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WKB Analysis of Bend Losses in Optical Waveguides

William Berglund and Anand Gopinath

Abstract—A more complete Wentzel-Kramers—Brillouin plane. With large curvature each reflection on the outer wave-
(WKB) analysis of bend losses is given for a circularly curved guide boundary, there is some loss of the guided field, the mag-
waveguide. Using the WKB approximation with a conformal iy ,qe of this leakage loss is dependent upon the imaginary part
transformation of a curved optical waveguide, is shown to give f 4 th tor in the directi f quided
more accurate bend loss results. 0 3, the wavevector in the direction o guided wave propaga-

tion. The curvature loss for a 9®end with circular radius of

Index  Terms—Bend losses, dielectric  waveguides, curvatureR, will be given in decibels by

Wentzel-Kramers—Brillouin (WKB) method.

4.3427 Ry Im(3) dB. 1)
|. INTRODUCTION
NUMBER of methods have been devised for the analf_orz;\strjmghthsymmgt;l_cgl slflzlbdvc\i/gvegw_dhe_thde e|genvalu_(ej equa-
ysis of losses that occur in curved optical wavegui pn for 5, with semi-infinite claddings with index; , an guide

structures. Heiblum and Harris [1] found that conformallfAY€" With indexn; and widthd, is thus given by the following

transforming a curved waveguide into a straight structufiSPersion relationship:
was a powerful and insightful method of analysis for curved
waveguide loss. Using the effective index method (EIM) in ky/(n —n3)d—2¢ =nn (2a)
the waveguides vertical direction, a two-dimensional (2-D)
analysis of the conformally transformed index can be carrig¢here the indexps = (5/k), k is the freespace wavenumber,
out. In their paper, they broke up the transformed region ingmd the phase relation
a series of constant index steps and applied a quantitative ge-
ometrical .WentzeI—Kramers—BnIIou|r.1_(WKB) ap_proxmaﬂop $y = tan—* [s\/(ng —n2) /(2 — n)
to determine the curvature and transition losses in these guides
due to the leaky mode structure of the transformed index. ~ where
In this paper, we carry out a more complete WKB analysis

of the transformed structure along the lines of analysis by Janta 1 TE
[2], and Gedeon [3]. They found that comparing the calculated S = na \ 2 ) (2b)
mode spectrum by the WKB method for a number of mono- N ™

tonic varying indexes, with the results of numerical calculations

showed agreement within 0.03—0.15%. This paper shows a métren, andn, are the guide indexes as shown in Fig. 1. The
ification of Heiblum-Harris analysis, using the WKB method ofoots for the eigenvalue condition (3) are real for guided waves,
[2], [3] shows excellent agreement with experimentally meavhich implieslm(3) = 0, resulting with no loss from (1) for a
sured waveguide losses; and with other computational intensgteaight waveguide. It is to be expected that the larger the radius
methods such as the method of lines (Mol) [4], scalar finite-elef curvature for a waveguide bend, the closer its eigenvalue con-
ment (SFEM) [5], vector finite-difference method [6], effectivadition for 3 will match the condition given in (2), with a smaller

index, and conformal based methods [7], [8]. imaginary component gf.
We use the notation E-Mode and M-Mode to denote the trans-
[I. THEORY verse electric and transverse magnetic boundary conditions of

et(l}e propagating optical fields for the two-dimensional bound-
) 3. dries approximation when using EIM, and transverse electric
fields can be modeled by the EIM [9] as a curved two dlmerZTE) and transverse magnetic (TM) notation for the boundary

sional wavegu@g structure in they plane. ETOth TI.E and TM conditions that the effective fields satisfy vertically in the ridge
boundary conditions are used along the dielectric boundaries . . .
. ) L structure. The optical field§Ey,, Hy) and (Eg, Hg) in the
normal to ther axis, to determine the effective index of the struc- . .
: . ) . : : two-dimensional (2-D) model can be constructed from scalar
ture with varying thicknesses. Unlike an ideal straight wave- . .
qtentlals terms taken from thecomponents of the respective

guide section where the phase relation for the guided oImié)ﬁ‘ree—dimensionaE andH fields. The WKB bend model of the
field can be maintained, in a curved guide this is not possible as '

the optical field propagates along the circular curve inhe waveguide is constructed in the following steps listed in Table I.
P bropag 9 HereZ, is the free space impedandésis the free space wave

number, and is the effective index of refraction in the—y

A curved planar ridge waveguide structure for weakly guid
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agating scalar fields can be derived from the following 2-D

n2_ |t Euler-Lagrangian equations (6a) and (6b)
n ny
oLF  _ OLF
! n(u) exp( WA — — Vi ——=——=0 6a
e 2 9Bz ' A(V.EZ) (©2)
Conformal Mapping BLE — BLE
— V — = (. 6b
\ ) / OH: " 3(V.H?) o

pk=n3 When the action integral&® andI* remain invariant under
proper coordinate and field transformations in they plane,
then the Euler—Lagrangian relations (6a), (6b) can be used to
find the resulting optical field equations.

