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WKB Analysis of Bend Losses in Optical Waveguides
William Berglund and Anand Gopinath

Abstract—A more complete Wentzel–Kramers–Brillouin
(WKB) analysis of bend losses is given for a circularly curved
waveguide. Using the WKB approximation with a conformal
transformation of a curved optical waveguide, is shown to give
more accurate bend loss results.

Index Terms—Bend losses, dielectric waveguides,
Wentzel–Kramers–Brillouin (WKB) method.

I. INTRODUCTION

A NUMBER of methods have been devised for the anal-
ysis of losses that occur in curved optical waveguide

structures. Heiblum and Harris [1] found that conformally
transforming a curved waveguide into a straight structure
was a powerful and insightful method of analysis for curved
waveguide loss. Using the effective index method (EIM) in
the waveguides vertical direction, a two-dimensional (2-D)
analysis of the conformally transformed index can be carried
out. In their paper, they broke up the transformed region into
a series of constant index steps and applied a quantitative ge-
ometrical Wentzel–Kramers–Brillouin (WKB) approximation
to determine the curvature and transition losses in these guides
due to the leaky mode structure of the transformed index.

In this paper, we carry out a more complete WKB analysis
of the transformed structure along the lines of analysis by Janta
[2], and Gedeon [3]. They found that comparing the calculated
mode spectrum by the WKB method for a number of mono-
tonic varying indexes, with the results of numerical calculations
showed agreement within 0.03–0.15%. This paper shows a mod-
ification of Heiblum-Harris analysis, using the WKB method of
[2], [3] shows excellent agreement with experimentally mea-
sured waveguide losses; and with other computational intensive
methods such as the method of lines (Mol) [4], scalar finite-ele-
ment (SFEM) [5], vector finite-difference method [6], effective
index, and conformal based methods [7], [8].

II. THEORY

A curved planar ridge waveguide structure for weakly guided
fields can be modeled by the EIM [9] as a curved two-dimen-
sional waveguide structure in the– plane. Both TE and TM
boundary conditions are used along the dielectric boundaries
normal to the axis, to determine the effective index of the struc-
ture with varying thicknesses. Unlike an ideal straight wave-
guide section where the phase relation for the guided optical
field can be maintained, in a curved guide this is not possible as
the optical field propagates along the circular curve in the–
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plane. With large curvature each reflection on the outer wave-
guide boundary, there is some loss of the guided field, the mag-
nitude of this leakage loss is dependent upon the imaginary part
of , the wavevector in the direction of guided wave propaga-
tion. The curvature loss for a 90bend with circular radius of
curvature will be given in decibels by

Im dB (1)

For a straight symmetrical slab waveguide the eigenvalue equa-
tion for , with semi-infinite claddings with index , an guide
layer with index and width , is thus given by the following
dispersion relationship:

(2a)

where the index, is the freespace wavenumber,
and the phase relation

where

TE

TM
(2b)

Here and are the guide indexes as shown in Fig. 1. The
roots for the eigenvalue condition (3) are real for guided waves,
which implies , resulting with no loss from (1) for a
straight waveguide. It is to be expected that the larger the radius
of curvature for a waveguide bend, the closer its eigenvalue con-
dition for will match the condition given in (2), with a smaller
imaginary component of .

We use the notation E-Mode and M-Mode to denote the trans-
verse electric and transverse magnetic boundary conditions of
the propagating optical fields for the two-dimensional bound-
aries approximation when using EIM, and transverse electric
(TE) and transverse magnetic (TM) notation for the boundary
conditions that the effective fields satisfy vertically in the ridge
structure. The optical fields and in the
two-dimensional (2-D) model can be constructed from scalar
potentials terms taken from thecomponents of the respective
three-dimensional and fields. The WKB bend model of the
waveguide is constructed in the following steps listed in Table I.

Here is the free space impedance,is the free space wave
number, and is the effective index of refraction in the–
plane. The TE and TM boundary conditions are used to find
the effective indexes and for the three-dimensional
(3-D) ridge structure, these polarizations in the ridge waveguide
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Fig. 1. Conformal mapping of effective index versus transformed transverse
u-coordinate.

TABLE I
EIM MODELED RIDGE

WAVEGUIDE

(3a) (3b)

satisfy respective M-Mode and E-Mode polarization boundary
conditions in the – plane. The vector components and
serve as potentials for the fundamental 2-D scalar wave equa-
tions in the EIM approximation.

These scalar equations wave (3a) and (3b) can be derived
from the following 2-D action integrals [10]:

(4a)

(4b)

where the Action Integrals , and can be expressed as

(5a)

(5b)

where and are the Lagrangian densities which are func-
tions of and . The equations of motion (3) for the prop-

agating scalar fields can be derived from the following 2-D
Euler–Lagrangian equations (6a) and (6b)

(6a)

(6b)

When the action integrals and remain invariant under
proper coordinate and field transformations in the– plane,
then the Euler–Lagrangian relations (6a), (6b) can be used to
find the resulting optical field equations.

Heiblum and Harris [1] found for a two-dimensional wave-
guide analysis that a simple conformal transformation in the–
plane could map a circularly curved waveguide into a straight
section, resulting in a separable differential equation for (3),
given by the following conformal mapping:

Outer Radius of Curvature

where

and (7)

A Jacobian term from the transformation (7) modifies the effec-
tive index of the guide as a function of thecoordinate only

(8)

However, the conformal transformation of the– plane into
the complex – plane breaks the invariance of the action inte-
gral in the potential term in the Lagrangian (4). The key point
for the validity of conformal method for a bend loss analysis as
done by Heiblum and Harris [1], is that this invariance is ap-
proximately invariant in the neighborhood of the waveguiding
region, where the Jacobian of the conformal transformation (8)
is near unity. The resulting wave equations and boundary con-
ditions for this transformation from the Euler–Lagrangian rela-
tions are valid to a good approximation [10], when centered in
the region where the coordinate , and where .
Further analysis of the conditions and ranges that a conformal
transformation is valid, needs to developed, and will be given in
a later paper.

