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Linear Stability Analysis of Dispersion-Managed
Solitons Controlled by Filters
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Abstract—We present a linear stability analysis of dispersion-
managed (DM) solitons controlled by inline narrow-band filters.
We show that the filters can destabilize the pulse if they are un-
suitedly located in the dispersion map, which is contrary to the
case of standard solitons in fibers with constant dispersion. We
also show that for such an instability to take place the pulse en-
ergy and the dispersion-map strength should be significantly larger
than those usually required for practical long-distance transmis-
sion. The filter-induced instability of DM solitons will be an issue
in the operation of stretched-pulse mode-locked fiber lasers.

Index Terms—Fiber ring laser, optical communication, optical
soliton, soliton control, stability analysis.

I. INTRODUCTION

ERROR-FREE transmission distances of optical-fiber
soliton transmission systems are limited by various

perturbations such as nonlinear interaction between adjacent
pulses [1], noise-induced timing jitter (Gordon–Haus effect)
[2], collision-induced frequency and time shifts in wave-
length-division multiplexed systems [3], and so on. Many of
these perturbations give shifts in soliton center frequency which
are converted to time shifts through fiber dispersion, giving rise
to bit errors if the time shifts go beyond acceptance time width
at the receiver. Periodic insertion of narrowband filters in the
transmission line can reduce the time shifts because the soliton
center frequency is attracted to and stabilized at the center
frequency of the filter [4], [5]. It is noted that the spectral width
of the pulse does not narrowed without limit by the narrowband
filter but reaches to a fixed value due to the nonlinear nature
of the soliton. If the center frequency of the filter is gradually
moved, linear dispersive radiation such as noise coexisting
with soliton pulses is attenuated by the filter, which extends the
transmission distance further more [6].

These benefits of the filter are mostly kept in dispersion-man-
aged (DM) soliton systems [7]–[9]. When pulse energy is low in
a DM system, the spectral width of the pulse is almost constant
along the fiber although the temporal width may greatly change
in accordance with the periodic change of the fiber dispersion.
In this circumstance, the effect of filters on the DM soliton trans-
mission is almost the same as that on standard solitons [7], [8].
When pulse energy is large, however, the spectral width of the
pulse changes appreciably in the dispersion-map period and the
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effect of filters becomes dependent on the filter location in the
dispersion map [10]. Furthermore, the dynamics of the pulse
under filter control may change qualitatively as the pulse en-
ergy, or the strength of DM, grows. It was recently shown that
the pulse energy may even be destabilized by the filters [10],
[11]. It is interesting to analyze at what pulse energy such in-
stability occurs and how strong the instability is in realistic DM
soliton systems.

In this paper we use a linear stability analysis to quantify how
bandpass filters can stabilize or destabilize the propagation of
DM solitons and examine the dependence of the stability on the
location of the filter in the dispersion map [12], [13].

II. A NALYSIS

The analysis is based on coupled nonlinear differential equa-
tions for pulse parameters derived by a variational procedure.
The equations in an amplifier span ,
where is an integer and is the amplifier spacing, are written
as [14]

(1a)

(1b)

(1c)

(1d)

The above equations are derived by the use of a Gaussian
ansats for the pulse

where , and are amplitude, pulse width, chirp
coefficient, frequency, temporal position, and phase of the pulse,
respectively, and are functions of the distance. The equations for

and are omitted because they are decoupled from the dy-
namics of the rest of the parameters. Equations (1a)–(1d) corre-
spond to a modified nonlinear Schrödinger equation

(2)

where , and are dispersion, nonlinearity, and loss co-
efficient which may vary with distance. Especially,alternates
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between positive and negative values in DM systems. The am-
plifier located at amplifies the pulse with a power

gain which compensates for
the fiber loss in the amplifier span just before the amplifier.

In the present analysis we assume that a control filter having
a Gaussian transfer function of the form
is inserted in the fiber at every dispersion-map period. is
inversely proportional to the square root of the filter bandwidth
and represents the strength of the filter. We also assume that the
filter is accompanied by an amplitude gain which com-
pensates for the energy loss caused by narrowband filtering. Be-
cause filters are usually positioned at the amplifier, the gain will
be provided by the amplifier as an excess gain. The Gaussian
filter transforms the pulse parameters according to

(3a)

(3b)

(3c)

(3d)

where the subscriptsin and out indicate quantities at the
entrance and the exit of the filter, respectively [15]. Equations
(1d) and (3d) determine the dynamics of the frequency.
Because does not change in the fiber as given by (1d)
and at the filter according to (3d), the
frequency is always stabilized at , the center frequency
of the filter. It is also found from (3d) that the stabilization of
frequency is more efficient when the spectral width of the pulse

is larger at the filter location.
We now examine the stability of amplitude, temporal width,

and chirp after the frequency is stabilized at . We lin-
earize (1a)–(1c) around a stationary DM soliton solution ,

, and and obtain equations for the evolution of the
small deviations , and as follows [12], [13]:

(4a)

(4b)

(4c)

We also linearize (3a)–(3c) in terms of the small deviations
of the variables ( , and ), resulting in

(5a)

(5b)

(5c)

Fig. 1. Dispersion map and amplifier location of a DM system.