Heiblum and Harris [1] found for a two-dimensional wave-
guide analysis that a simple conformal transformation incthe
plane could map a circularly curved waveguide into a straight
section, resulting in a separable differential equation for (3),

N2(R/R2

n1

n1(R1/R2)

I
I
!
1

u given by the following conformal mapping:
a=-R2 Ln{R2/R1) X0 b=0 ¢=R2 Ln{nz/n{)
-x0=R2 Ln(n2/n3) z .
w=Ryln ) R> = Outer Radius of Curvature
2
Fig. 1. Conformal mapping of effective index versus transformed transversdhere
u-coordinate. s=a+jy and w=u+ jv. @)
TABLE | A Jacobian term from the transformation (7) modifies the effec-
EIM MopELED RiDGE tive index of the guide as a function of thecoordinate only
WAVEGUIDE
2
1. Vertical Boundary TE Case(a) TM Case(b.) 7= (=,y) _ f — exp 2_“ 8)
Conditions Find nrg(r) by EIM Find nu(r) by EIM h a(u U) dw Ry :
Ridge Structure ’
2. Horizontal 2-D Bound: M-Mode E-Mode . .
°nz%102diﬁons°un g However, the conformal transformation of they plane into
3. E}gmf’t‘_nagrgﬁcbfield 7 jZo(éx’V',H,) E =E,: the complexu—v plane breaks the invariance of the action inte-
uations {>a,l M= i . . . . .
Funda,?,ema] Scalar Fields | _ Aniz k A= JEXVE, gral in the potential term in the Lagrangian (4). The key point
(Ez and Hz) Hy =f1' ‘ , 220 k for the validity of conformal method for a bend loss analysis as
V,~(nTV,H,)+k2H, =0| V;E, +k i E, =0 done by Heiblum and Harris [1], is that this invariance is ap-
i (3a) (30)  proximately invariant in the neighborhood of the waveguiding

region, where the Jacobian of the conformal transformation (8)
satisfy respective M-Mode and E-Mode polarization boundat§ near unity. The resulting wave equations and boundary con-
conditions in thez—y plane. The vector componenfis andH.  ditions for this transformation from the Euler-Lagrangian rela-
serve as potentials for the fundamental 2-D scalar wave eqtigns are valid to a good approximation [10], when centered in

tions in the EIM approximation. the region where the coordinate= 0, and wherdu| < Ry/2.
These scalar equations wave (3a) and (3b) can be derivadther analysis of the conditions and ranges that a conformal
from the following 2-D action integrals [10]: transformation is valid, needs to developed, and will be given in

a later paper.
. _ - - Under the conformal transformation in thewy plane the
1" = / (VeEL - VB, — k*npyEIE.) dzdy  (43)  scalar fields and action integrals transform as follows:

1 = _
™ — / <TVtH;f -ViH. - k2H§HZ> dedy (4b) E.— E.=E.

I - I'E = / (ViEL - ViE. — K*niyJELE.) dudv

transform as scalar fields (9a)

where the Action Integralg”, and/* can be expressed as

(9b)

I¥ = / LE(E.,E:, NV E. NV EY) de dy (5a) M M= / <2LVQH; ViH, — kQJH;HZ) du dv.
nTE

™M= / LM(H., H* VH.,V,H)dedy  (5b) (9¢)

With the conformal transformation (7) the circularly curved
whereL” andL? are the Lagrangian densities which are funovaveguide is now a straight section, the Euler—Lagrangian
tions of £, and H.. The equations of motion (3) for the prop-equations (6a), (6b) to a good approximation give the following
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separable differential equations and boundary conditions in thieder the conformal transformation (11), (12), one can deter-

transformedu-v plane where mine the eigenvalue condition far by the WKB method. Be-
cause of the leaky nature of the transformed index for values of
E.(u,v) = E.(u)exp(—jfv) 10 thew coordinate greater thaf, In(ns/n1 ), the eigenvalue con-
<Hz(u, v) = H.(u)exp(—jfv). ( dition for 8 will have both real and imaginary parts. The imagi-

nary part of3 gives the loss due to curvature (1), transition losses
can be approximated by (16) for the mode mismatch of fields
at junctions between straight and circularly curved sections of

E-Mode Case: waveguide. With a smaller radius of curvature, the maximum
d?E, 5 o 2 ) of the leaky mode will be shifted more outward with respect
du2 + <k oM eXP<_> - ) E.=0. to the straight guide, and result in greater mode mismatch and

(11a transition loss. Waveguide offsets between straight and curved
waveguide sections can be calculated to minimize these losses.