Under the conformal transformation in the– plane the
scalar fields and action integrals transform as follows:

transform as scalar fields (9a)

(9b)

(9c)

With the conformal transformation (7) the circularly curved
waveguide is now a straight section, the Euler–Lagrangian
equations (6a), (6b) to a good approximation give the following
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separable differential equations and boundary conditions in the
transformed - plane where

(10)

E-Mode Case:

(11a)

M-Mode Case:

(11b)

At a discontinuity for , (11a), (11b) satisfy the
following boundary conditions:

E-Mode (12a)

M-Mode (12b)

where we define , and
for .

III. WKB A NALYSIS

WKB Method [11] is used to solve the second-order differ-
ential equation

(13)

With the following approximate solutions (see (14a) and (14b)
at the bottom of the page). With the requirement that

(15)

for the WKB approximation to be valid.
Fig. 1 illustrates how the step index change of the curved slab

guide is modified under the conformal transformation. Using the
equations and boundary conditions derived for the scalar fields

under the conformal transformation (11), (12), one can deter-
mine the eigenvalue condition forby the WKB method. Be-
cause of the leaky nature of the transformed index for values of
the coordinate greater than , the eigenvalue con-
dition for will have both real and imaginary parts. The imagi-
nary part of gives the loss due to curvature (1), transition losses
can be approximated by (16) for the mode mismatch of fields
at junctions between straight and circularly curved sections of
waveguide. With a smaller radius of curvature, the maximum
of the leaky mode will be shifted more outward with respect
to the straight guide, and result in greater mode mismatch and
transition loss. Waveguide offsets between straight and curved
waveguide sections can be calculated to minimize these losses.

Transition Loss(dB)

where

(16)

For the example of TM polarization in a ridge waveguide,
is the E-Mode optical potential for the field in the circularly
curved waveguide, and is defined for the straight wave-
guide. The upper limit of integration , in the
integral is defined by the outer turning point, where the WKB
field becomes radiative in Fig. 1. The integral (16) can be per-
formed numerically by interpolating the WKB fields across the
classical turning points as shown in Fig. 2.

The WKB approximation for the fields is acceptable when
condition (15) is satisfied, this is true everywhere except for
very small values for the radius of curvature , which cor-
responds to very high loss, and for very large values of the
coordinate. At step discontinuities of the index at points,

and in Fig. 1, a plane wave treatment of
the WKB fields (17) in the neighborhood of the point is used [2],
see (17a)–(17d) at the bottom of the page. This approximation
with the boundary conditions from (12), the WKB connection
formula [11] at the turning points , and

with the proper outward radiative boundary
conditions (17d), results in the following eigenvalue condition
for :

First let
E-Modes

M-Modes
(18)

and define , and waveguide width .

if (14a)

if and (14b)
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Fig. 2. Interpolated WKB field with conformal bend index versus transverse
u-coordinate.

Then define integral (see (19a) and (19b) at the bottom of the
next page.)

A. WKB Eigenvalues Condition

(20)

For

(21a)

inner phase term

(21b)

For the whispering gallery mode case

(22a)

and

where

(22b)

The main difference of the eigenvalue condition given in (20)
from the results given in [1] is in the imaginary loss term. An
expansion of the WKB eigenvalue condition given in terms of
the tunneling integral (19b), gives a smaller attenuation term
than from the result given in [1], by a factor of one half. The
WKB eigenvalue condition for large radius of curvature reduces
to the straight waveguide eigenvalue condition (2). The phase
term (21b) for the whispering gallery case is more complete
when , accounting for the effects of the buried
inner boundary at for the curved guide.

for (17a)

for (17b)

for (17c)

for outgoing wave (17d)

and (19a)

and (19b)
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Fig. 3. Comparsion of bend loss methods versus bend radius.

Fig. 4. WKB and experimental bend loss result versus bend radius.

The phase discontinuity of the fields at the point between con-
ditions (21), (22) has been greatly improved from [1], a reduced
phase discontinuity still occurs at this point due to a small error
in using the connection formulas with more than one WKB so-
lution present [11].

IV. EXAMPLES

The eigenvalues from (16) can be determined by graphical
means by computer programs such as Mathematica. WKB fields
have singularities at turning points, however one can use the va-
lidity condition (15) to setup matching conditions to interpolate
the fields across these regions, in order to perform transition loss
calculations. Comparison of bend losses from the WKB eigen-
value condition (16) with other theoretical methods [4]–[8] in
Fig. 3 shows good agreement. For instance, in Fig. 4 the WKB
results given in this paper shows better agreement than [1] for
the calculated curvature and transition losses in (13), (16), to the
experimental results for bend losses from a TE polarized curved
GaAs–AlGaAs ridge guide [12].

V. CONCLUSION

A WKB analysis of losses from curved waveguide by con-
formal transformation shows excellent agreement with experi-
mental and other more computational intensive methods, better

than what has been presented previously by this method. A rel-
atively simple graphical method can be used to quickly deter-
mine the roots for the eigenvalue condition for, and the WKB
fields can be interpolated to allow overlap integral calculations
for transition losses and offset.

APPENDIX

The WKB Method relies on connection formulas [11] to
match the asymptotic form of the solutions of (19) in the region
of the turning points where , to (20a) and (20b)

(23a)

(23b)

The integrals in (15a) and (15b) have the following closed-form
solutions:

(19a)

(24a)

(19b)

(24b)
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