (50%) profile (modesA

andB).

In other words, the EM-field is given by two contributions
in both cases [sign or in (14)–(16)], the former depending

on the couple and the latter on the couple
of quasi-synchronous components, respectively. By minimizing
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one contribution with respect to the other, the condition of max-
imum power transfer (coupling length, ) in both cases can be
found by (17) at the bottom of the page.

The coupling efficiency in both cases is given by (18) also
shown at the bottom of the page.

D. Influence of Lower Slab Refraction Index

A detailed investigation of Marcuse structure [8] as a func-
tion of lower slab refraction index has been carried out. First,
the resonance condition has been determined at m,

, for sinusoidal and rectangular (50%) profiles.
Results give m (sinusoidal) and

m (rectangular). Then, the coupling length and efficiency have
been determined by (17) and (18) for rectangular profile at

and m. The values show a very little dif-
ference ( 0.088%), i.e., mm and mm, re-
spectively, which is shorter than one grating period. A slightly
greater difference (0.97%) has been obtained at ,

m, i.e., mm ( m) and
1.4875 mm ( m), which is of the order of one
grating period and, then, negligible. In this last case, the ef-
ficiency results 98%. This circumstance demonstrates that the
resonance condition obtained by sinusoidal profile represents a
very good, practical approximation of grating period, even for
strongly asymmetric GADC’s. Since only five space harmonics
( ) are to be used in the calculations with sinusoidal profile
instead of a minimum of 19 ( ) for more complicated pro-
files (such as sawtooth, rectangular or triangular), the required
average CPU time is much lower (3 s instead of 85 s by using
a 233-MHz compatible PC). This allows a very fast procedure
for real time optimal design of arbitrary GADC structures, since
the search of resonance condition is the more critical aspect.

The resonance periods () have been calculated by sinusoidal
profile in a number of cases, ranging from to

, together with the grating period (), approxi-
mated by CMT. The percentage error is less than 0.07%. It is

interesting to note that the optimal period increases with in-
creasing for moderate asymmetric structures (having
3.3), while it decreases for strongly asymmetric ones. A signifi-
cant discrepancy (0.12%) in the evaluation of resonance con-
dition has been observed with respect to results given in [15] for

. This is probably due to the limited number (12) of
space harmonics retained in that algorithm, while in this work 19
space harmonics radiating in the overlay and 19 in the substrate
have been used. The coupling lengths and coupling efficiency,
as calculated by (17) and (18), are shown in Figs. 7 and 8, re-
spectively, for different grating profiles (solid lines). An optimal
rectangular profile, with optimized duty cycle has been also de-
termined by reducing the coupling length as much as possible.
The minimum coupling length is obtained with a duty cycle
ranging from 42% (for ) to 32% (for ). In
Fig. 7, the increase of coupling length for 3.47 obtained
with a lower duty cycle (29%) is also shown for comparison.
Coupling lengths calculated for 3.42 are practically the
same if the duty cycle is included between 32% and 50%, but at
the expenses of a lower coupling efficiency (see Fig. 8). There-
fore, the “inf” and “sup” section lengths of the grating period
are demonstrated to be not critical parameters even for strongly
asymmetric GADC. In Fig. 7 the coupling length as calculated
by Marcuse [8] is also given, showing that results derived by
CMT and similar methods are usually underestimated. Our re-
sults demonstrate that the coupling length increases versus the
index profile as closer as the effective index of modewith re-
spect to that of mode (see Fig. 2), as expected. In other words,
the sawtooth profile represents the worst case with respect to the
coupling length and the best to the radiation loss, while the con-
trary occurs for rectangular profile.

The curves of coupling efficiency (Fig. 8) show a strong de-
pendence of asymmetric profiles on the degree of GADC asym-
metry, while a slight dependence of symmetric profiles, such as
sinusoidal, triangular and rectangular (50%) can be noted. This
circumstance occurs because the symmetric profiles scatter the
radiated power by higher order space harmonics toward the sub-

(17)

where

(18)
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Fig. 7. Coupling length (mm) versus lower slab refraction indexn for different index profiles, +++: sawtooth,���: symmetric triangular,���: sinusoidal,
***: squared (50%), boxes: optimized rectangular (duty cycle ranging from 42% to 32%). GADC parameters:n = 3:18,n = 3:282,n = 3:18,n = n =

3:282,n = 3:18, t = 0:2 �m, t = 0:1 �m, t = 1:45 �m, t = 045 �m, t ranging from 0.4238 to 0.2280�m. This paper (solid line) and [16] (dashed
line). The predictions by Marcuse [8] are also shown.

Fig. 8. Coupling efficiency (%) versus lower slab refraction indexn for different index profiles, +++: sawtooth, xxx: symmetric triangular,���: sinusoidal, ***:
squared (50%), boxes: optimized rectangular (duty cycle ranging from 42 to 32%). GADC parameters:n = 3:18,n = 3:282,n = 3:18,n = n = 3:282,
n = 3:18, t = 0:2 �m, t = 0:1 �m, t = 1:45 �m, t = 0:45 �m, t ranging from 0.4238 to 0.2280�m. This paper (solid line) and [16] (dashed line).