M-Mode Case: ,
di <2LdHZ> + <k2 exp<2—u> - %) H,=o. Transition Loss(dB}= 101og;
u \npy du Ry nhE 5
(11b) J o B ) B ) du
; - : Je ‘E,gl)(u)r du [~ ‘E,@(u)r du
At a discontinuityw = ug for n(w), (11a), (11b) satisfy the —oo —oo
following boundary conditions: where
n3
B (ug)|* =0 c—R21n<n1> . (16)
E-Mode{ dE.(u,)|" (12a) S _
{ du =0 For the example of TM polarization in a ridge waveguidié(w)
H. ()|t =0 is the E-Mode optical potential for the field in the circularly
S i curved waveguide, an8?(«) is defined for the straight wave-
M—Mode{ 1 dH.(u,) -0 (12b) guide. The upper limit of integration = R, ln(nz/n1), in the
ngp  du | integral is defined by the outer turning point, where the WKB
field becomes radiative in Fig. 1. The integral (16) can be per-
where we definef(x,)|T = f(zF) — f(z;), and f(z}) = formed numerically by interpolating the WKB fields across the
limg—5, f(x) forz > z,. classical turning points as shown in Fig. 2.
The WKB approximation for the fields is acceptable when
IIl. WKB A NALYSIS condition (15) is satisfied, this is true everywhere except for

very small values for the radius of curvatui&, which cor-
'fesponds to very high loss, and for very large values ofithe
coordinate. At step discontinuities of the index at poiats;

2 —RyIn(R2/R,) andb = 0 in Fig. 1, a plane wave treatment of

—f + kX (z)p = 0. (13) the WKB fields (17) in the neighborhood of the pointis used [2],

dx see (17a)—(17d) at the bottom of the page. This approximation
With the following approximate solutions (see (14a) and (14Myith the boundary conditions from (12), the WKB connection
at the bottom of the page). With the requirement that formula [11] at the turning pointsy = —R»In(n2/n3), and

¢ = Roln(ns/nqy) with the proper outward radiative boundary

dk conditions (17d), results in the following eigenvalue condition

e
() da <1 (15)  for :

WKB Method [11] is used to solve the second-order diffe
ential equation

1 E-Modes

for the WKB approximation to be valid. First letS = na\ 2 (18)
Fig. 1 illustrates how the step index change of the curved slab <n_1> M-Modes

guide is modified under the conformal transformation. Using the

equations and boundary conditions derived for the scalar fieldisd definens = 3/k, and waveguide width = Ry — R;.

kl o P <tj / k(e) ds) if k2(z) >0 (14a)
@~ 1 .
) exp <f/a k(g) ds) if k2(z) <0, and k2(z) = —r3(z) (14b)
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n(u) exp(WR,)
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Fig. 2. Interpolated WKB field with conformal bend index versus transverse

u-coordinate.

Then define integral (see (19a) and (19b) at the bottom of t

next page.)

A. WKB Eigenvalues Condition

(3 —n3) (144 exp(—2l4))
(n3 —n3) (1- %exp(—21“bc)) .

tan(K — ¢1) = S (20)
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For

n3 < &712, K =Ky (21a)
R,

inner phase term

¢ =tan~! (21b)
(527 )
For the whispering gallery mode case
ng > &7127 K = Kaxg (22&)
Iy
and
_T 1|15 -x _
¢1 = 1 + tan [2 <S+X> exp( 21“%0)}
where
2
(-2(x))
(22b)

The main difference of the eigenvalue condition given in (20)
rom the results given in [1] is in the imaginary loss term. An
Qpansion of the WKB eigenvalue condition given in terms of

the tunneling integrdTl',. (19b), gives a smaller attenuation term

than from the result given in [1], by a factor of one half. The

WAKB eigenvalue condition for large radius of curvature reduces

to the straight waveguide eigenvalue condition (2). The phase

term (21b) for the whispering gallery case is more complete
whenngz > (R;/R3)n2, accounting for the effects of the buried
inner boundary att = —R, In(R»/R;) for the curved guide.

