2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Transmission Performance of Chirp-Controlled Signal by Using Semiconductor Optical Amplifier

Toshio Watanabe, Member, IEEE Norio Sakaida, Hiroshi Yasaka, Member, IEEE Fumiyoshi Kano, Member, IEEE and Masafumi Koga Member, IEEE

Page 1069.

Abstract:

We examine the fiber transmission performance of the optical signal whose chirp is controlled by utilizing phase modulation in semiconductor optical amplifier (SOA) with both simulations and experiments. This chirp control technique converts a positive chirp created by electroabsorption (EA) modulator into negative chirp, which reduces the waveform degradation due to the chromatic dispersion in transmission over standard single-mode fiber (SMF). It also provides an optical gain that is sufficient to compensate the insertion loss of the EA modulator. We investigate how the chirp control is affected by the input power to the SOA and the carrier lifetime of the SOA. As the SOA input power increases, the negative chirp becomes large, while the waveform is largely distorted due to gain saturation. However, the waveform distortion at high SOA input powers can be shaped by using a frequency discriminator. The acceleration of the carrier lifetime also reduces the waveform distortion due to gain saturation. We demonstrate that the chirp control technique is effective even for a high bit rate optical signal up to 10 Gb/s, when the carrier lifetime is expedited by optical pumping.

References

  1. T. Ido, S. Tanaka, M. Suzuki, M. Koizumi, H. Sano and H. Inoue, "Strained InGaAs/InAlAs MQW electro-absorption optical modulators with large bandwidth and low driving voltage", IEEE Photon. Technol. Lett., vol. 6, pp.  1207-1209, Oct.  1994.
  2. K. Wakita, I. Kotaka, K. Yoshino, S. Kondo and Y. Noguchi, "Polarization-independent electroabsorption modulators using strain-compensated InGaAs-InAlAs MQW structures", IEEE Photon. Technol. Lett., vol. 7, pp.  1418-1420, Dec.  1995 .
  3. K. Morito, R. Sahara, K. Sato and Y. Kotaki, "Penalty-free 10 Gb/s NRZ transmission over 100 km of standard fiber at 1.55 µ m with a blue-chirp modulator integrated DFB laser", IEEE Photon. Technol. Lett., vol. 8, pp.  431-433, Mar.  1996.
  4. Y. K. Park, T. V. Nguyen, P. A. Morton, J. E. Johnson, O. Mizuhara, J. Jeong, L. D. Tzeng, P. D. Yeates, T. Fullowan, P. F. Sciortino, A. M. Sergent, W. T. Tsang and R. D. Yadvish, "Dispersion-penalty-free transmission over 130-km standard fiber using a 1.55-µ m, 10-Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp", IEEE Photon. Technol. Lett., vol. 8, pp.  1255 -1257, Sept.  1996.
  5. H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsiji, "NRZ operation at 40Gb/s of a compact module cantaining an MQW electroabsorption modulator integrated with a DFB laser", IEEE Photon. Technol. Lett., vol. 9, pp.  572 -574, May   1997.
  6. M. Ishizaka, M. Yamaguchi, J. Shimizu and K. Komatsu, "The transmission capability of a 10-Gb/s electroabsorption modulator integrated DFB laser using the offset bias chirp reduction technique", IEEE Photon. Technol. Lett., vol. 9, pp.  1628-1630,  Dec.  1997.
  7. T. Kawai, M. Teshima, H. Yasaka, M. Kobayashi and M. Koga, "Wavelength selectable photonic transport system applicable to unequal channel spacing", in Proc. ECOC'98,.
  8. F. Dorgeuille and F. Devaux, "On the transmission performances and the chirp parameter of a multiple-quantum-well electroabsorption modulator", IEEE Quantum Electron., vol. 30, pp.  2565-2572, Nov.  1994 .
  9. J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. A. Kimber, D. J. Moule and E. J. Thrush, "Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator", Electron. Lett., vol. 30, no. 14, pp.  1168-1169, 1994.
  10. K. Yamada, K. Nakamura, Y. Matsui, T. Kunii and Y. Ogawa, "Negative-chirp electroabsorption modulator using low-wavelength detuning", IEEE Photon. Technol. Lett., vol. 7, pp.  1157-1158, Oct.  1995.
  11. T. Watanabe, N. Sakaida, H. Yasaka and M. Koga, "Chirp control of optical signal using phase modulation in semiconductor optical amplifier", IEEE Photon. Technol. Lett., vol. 10, pp.  1027-1029, July  1998.
  12. G. P. Agrawal and N. A. Olsson, "Amplification and compression of weak picosecond optical pulses by using semiconductor-laser amplifier", Opt. Lett., vol. 14, no. 10, pp.  500-502, 1989.
  13. F. Koyama and K. Iga, "Frequency chirping in external modulators", J. Lightwave Technol., vol. 6, pp.  87-92, Jan.  1988.
  14. K. Inoue, "Semiconductor laser amplifiers,"in Optical Amplifiers and Their Applications, S. Shimada, and H. Ishio, Eds. New York: Wiley, 1994, ch. 3.
  15. T. Watanabe, H. Yasaka, N. Sakaida and M. Koga, "Waveform shaping of chirp-controlled signal by semiconductor optical amplifier using Mach-Zehnder frequency discriminator", IEEE Photon. Technol. Lett., vol. 10, pp.  1422 -1424, Oct.  1998.
  16. M. J. Manning, D. A. O. Davies, D. Cotter and J. K. Lucek, "Enhanced recovery rates in semiconductor laser amplifiers using optical pumping", Electron. Lett., vol. 30, no.  10, pp.  787-788, 1994.
  17. F. Devaux, Y. Sorel and J. F. Kerdiles, "Simple measurement of fiber dispersion and chirp parameter of intensity modulated light emitter", J. Lightwave Technol. , vol. 11, pp.  1937-1940, Dec.  1993.
  18. M. Koga, A. Watanabe, T. Kawai, K.-I. Sato and Y. Ohmori, "Large-capacity optical path cross-connect system for WDM photonic transport network", IEEE J. Select. Areas Commun., vol. 16, July  1998.