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Abstract—All-optical wavelength conversion based on a non- the erbium-doped fiber amplifier (EDFA) in our experiment can
linear optical loop mirror (NOLM) at 40 Gb/s is demonstrated for  satisfy this requirement.
the first time. The effect of walkoff time between control beam and
signal beams is investigated when the NOLM is used as an all-op-

. \ _ A. Experimental Setup
tical wavelength converter or an all-optical demultiplexer.

. N The experimental setup is shown in Fig. 1. It consists of two
Index Terms—All-optical demultiplexing, cross-phase modu- NOLM’ . df | th - WC-NOLM
lation (XPM), nonlinear optical loop mirror (NOLM), optical s, one is used for wavelength conversion ( § ),

time domain multiplexing (OTDM), wavelength conversion, and the otheris used for all-optical demultiplexing (D-NOLM)
wavelength-division multiplexing (WDM). [15] The WC-NOLM consists of 3 km of dispersion shifted
fiber (DSF) with a nonlinear index, = 2.67 x 10720 m2/w,
an effective cross sectional arehy = 50 1 m?, zero dis-
persion wavelength of 1550.7 nm and dispersion slope of 0.08
AVELENGTH conversion has been suggested as gs/nnt/km. The on-off ratio defined [16] between maximum
method of enhancing routing options and networknd minimum transmission of the NOLM is 30 dB without the
properties like reconfigurability, nonblocking capability an@dontrol signal [14]. The on-off ratio between maximum and
wavelength reuse [1], [2]. Cross-gain modulation (XGM) [3]minimum transmission of the D-NOLM is 25 dB. The D-NOLM
[4], cross-phase modulation (XPM) [5], [6], and four-waveonsists of 3 km of DSF witm, = 2.67 x 10720 m2/w,
mixing (FWM) [7]-[9] in semiconductor optical amplifiers A.z = 50 » m?, zero dispersion wavelength of 1555 nm and
(SOA's) have been demonstrated for 40 Gb/s wavelength cafispersion slope of 0.08 ps/Afkm. The total dispersion and
version. But up to now, no 40 Gb/s wavelength conversion usinglative group delay of the DSF’s in the NOLM'’s used as wave-
a nonlinear optical loop mirror (NOLM) has been reported. llength converter or demultiplexer are shown in Fig. 2(a) and (b),
fact, NOLM based on silica fiber has the potential of attainingspectively.
terabits per second switching operation due to the ultrafast opThe control pulses for the WC-NOLM at 1546.8 r(rk; ),
tical nonlinearity [10]-[13]. Reference [14] has demonstrataghich are generated by a gain-switched DFB-LD followed by
that the pulsewidths can be maintained, and even comprespef for compression, are externally modulated by a LiybO
when the walkoff between the continuous-waves (CW's) arntensity modulator at 10 Gb/s using2& — 1 pseudorandom
the control pulses is small. So, wavelength conversion bagsitlsequence (PRBS) before passive multiplexing to 40 Gb/s.
on an NOLM will be suitable for return-to-zero (RZ)-basedFig. 3 shows the eye diagrams of control signals at 10 Gb/s and
networks. In this paper, we will realize wavelength conversiahe multiplexed signals at 40 Gb/s. Because the bandwidth of
based on an NOLM at 40 Gb/s, and investigate the walkafie optical/electrical converter in the sampling oscilloscope is
effect when the NOLM is used as a wavelength conversion enly 32 GHz, the pulsewidth shown in Fig. 3 is wider than 8.2
demultiplexing media. ps. The control signals are coupled into the WC-NOLM using
optical coupler (OC) 1. The CW lightwave at the center wave-
[I. EXPERIMENT lengthA, generated by an external-cavity laser (ECL) is injected

The full-width at half-maximum (FWHM) pulsewidth of the|nto the WC-NOLM using OC2. The tunable optical filter (TOF)

i with 1.6 nm bandpass at the output of the WC-NOLM is used
control pulse measured by an autocorrelator is 8.2 ps, so {he .
) . . 0 suppress the control signals. The average power of the control

duty cycle is 0.33. In this case, the nonlinear phase of the coun- . ) .
terpropagating wave will have some effect on the ER of the Co.ﬂgnals into OC1 is 19 dBm, and the power of the CW lightwave
propagating into OC2 is 12 dBm. The converted signals at 40 Gb/s are am-

verted signal. Like nonreturn-to-zero (NRZ), this problem can... L
easily be solved by adjusting the state of polarization controllBrmeOI to the average power of 12 dBm, then they are injected

inthe NOLM [11], [14]. In order to obtain a switching ef'ficiencyInto the D-NOLM. The control pulses for the D-NOLM are also

of 1, the peak power of the control pulse should be 242 mW;olptamed from a gain-switched laser followed by a dispersion

means an average power of about 40 mw. The output owercg pensated fiber (DCF) (compressed pulsewdild ps and
gep ' putp center wavelengths = 1553.0 nm) and injected into D-NOLM

