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Abstract—All-optical wavelength conversion based on a non-
linear optical loop mirror (NOLM) at 40 Gb/s is demonstrated for
the first time. The effect of walkoff time between control beam and
signal beams is investigated when the NOLM is used as an all-op-
tical wavelength converter or an all-optical demultiplexer.

Index Terms—All-optical demultiplexing, cross-phase modu-
lation (XPM), nonlinear optical loop mirror (NOLM), optical
time domain multiplexing (OTDM), wavelength conversion,
wavelength-division multiplexing (WDM).

I. INTRODUCTION

WAVELENGTH conversion has been suggested as a
method of enhancing routing options and network

properties like reconfigurability, nonblocking capability and
wavelength reuse [1], [2]. Cross-gain modulation (XGM) [3],
[4], cross-phase modulation (XPM) [5], [6], and four-wave
mixing (FWM) [7]–[9] in semiconductor optical amplifiers
(SOA’s) have been demonstrated for 40 Gb/s wavelength con-
version. But up to now, no 40 Gb/s wavelength conversion using
a nonlinear optical loop mirror (NOLM) has been reported. In
fact, NOLM based on silica fiber has the potential of attaining
terabits per second switching operation due to the ultrafast op-
tical nonlinearity [10]–[13]. Reference [14] has demonstrated
that the pulsewidths can be maintained, and even compressed
when the walkoff between the continuous-waves (CW’s) and
the control pulses is small. So, wavelength conversion based
on an NOLM will be suitable for return-to-zero (RZ)-based
networks. In this paper, we will realize wavelength conversion
based on an NOLM at 40 Gb/s, and investigate the walkoff
effect when the NOLM is used as a wavelength conversion or
demultiplexing media.

II. EXPERIMENT

The full-width at half-maximum (FWHM) pulsewidth of the
control pulse measured by an autocorrelator is 8.2 ps, so the
duty cycle is 0.33. In this case, the nonlinear phase of the coun-
terpropagating wave will have some effect on the ER of the con-
verted signal. Like nonreturn-to-zero (NRZ), this problem can
easily be solved by adjusting the state of polarization controller
in the NOLM [11], [14]. In order to obtain a switching efficiency
of 1, the peak power of the control pulse should be 242 mW; it
means an average power of about 40 mw. The output power of
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the erbium-doped fiber amplifier (EDFA) in our experiment can
satisfy this requirement.

A. Experimental Setup

The experimental setup is shown in Fig. 1. It consists of two
NOLM’s, one is used for wavelength conversion (WC-NOLM),
and the other is used for all-optical demultiplexing (D-NOLM)
[15] The WC-NOLM consists of 3 km of dispersion shifted
fiber (DSF) with a nonlinear index m /W,
an effective cross sectional area m , zero dis-
persion wavelength of 1550.7 nm and dispersion slope of 0.08
ps/nm /km. The on-off ratio defined [16] between maximum
and minimum transmission of the NOLM is 30 dB without the
control signal [14]. The on-off ratio between maximum and
minimum transmission of the D-NOLM is 25 dB. The D-NOLM
consists of 3 km of DSF with m /W,

m , zero dispersion wavelength of 1555 nm and
dispersion slope of 0.08 ps/nm/km. The total dispersion and
relative group delay of the DSF’s in the NOLM’s used as wave-
length converter or demultiplexer are shown in Fig. 2(a) and (b),
respectively.