strate and overlay in a similar way, less influenced by the index
difference between the two GADC slabs. On the contrary, asym-
metric profiles such as sawtooth and rectangular ones exhibit a

different scattering in the substrate and the overlay, depending
on the GADC structure, and the coupling efficiency varies a lot.
Therefore, a smaller coupling length must be paid by a lower
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Fig. 9. Coupling length (mm) versus grating depth (�m) for different index profiles, +++: sawtooth,���: symmetric triangular,���: sinusoidal, ***: squared
(50%), boxes: optimized rectangular (42%). GADC parameters:n = 3:18, n = 3:282, n = 3:18, n = n = 3:282, n = 3:18, t = 0:2 �m,
t = 0:4238 �m, t = 1:5� t =2 �m, t = 0:5� t /2 �m, t ranging from 0.01 to 0.15�m. CMT and TMM predictions are included.

coupling efficiency. Results have been compared with those cal-
culated by (12) and by the following approximated expression
given in [16]:

(19)

The agreement of our results with those obtained by (12) is
very good, the error being less than 2.4%, while (19) leads to
more approximated values, with an error of about 4.9%. Fig. 7
shows the predictions by (19) as dashed lines, while in Fig. 8
the relevant coupling efficiencies are sketched. This is because
the mode radiation losses are not usually negligible and, in par-
ticular, are not equal (particularly in rectangular profiles), as as-
sumed in [16]. Therefore, the LMP approach, derived by Flo-
quet theory, is confirmed to be an extension of the coupled mode
theory involving leaky modes and an arbitrary number of higher
order space harmonics, where the (12) can be again used with
the values of propagation constants corrected by the presence of
the grating. This is a general result, not depending on the GADC
parameters, such as lower slab refraction index or groove depth,
or grating profile.

E. Influence of Grating Depth

Calculations of coupling length and efficiency have been
also performed as a function of groove depth. Figs. 9 and 10
show the coupling length and efficiency obtained for different
grating profiles at (quasi-symmetric GADC),

with ranging from 0.01 to 0.15 m. The curves have been
determined by evaluating the resonance condition versus the
groove depth by using the sinusoidal profile. The symmetric
profiles exhibit higher efficiency with respect to the asym-
metric ones with increasing the groove depth, but the best
condition (lowest coupling length) is obtained again with the
optimized rectangular profile (42%), which is characterized by
a larger value of . In our calculations the resonance condition
has been compared with that predicted by CMT and TMM
approaches with changing, the maximum difference being

0.067% (CMT) and 0.73% (TMM) at m. Then,
the coupling length and efficiency have been calculated by
the three methods (LMP, CMT, and TMM). The aim was to
establish how critical is the evaluation of grating period and its
influence on the predictions of coupling length and efficiency,
even in GADC with moderate asymmetry. It is clear that an
increasing discrepancy of LMP results from those obtained by
more approximated methods can be noted as large as the groove
depth. Predictions of coupling length by CMT (42.25%) and
TMM ( 45.45%) at m are strongly underestimated,
also for very small groove depths. Moreover, the coupling
efficiency as calculated by both CMT and TMM is much lower
than that in Fig. 10, of the order of 60%.

Finally, an investigation of the influence of the grating period
on the coupling efficiency has been carried out for the GADC
structure with and m. Results demonstrate
that the fabrication tolerance is greater for rectangular (about
0.2 m, with efficiency changing from 98% to 60% and duty
cycle from 33 to 50%) than for sinusoidal profile (about 0.16
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Fig. 10. Coupling efficiency (%) versus grating depth (�m) for different index profiles, +++: sawtooth,���: symmetric triangular,���: sinusoidal, ***: squared
(50%), boxes: optimized rectangular (42%). GADC parameters:n = 3:18, n = 3:282, n = 3:18, n = n = 3:282, n = 3:18, t = 0:2 �m,
t = 0:4238 �m, t = 1:5� t =2 �m, t = 0:5� t =2 �m, t ranging from 0.01 to 0.15�m.

m), since the former is less influenced by the period changes
around the resonance condition.

IV. CONCLUSION

The rigorous approach of leaky mode propagation has
been used for the optimal design of InP–InGaAsP–InP–In-
GaAsP–InP grating-assisted directional couplers. A detailed
explanation of GADC behavior versus index profile is given,
showing that the minimum wavenumber deviation is obtained
in asymmetric GADC with strongly asymmetric profiles,
as sawtooth. Calculations of grating period, radiation loss,
coupling length and efficiency demonstrate that the LMP
approach can be seen as an extension of CMT even for GADC
with high index asymmetry. In particular, the sinusoidal profile,
whose resonance condition can be obtained by using a very
low number of harmonics ( ), allows to design GADC
structures in real time, since the resonance condition of any
GADC having arbitrary profile can be evaluated with high
accuracy (error less than 0.03%) and very short CPU average
time (3 s instead of 85 s for the rectangular profile with ,
by using a 233-MHz compatible PC). The rectangular profile is
demonstrated to be the best choice for minimizing the coupling
length at the expenses of a large radiation loss and reduced
coupling efficiency, if an appropriate duty cycle is used. Larger
coupling efficiency and smaller radiation loss can be achieved
by strongly asymmetric profiles as sawtooth, but with much
larger lengths. Results of coupling length and efficiency have
been also obtained and compared with alternative techniques,
i.e., CMT and TMM, for GADC having moderate thickness
asymmetry. Increasing discrepancies have been found in the

calculations by LMP with respect to TMM and CMT as large as
the grating depth. As a conclusion, the rigorous LMP method
has allowed to determine how critical is the grating period
on the GADC design parameters and performance. Further
investigations will be possible by this method for studying
the wavelength dependence (spectral behavior) of strongly
asymmetric structures as a function of grating depth.
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