_ _ _ from OC4. The average optical power of the control pulses for
Manuscript received September 28, 1999; revised March 31, 2000. _ demultiplexing the optical time division multiplexed (OTDM)
The authors are with the Research Center COM, Technical University of Den- Isis 18 dBm: th lati imina b h L oul

mark, Building 349, Lyngby DK-2800, Denmark (e-mail: jy@com.dtu.dk). signaisis m; the relative timing between the control pulses

Publisher Item Identifier S 0733-8724(00)05770-4. and the converted signals is adjusted by using a variable optical

. INTRODUCTION

0733-8724/00$10.00 © 2000 IEEE



1002 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 7, JULY 2000

19dBm

10Gbit/s
GS DFB-LD
40Gbit/s

|

L e

| . - GS DFB-LD2
e erisd [)(E H)(J,] |7_
10GHz MOD MUX % 1553 Onm
5 OC2 22 )
1546.80nm 1 FWHM 10ps
FWHM 8ps 18dBm |
AN
i
ocr () 158
[ g — PC

D-

NOLM /

o 12dBm
ccL pc EDFA l

N
me_

ro

Fig. 1. Experimental setup. OC: optical coupler. EDFA: erbium-doped fiber amplifier. WC-NOLM: wavelength conversion-NOLM. D-NOLM:
demultiplexing-NOLM. PC: polarization controller. TOF: tunable optical filter. ECL: external-cavity laser. DCF: dispersion compensatioM@Ber

LiNbO3 intensity modulator. PPG: pulse pattern generator. MUX: passive 10—40 Gb/s multiplexer. BER: bit-error rate detector. GS DFB LD: gain-switched
distributed-feedback laser diode.
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®) B. Experimental Results

Fig. 4 shows some typical optical eye diagrams of the con-
Fig. 2. Relative total group delay and total dispersion as a function verted signals at different wavelengths. Almost the same eye
signal V\_/avelength measured in the two DSF‘S. (a) DSF used for Wavelen@ﬁagrams are obtained at converted wavelengths from 1540 to
conversion. (b) DSF used for demultiplexing. . . . . .
1563 nm. Fig. 5 shows the numerical simulation results with
FWHM of control pulse of 8.2 ps; the numerical model is de-
delay line. The TOF2 with 1.6 nm bandpass at the output of teeribed in [14]. From Fig. 5, we can see that the pulsewidths
D-NOLM is used to suppress the control sigfia). All OC’s  of the converted signals are smaller or equal to that of the con-
are2 x 2 couplers with power coupling ratios of 50 : 50%. trol pulses when the CW wavelengths are chosen from 1541 to
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Fig. 4. Optical eye diagrams of converted signals at different wavelengths (20 ps/div). (a) 1535 nm, (b) 1540 nm, (c) 1557 nm, (d) 1563 nm, and (e) 1569 nm

1561 nm, and the variation of the pulsewidths in this range is

36 T T T T T T

2] ) "] small. When the CW wavelength is 1561 nm, the walkoff time
: is 11.8 ps. The reason for the pulsewidth compression of the
7 . i converted pulses is explained in [14]. Because the pulsewidth
—_ 2 ' : : e of the converted signal is maintained or compressed, there is no
\8., 20 1 . 1 intersymbol interference (ISI) as shown in Fig. 4(b)—(c). Even
S 6l v , B ] when the CW wavelength is 1563 nm, in which case the walkoff
I - _' time is 17.7 ps, ISI cannot be observed, as shown in Fig. 4(d).
E 1] . ' . i This is because the pulsewidth of the converted signals is only
8+ . T 1 a little wider than that of the control pulses, and the duty cycle
4 . 4 of the control signals is small. The converted signals at 1535
0 and 1569 nm are severely broadened because of a large walkoff

130 1535 140 1s4s  1ss0  1sss 10 1ses ss0 between the control signals and CW lightwaves, which leads to
Wavelength (nm) an obvious ISl in the converted signals, as shown in Fig. 4(a) or
(e).
Without wavelength conversion means that the WC-NOLM is

Fig. 5. Pulse FWHM for numerical simulation as a function of CW . .
wavelength. The FWHM pulsewidth, center wavelength, and peak power Rpt used, but we demultiplex the 40 Gb/s OTDM signal (1546.8

control pulses are 8.2 ps, 1546.8 nm and 150 mW, respectively. nm) using the control pulses (1553.0 nm). The eye diagram of
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Fig. 8. BER versus received power for control signal (back-to-back) and
converted signals.