The control pulses for the WC-NOLM at 1546.8 nm ,
which are generated by a gain-switched DFB-LD followed by
DCF for compression, are externally modulated by a LiNbO
intensity modulator at 10 Gb/s using a pseudorandom
bit sequence (PRBS) before passive multiplexing to 40 Gb/s.
Fig. 3 shows the eye diagrams of control signals at 10 Gb/s and
the multiplexed signals at 40 Gb/s. Because the bandwidth of
the optical/electrical converter in the sampling oscilloscope is
only 32 GHz, the pulsewidth shown in Fig. 3 is wider than 8.2
ps. The control signals are coupled into the WC-NOLM using
optical coupler (OC) 1. The CW lightwave at the center wave-
length generated by an external-cavity laser (ECL) is injected
into the WC-NOLM using OC2. The tunable optical filter (TOF)
1 with 1.6 nm bandpass at the output of the WC-NOLM is used
to suppress the control signals. The average power of the control
signals into OC1 is 19 dBm, and the power of the CW lightwave
into OC2 is 12 dBm. The converted signals at 40 Gb/s are am-
plified to the average power of 12 dBm, then they are injected
into the D-NOLM. The control pulses for the D-NOLM are also
obtained from a gain-switched laser followed by a dispersion
compensated fiber (DCF) (compressed pulsewidth10 ps and
center wavelength nm) and injected into D-NOLM
from OC4. The average optical power of the control pulses for
demultiplexing the optical time division multiplexed (OTDM)
signals is 18 dBm; the relative timing between the control pulses
and the converted signals is adjusted by using a variable optical
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Fig. 1. Experimental setup. OC: optical coupler. EDFA: erbium-doped fiber amplifier. WC-NOLM: wavelength conversion-NOLM. D-NOLM:
demultiplexing-NOLM. PC: polarization controller. TOF: tunable optical filter. ECL: external-cavity laser. DCF: dispersion compensation fiber. MOD:
LiNbO intensity modulator. PPG: pulse pattern generator. MUX: passive 10–40 Gb/s multiplexer. BER: bit-error rate detector. GS DFB LD: gain-switched
distributed-feedback laser diode.

(a)

(b)

Fig. 2. Relative total group delay and total dispersion as a function of
signal wavelength measured in the two DSF’s. (a) DSF used for wavelength
conversion. (b) DSF used for demultiplexing.

delay line. The TOF2 with 1.6 nm bandpass at the output of the
D-NOLM is used to suppress the control signal . All OC’s
are couplers with power coupling ratios of 50 : 50%.

(a)

(b)

Fig. 3. Control signal at 1546.8 nm (20 ps/div). (a) 10 Gb/s and (b) 40 Gb/s.

B. Experimental Results

Fig. 4 shows some typical optical eye diagrams of the con-
verted signals at different wavelengths. Almost the same eye
diagrams are obtained at converted wavelengths from 1540 to
1563 nm. Fig. 5 shows the numerical simulation results with
FWHM of control pulse of 8.2 ps; the numerical model is de-
scribed in [14]. From Fig. 5, we can see that the pulsewidths
of the converted signals are smaller or equal to that of the con-
trol pulses when the CW wavelengths are chosen from 1541 to
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(c) (d)

(e)

Fig. 4. Optical eye diagrams of converted signals at different wavelengths (20 ps/div). (a) 1535 nm, (b) 1540 nm, (c) 1557 nm, (d) 1563 nm, and (e) 1569 nm.

Fig. 5. Pulse FWHM for numerical simulation as a function of CW
wavelength. The FWHM pulsewidth, center wavelength, and peak power of
control pulses are 8.2 ps, 1546.8 nm and 150 mW, respectively.

1561 nm, and the variation of the pulsewidths in this range is
small. When the CW wavelength is 1561 nm, the walkoff time
is 11.8 ps. The reason for the pulsewidth compression of the
converted pulses is explained in [14]. Because the pulsewidth
of the converted signal is maintained or compressed, there is no
intersymbol interference (ISI) as shown in Fig. 4(b)–(c). Even
when the CW wavelength is 1563 nm, in which case the walkoff
time is 17.7 ps, ISI cannot be observed, as shown in Fig. 4(d).
This is because the pulsewidth of the converted signals is only
a little wider than that of the control pulses, and the duty cycle
of the control signals is small. The converted signals at 1535
and 1569 nm are severely broadened because of a large walkoff
between the control signals and CW lightwaves, which leads to
an obvious ISI in the converted signals, as shown in Fig. 4(a) or
(e).