Detailed expressions for the coefficients ( )
are given in Appendix. It is noted thatand must satisfy an
energy equilibrium condition at the filter

(6)

Through numerical solution of (4a)–(4c) in a unit cell of the
dispersion map together with (5a)–(5c) at the filter, we obtain a

transfer matrix describing the evolution of the deviations
, and in a unit cell. The maximum absolute value of

the three eigenvalues ( ) of the matrix determines
the stability. We take as an index
showing the magnitude of the stability. larger (smaller) than
unity indicates that the DM soliton solution is unstable (stable)
under the control by the filter.

III. N UMERICAL EXAMPLES

As a numerical illustration of the stability analysis, we con-
sider a dispersion map and amplifier arrangement as shown in
Fig. 1. The unit cell of the dispersion map consists of anoma-
lous (2.55 ps/nm/km)- and normal (2.45 ps/nm/km)-disper-
sion fibers with equal length of 100 km, with which the averaged
dispersion is 0.05 ps/nm/km. Four amplifiers are inserted in the
unit cell with a spacing of 50 km (they are inserted at , 50,
100, and 150 km in Fig. 1). One of the four amplifiers is accom-
panied by a narrowband filter. Fiber loss and nonlinearity are
0.2 dB/km and , respectively, and
are the same for the anomalous- and normal-dispersion fibers.

Fig. 2 shows variations of temporal and spectral widths of
the pulse along the fiber of DM soliton solutions having dif-
ferent energies in the absence of filters. These periodic solu-
tions were found by an iterative shooting method applied to
the reduced model derived by the variational procedure using
Gaussian ansatz. The solutions closely agree with those ob-
tained by the split-step Fourier method. Stability analysis below
is made when these DM soliton solutions are attempted to be
stabilized by bandpass filters.

Fig. 3 shows the maximum absolute eigenvalue versus the en-
ergy (at the output of amplifiers) of the pulse which the filter
attempts to stabilize for four different locations of filters. It is
found that is significantly smaller than unity only for the filter
location (or 200 km), suggesting that the pulse energy,
chirp, and width are effectively stabilized when the filter is lo-
cated near the middle of the anomalous-dispersion fiber section.
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(a)

(b)

Fig. 2. (a) Temporal width and (b) spectral width of the DM soliton solution
versus distance along the fiber in a unit cell of the dispersion map. Pulse energies
at the amplifier output are 0.2, 0.5, and 0.8 pJ. No filters are inserted.

Fig. 3. Maximum absolute eigenvalueP = max(j� j; j� j; j� j) of the
transfer matrix for�A; �� , and�C versus the pulse energy. Filter locations
arez = 0 km (solid curve), 50 km (dotted curve), 100 km (dashed curve), or
150 km (dash-dotted curve). Frequency stabilization coefficientP for these
filter locations is also shown.

When filters are placed at other amplifier locations,remains
close to unity and even becomes larger than unity for
km, indicating that the energy, chirp, and width of the pulse may
be destabilized by the filters. This is qualitatively understood by
the spectral behavior of the DM soliton solution: spectral width
of the pulse becomes decreasing function of the pulse energy at

km in Fig. 1 when the energy is sufficiently large as
shown in Fig. 4. When enhanced pulse energy leads to decreased
spectral width, the bandpass filter acts on the pulse to destabi-
lize its energy [10]. The accurate stability, however, can not be
predicted by the relation between the spectral width and energy
in the steady state. The relation only describes slow adiabatic
dynamical behavior of the pulse energy. When the strength of

Fig. 4. Spectral width atz = 0 km (solid curve), 50 km (dotted curve), 100
km (dashed curve), and 150 km (dash-dotted curve) versus pulse energy of a
DM soliton solution.

the filter is not very small, we need to use analysis as given in
the previous section. In Fig. 3, we also plot the frequency stabi-
lization coefficient

(7)

see (3d). It is shown that weaker stabilization of the amplitude
accompanies weaker stabilization of the frequency.

In Figs. 5 and 6, we show actual evolution of pulse en-
ergy obtained either by the variational analysis based on (1)
and (3) or by the numerical solution of (2) with using the
Gaussian spectral response for the filter. In each of Figs. 5
and 6, filters having 3 dB bandwidth of 1.0 nm are located
at (a): or (b) km. The excess gain is
chosen so that the relation (6) is satisfied for respective filter
location and equilibrium pulse energy. The excess gain is
adjusted slightly (within 0.2%) in the numerical solution
so that the steady-state pulse energy becomes roughly the
same for the variational and numerical analyses. Fig. 5(a)
and (b) are the results when a pulse with energy
pJ is stabilized. The initial pulse at is Gaussian with

, or
, where , and are those of the

DM soliton solution in the presence of filters with pJ.
The pulse energy is attracted to a fixed value in both Fig. 5(a)
and (b), with stronger stabilization in Fig. 5(a) than in Fig. 5(b),
which agrees with the preceding stability analysis. It is also
shown that the variational and numerical results agree well.
Fig. 6(a) and (b) are the results when a pulse with energy

pJ is attempted to be stabilized. When the filter
location is km [Fig. 6(b)], the pulse energy is not
stabilized at a fixed value, which agrees with the result of the
stability analysis where is larger than unity when
km and pJ.