.um(u) foru < a (17a)
Beos(/, bule) de — ¢) fora <u<b (17b)
E. _ —ipv kgl(u) w
(U,, U) c Cexp(— fb Ii[(f':) d{-:) Dexp(fb Ii[(f:‘) df':) forb < u < c (17C)
() )
Eexp(—j [, ki(e) de) for u > ¢ outgoing wave (17d)
/{}I(U,)
Koy = / k(uydu, and k(u) = k\/ n?(u) exp(f?—“) —n} (192)
i 2

Iy = / w(u)du, and ru)= k\/ng — n2(u) exp(%) (19b)
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20 than what has been presented previously by this method. A rel-
atively simple graphical method can be used to quickly deter-

18 h ¢ =~ WKB-This Paper | |

25 75 125 175 225 275 325
bend radius, microns

Fig. 3. Comparsion of bend loss methods versus bend radius. (23a)
sin( [P k(e)de — %) —exp(/[f] r(e)de) (23b)
80 .
\ == WKB Curvature+Trans. ]%(.Z‘) K .T)
70 \ Loss - This Paper i
—&—Curvature Loss - H T w id H H :
g 0 \ Honmi] T et Y The integrals in (15a) and (15b) have the following closed-form
g 50 ~~Exp.Loss - Deri [4] [} sum solutions:
E: 40 :‘\ \ g =1
3 n=1__ [} Gaas
8 39 \\ \ n=33735 |l45km | 1.14pm Y ) %, ,
§ 20 \ \ =330 A loasGaossAs KWZJ = /ac ko 5 eXp(E) —n3 du (193.)
10 K\ Wavelength: A=1.52pm 2y
o N, — ot | (f3es( ) - n3
0 1000 2000 3000 4000 5000
bend radius, microns
2 2r 2
— /N5 exp " n3
Fig. 4. WKB and experimental bend loss result versus bend radius. 2
—n3 <COSl <n_ exp <—%))
The phase discontinuity of the fields at the point between con- 2 2
ditions (21), (22) has been greatly improved from [1], a reduced L[ na x
; . ; : ; —cos | —exp| —— (24a)
phase discontinuity still occurs at this point due to a small error g Ry
in using the connection formulas with more than one WKB so-
lution present [11]. y 2
r., = / ko n% — n% exp<Fu> du (19b)
T 2
IV. EXAMPLES
. . . 2
The eigenvalues from (16) can be determined by graphical = koRo \/n§ —n3 eXp<Fy>
means by computer programs such as Mathematica. WKB fields 2
have singularities at turning points, however one can use the va- 5
lidity condition (15) to setup matching conditions to interpolate — \/n§ — n3exp <_x>
the fields across these regions, in order to perform transition loss Ry
calculations. Comparison of bend losses from the WKB eigen- n Y
value condition (16) with other theoretical methods [4]—[8] in — N3 1n<—3 exp <_}T>
Fig. 3 shows good agreement. For instance, in Fig. 4 the WKB 2 2
results given in this paper shows better agreement than [1] for 3
the calculated curvature and transition losses in (13), (16), to the + \/<E exp <_i>> 1
experimental results for bend losses from a TE polarized curved N2 Ry
GaAs—AlGaAs ridge guide [12].
o(z2en(-5)
—In| —exp| ——
V. CONCLUSION n2 Ry
A WKB analysis of losses from curved waveguide by con- " - 2
formal transformation shows excellent agreement with experi- + <—3 exp<—F>> -1 (24b)
mental and other more computational intensive methods, better N2 2

2cos( [ k(e)de — F)

. exp(— [ k(e) de)
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i Waveguid . ; o
o 16 §\\ ot e I Transverse eveei®  mine the roots for the eigenvalue condition farand the WKB
—h— . . . . .

= 14 W e o D;z::nfe][ﬂ = \ fields can be interpolated to allow overlap integral calculations
g12 < o for transition losses and offset.
g 10 \\f\\\\\ n=;44 GaAs b<4}1m
=] n= 3. .4pum
éo 8 &\ n=335 AlpisGapssAs
S 6 APPENDIX

4 Wavelength: A=1.15ym - -

2 RN The WKB Method relies on connection formulas [11] to

0 . . , . match the asymptotic form of the solutions of (19) in the region

of the turning points wherg?(z) = 0, to (20a) and (20b)
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