Without wavelength conversion means that the WC-NOLM is
not used, but we demultiplex the 40 Gb/s OTDM signal (1546.8
nm) using the control pulses (1553.0 nm). The eye diagram of
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(a)

(b)

Fig. 6. Optical eye diagrams of demultiplexed signals (20 ps/div). (a) 1545
nm (back to back without wavelength conversion) and (b) 1557 nm (after
wavelength conversion).

Fig. 7. Optical spectrum at 1557 nm after wavelength conversion and
demultiplexing.

the demultiplexed signal is shown in Fig. 6(a). The BER perfor-
mance (40 Gb/s back to back) is measured and shown in Fig. 8.
As an example, Fig. 6(b) shows the eye diagram at 1557 nm after
wavelength conversion and demultiplexing. The clean eye dia-
gram of the de-multiplexed signals can be seen. Fig. 7 shows the
optical spectrum around 1557 nm after wavelength conversion
and demultiplexing in the time-domain; a sidemode suppression
ratio (SMSR) larger than 30 dB is obtained. The second peak in
Fig. 7 is the remaining control pulse at 1553 nm because of the
finite suppression of the optical filter.

Fig.8 shows further the bit-error rate (BER) performance.
represents the walkoff time between control pulses and signals
in D-NOLM. There is a power penalty of 3.2 dB for the 40-Gb/s

Fig. 8. BER versus received power for control signal (back-to-back) and
converted signals.

OTDM signal without wavelength conversion (40 Gb/s back to
back). The penalty is due to a large walkoff between the con-
trol pulses (1553.0 nm) and the Gb/s signals (1546.8
nm). The power penalties are dependent on the wavelengths of
the converted signals, because there is a different walkoff time
when signals at different wavelengths are demultiplexed in the
D-NOLM. Because there exists a timing jitter in both control
pulses and signals, and the D-NOLM uses the interaction be-
tween control pulses and signals through the optical Kerr effect,
timing errors result in fluctuations in the switching efficiency
and thus degradation of the BER performance. One effective
way to improve the jitter tolerance is to take advantage of the
walkoff between control pulses and signals. Reference [18] has
found that a proper walkoff time can suppress the BER degrada-
tion due to timing jitter, and the optimal walkoff depends on the
value of pulse timing jitter. The eye diagrams in Fig. 4(b)–(e)
are almost the same, demonstrating that the converted signals
at 40 Gb/s in Fig. 4(b)–(e) have almost the same performance.
From Fig. 8, we can see that when the walkoff time between
the control pulses and signals is 2 ps, then the power penalty is
smallest and equal to 4 dB at BER of . It shows that the op-
timal walkoff is 2 ps. When the walkoff is 0 ps and 2.7 ps, there
is almost the same power penalty, and that power penalty is ap-
proximately 6 dB at BER of . When the walkoff is 7 ps and
15 ps, error floors appear at BER’s of and , respec-
tively, although the eye diagrams of the converted signals at the
wavelengths of 1540 nm and 1563 nm are very clear. It shows
that the walkoff plays an important role when the NOLM is used
as a demultiplexer. Because of the SNR reduction of converted
signals, the tolerance of the walkoff time will be reduced when
the OTDM signals are demultiplexed by the D-NOLM. Even
if there is a walkoff time of 7.5 ps between the original OTDM
signals (1546.8 nm) and control pulses (1553.0 nm), the original
OTDM signals can be demultiplexed, however, after wavelength
conversion, the OTDM signals with a walkoff time of 7 ps can
not be demultiplexed and there is an error floor at BER of .

III. CONCLUSION

We have demonstrated 40-Gb/s RZ wavelength conversion
based on an NOLM. Because the pulsewidths of the converted
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signals can be maintained and even compressed, there is no ev-
ident ISI in the converted signals at center wavelengths from
1540 nm to 1561 nm. The pulsewidth of the converted signals
can be maintained even if the walkoff time is 11.8 ps when the
CW wavelength is 1561 nm. However, when the NOLM is used
as a demultiplexer and when the walkoff time is larger than 4 ps,
there is an obvious effect on the demultiplexed signals, which
shows that the walkoff plays a more important role when the
NOLM is used as a demultiplexer.
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