In the numerical example the filter bandwidth is fixed at 1.0
nm. Qualitatively the same dynamical pulse behavior is obtained
with shorter distance scale for narrower filter bandwidths. In this
case, however, another kind of instability caused by the growth
of background radiation appears at relatively short transmission
distances. The background instability can be avoided by sliding
the center frequency of the filter, which enables us to use strong
filters. Filter-induced instability analyzed here will be more im-
portant for such circumstances.
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(a)

(b)

Fig. 5. Evolution of pulse energy when a Gaussian filter with 1-nm bandwidth
is inserted at: (a)z = 0 and (b)z = 100 km. Solid and dotted curves are
obtained by the split-step Fourier numerical method and by the variational
method, respectively. The excess gain� is chosen so that the pulse energy is to
be stabilized atE = 0:2 pJ.

It is noted here that although the filter-induced instability is
harmful in general to achieve stable long-distance pulse trans-
mission, it may be advantageously utilized in some applications
where analog information is sent by the modulation of pulse
amplitudes. Such applications include passive loop-back line
monitoring where low-index and low-frequency modulations
are imposed on the pulse train to monitor the status of individual
in-line amplifiers in a long-distance transmission line [16].

IV. DISCUSSION

The results given in the previous section indicate that the
pulse energy should be larger than about 0.5 pJ for the filter-
induced instability to appear in the dispersion map shown in
Fig. 1. The pulse energy is far larger than that required to achieve
error-free transmission in long-distance amplified systems. The

factor, an equivalent of the electrical SN ratio at the receiver,
is given as a function of pulse energy as [17]

(8)

where are pulse energy, bit rate, power spec-
tral density of ASE noise ( , where ,
and are the number of amplifiers inserted in the system,
photon energy, and spontaneous emission factor of the ampli-
fier), bandwidth of the optical filter prior to photodetection,
and the number of detected optical modes, respectively. In the

(a)

(b)

Fig. 6. Evolution of pulse energy when a Gaussian filter with 1-nm bandwidth
is inserted at: (a)z = 0 and (b)z = 100 km. Solid and dotted curves are
obtained by the split-step Fourier numerical method and by the variational
method, respectively. The excess gain� is chosen so that the pulse energy is to
be stabilized atE = 0:8 pJ.

expression (8) signal–ASE and ASE–ASE beat noise contri-
butions are taken into account. When , which as-
sumes 9000 km distance with amplifier spacing 50 km,

dB, , and (unpolarized detection),
pJ gives rise to , or BER . Thus the

pulse energy with which the filter-induced instability may occur
is larger about by an order of magnitude than that required for
negligible bit error in terms of the signal-to-noise ratio (SNR).

According to an analysis under the lossless assump-
tion, the filter-induced instability arises when an inequality

(dispersion-map strength) for a symmetrical
dispersion map with , where ,
and are half the dispersion-map period, difference of
the group-velocity dispersions (GVD) of normal and anoma-
lous dispersion fibers, averaged GVD, and FWHM pulse width
at the midpoint of the anomalous-dispersion fiber, respectively
[10]. According to this inequality the filter-induced instability
may take place at lower pulse energies when the absolute value
of the fiber dispersion is lowered while the dispersion-map
period is increased with their product kept constant. However,
such a dispersion profile is impractical and, even if it is used,
very long transmission distance will be needed for the unstable
dynamics of the pulse to be observed. Moreover the interaction
between adjacent pulses will limit the error-free transmission
distance for such a large dispersion-map strength.

The filter-induced instability in DM soliton propagation does,
therefore, not seem to become a serious issue in long-distance
transmission systems. The soliton propagation in an optical fiber
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with alternating sign of GVD, on the other hand, is the basis of
the operation of stretched-pulse mode-locked fiber lasers, from
which high-energy subpicosecond pulses can be produced [18].
Since such lasers are usually operated with large dispersion-map
strength and large pulse separation, the filter-induced instability
discussed in this paper is expected to appear. Careful consider-
ation on the filter location will be needed for stable operation of
such lasers when filters are incorporated in the cavity.

V. CONCLUSION

We presented a linear stability analysis of DM solitons con-
trolled by bandpass filters. The analysis can show how the fil-
ters can stabilize (or destabilize) the frequency and energy of
the DM soliton depending on their position in the dispersion
map. The destabilization of the pulse may arise when the filter
is located near the midpoint of the anomalous-dispersion fiber
section. It was shown, however, that for such instability to take
place the pulse energy and the dispersion-map strength should
be significantly larger than those required for practical long-dis-
tance transmission. The filter-induced instability of DM solitons
will be more pertinent in the operation of the stretched-pulse
mode-locked fiber laser, pulse dynamics in which is similar
to that in long-distance transmission but usually operated with
large pulse energy and small duty ratio.

APPENDIX

Coefficients appearing in (5a)–(5c) are given as follows:

where ( ) are

The subscript in indicates that the quantity is that of the sta-
tionary solution at the entrance of the filter.
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