OTDM signal without wavelength conversion (40 Gb/s back to
back). The penalty is due to a large walkoff between the con-
trol pulses (1553.0 nm) and thex 10 Gb/s signals (1546.8
nm). The power penalties are dependent on the wavelengths of
2 the converted signals, because there is a different walkoff time
) when signals at different wavelengths are demultiplexed in the
D-NOLM. Because there exists a timing jitter in both control
Fig. 6. Optical eye diagrams of demultiplexed signals (20 ps/div). (a) 1548ulses and signals, and the D-NOLM uses the interaction be-
nm (back to back without wavelength conversion) and (b) 1557 nm (aftgyeen control pulses and signals through the optical Kerr effect,
wavelength conversion). L . . . S . .
timing errors result in fluctuations in the switching efficiency
and thus degradation of the BER performance. One effective
o ' ' ' ' ' way to improve the jitter tolerance is to take advantage of the
walkoff between control pulses and signals. Reference [18] has
found that a proper walkoff time can suppress the BER degrada-
tion due to timing jitter, and the optimal walkoff depends on the
value of pulse timing jitter. The eye diagrams in Fig. 4(b)—(e)
are almost the same, demonstrating that the converted signals
at 40 Gb/s in Fig. 4(b)—(e) have almost the same performance.
From Fig. 8, we can see that when the walkoff time between
the control pulses and signals is 2 ps, then the power penalty is
smallest and equal to 4 dB at BER1Ef?. It shows that the op-
timal walkoff is 2 ps. When the walkoff is 0 ps and 2.7 ps, there
1550 1552 1554 1556 1558 1560 is almost the same power penalty, and that power penalty is ap-
proximately 6 dB at BER of0—°. When the walkoff is 7 ps and
15 ps, error floors appear at BER'so10~7 and10~¢, respec-
Fig. 7. Optical spectrum at 1557 nm after wavelength conversion atively, although the eye diagrams of the converted signals at the
demultiplexing. wavelengths of 1540 nm and 1563 nm are very clear. It shows
that the walkoff plays an important role when the NOLM is used
the demultiplexed signal is shown in Fig. 6(a). The BER perfoas a demultiplexer. Because of the SNR reduction of converted
mance (40 Gb/s back to back) is measured and shown in Figsinals, the tolerance of the walkoff time will be reduced when
As an example, Fig. 6(b) shows the eye diagram at 1557 nm aftee OTDM signals are demultiplexed by the D-NOLM. Even
wavelength conversion and demultiplexing. The clean eye di&there is a walkoff time of 7.5 ps between the original OTDM
gram of the de-multiplexed signals can be seen. Fig. 7 shows slignals (1546.8 nm) and control pulses (1553.0 nm), the original
optical spectrum around 1557 nm after wavelength conversi®TDM signals can be demultiplexed, however, after wavelength
and demultiplexing in the time-domain; a sidemode suppressioonversion, the OTDM signals with a walkoff time of 7 ps can
ratio (SMSR) larger than 30 dB is obtained. The second peakriat be demultiplexed and there is an error floor at BERM®f" .
Fig. 7 is the remaining control pulse at 1553 nm because of the
finite suppression of the optical filter.
Fig.8 shows further the bit-error rate (BER) performance.
represents the walkoff time between control pulses and signaldVe have demonstrated 40-Gb/s RZ wavelength conversion
in D-NOLM. There is a power penalty of 3.2 dB for the 40-Gh/dased on an NOLM. Because the pulsewidths of the converted

Intensity [10dB/div], a. u.

Wavelength (nm)

I1l. CONCLUSION
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signals can be maintained and even compressed, there is no 5] K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the non-

ident 1S in the converted signals at center wavelengths from linear fiber loop mirror as an ultrafast all-optical demultiplexdt|éc-
. . tron. Lett, vol. 26, no. 14, pp. 962-964, 1990.
1540 nm to 1561 nm. The pulsewidth of the converted S|gnaI§16] P. A. Andrekson, N. A. Olsson, J. R. Simpson, D. J. Digiovanni, P.

can be maintained even if the walkoff time is 11.8 ps when the ~ A. Morton, T. Tanbun-Ek, R. A. Logan, and K. W. Wecht, “64 Gb/s
CW Wavelength is 1561 nm. However, when the NOLM is used all-optical demultiplexing with the nonlinear optical-loop mirrafEE
. Do . Photon. Technol. Lettvol. 4, pp. 644-647, 1992.
as a demultiplexer and when the walkoff time is larger than 4 ps,
there is an obvious effect on the demultiplexed signals, which
shows that the walkoff plays a more important role when the
NOLM is used as a demultiplexer.
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