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Linear Stability Analysis of Dispersion-Managed
Solitons Controlled by Filters

Junichi Kumasako, Masayuki MatsumodMember, IEEEand Suttawassuntorn Waiyap8tudent Member, IEEE

Abstract—We present a linear stability analysis of dispersion- effect of filters becomes dependent on the filter location in the
managed (DM) SO|I_'[0nS controlled by inline narrow-band filters. dispersion map [10]. Furthermore, the dynamics of the pulse
We show that the filters can destabilize the pulse if they are un- under filter control may change qualitatively as the pulse en-

suitedly located in the dispersion map, which is contrary to the
case of standard solitons in fibers with constant dispersion. We €9y, Or the strength of DM, grows. It was recently shown that

also show that for such an instability to take place the pulse en- the pulse energy may even be destabilized by the filters [10],
ergy and the dispersion-map strength should be significantly larger [11]. It is interesting to analyze at what pulse energy such in-

than those usually required for practical long-distance transmis-  stability occurs and how strong the instability is in realistic DM
_sion. The filt_er-induced instability of DM solitons \_/viII be an issue soliton systems.
in the operation of stretched-pulse mode-locked fiber lasers. In this paper we use a linear stability analysis to quantify how
Index Terms—Fiber ring laser, optical communication, optical ~pandpass filters can stabilize or destabilize the propagation of
soliton, soliton control, stability analysis. DM solitons and examine the dependence of the stability on the
location of the filter in the dispersion map [12], [13].

I. INTRODUCTION

RROR-FREE transmission distances of optical-fiber Il ANALYSIS

soliton transmission systems are limited by various The analysis is based on coupled nonlinear differential equa-
perturbations such as nonlinear interaction between adjactns for pulse parameters derived by a variational procedure.
pulses [1], noise-induced timing jitter (Gordon—Haus effecfjhe equations in an amplifier sparZ, < Z < (n + 1)Z,,
[2], collision-induced frequency and time shifts in wavewheren is aninteger and, is the amplifier spacing, are written
length-division multiplexed systems [3], and so on. Many d&s [14]

these perturbations give shifts in soliton center frequency which dA

are converted to time shifts through fiber dispersion, giving rise az D(z)aC (1a)
to bit errors if the time shifts go beyond acceptance time width dr

at the receiver. Periodic insertion of narrowband filters in the iz~ —2D(Z)rC (1b)
transmission line can reduce the time shifts because the soliton dC A2

1
center frequency is attracted to and stabilized at the center A =2D(Z)C” + —2\/5 z’VNL(Z)
frequency of the filter [4], [5]. It is noted that the spectral width

of the pulse does not narrowed without limit by the narrowband cexp | —2 /Z (zdz'| — D(Z) (1c)
filter but reaches to a fixed value due to the nonlinear nature nZ 27t

of the soliton. If the center frequency of the filter is gradually dk

moved, linear dispersive radiation such as noise coexisting az =0. (1d)

with soliton pulses is attenuated by the filter, which extends the e gpove equations are derived by the use of a Gaussian
transmission distance further more [6]. ansats for the pulse

These benefits of the filter are mostly kept in dispersion-man-
aged (DM) soliton systems [7]-[9]. When pulse energy is low ing(Z, T) = A exp[— (T’ — Tp)*/(2r%) — ir(T — Tp)
a DM system, the spectral width of the pulse is almost constant Z
along the fiber although the temporal width may greatly change —iC(T = Tp)* + ] exp l—/ r(Z')dz'
in accordance with the periodic change of the fiber dispersion. e
In this circumstance, the effect of filters on the DM soliton transwhere A, 7, C, x, 1y, andé are amplitude, pulse width, chirp
mission is almost the same as that on standard solitons [7], [8pefficient, frequency, temporal position, and phase of the pulse,
When pulse energy is large, however, the spectral width of thgspectively, and are functions of the distance. The equations for
pulse changes appreciably in the dispersion-map period andfheand 6 are omitted because they are decoupled from the dy-
Manuscript received September 23, 1999; revised May 4, 2000. hamics of the re.s.t of the parameters..' Equations (].'a)_(ld) corre-
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between positive and negative values in DM systems. The am- D [ps/nm/km]
plifier located atZ = (n+1)Z, amplifies the pulse with a power A
gainG = exp |2 j':zljl)z‘l I'(Z") dZ"| which compensates for 255
the fiber loss In the amplifier span just before the amplifier.
In the present analysis we assume that a control filter having z [km]
a Gaussian transfer function of the fol(2) = exp(—3Q?) o 50 Too 150l 200 "
is inserted in the fiber at every dispersion-map perip@-0) is
inversely proportional to the square root of the filter bandwidth 2451
and represents the strength of the filter. We also assume that the .
filter is accompanied by an amplitude gaixp(5) which com- —P_D_D_D__D_..
pensates for the energy loss caused by narrowband filtering. Be- 50 km

cause filters are usually positioned at the amplifier, the gain will
be provided by the amplifier as an excess gain. The Gausstm 1. Dispersion map and amplifier location of a DM system.
filter transforms the pulse parameters according to
Detailed expressions for the coefficieris; (¢, j = 1 ~ 3)

Ay = Ain are given in Appendix. It is noted thgtandé must satisfy an
(14 28/12)2 + 16BC2 V4 energy equilibrium condition at the filter
372 K2
o | ey Y| 69 (= D/) = L+ 478y o O
o (TR +28)? +168271CL 3b Through numerical solution of (4a)—(4c) in a unit cell of the
Tout = T2 +23(1 4+ 472 C2) (3b) dispersion map together with (5a)—(5c) at the filter, we obtain a
Ao 3 x 3 transfer matrix describing the evolution of the deviations
Cous = e 2/3)2‘1 1677702 (3¢) AA, Ar,andAC inaunit cell. The maximum absolute value of
m 2 wmem the three eigenvalues (: = 1 ~ 3) of the matrix determines
Fout = —3 Tintin — (3d) the stability. We take® = max(|A1], [A2|, |As|) as an index
Tin T 28(1 + 473,C) showing the magnitude of the stabilit§. larger (smaller) than

where the subscriptin and out indicate quantities at the unity indicates that the DM soliton solution is unstable (stable)
under the control by the filter.

entrance and the exit of the filter, respectively [15]. Equations
(1d) and (3d) determine the dynamics of the frequercy
Becausex does not change in the fiber as given by (1d)
and0 < rout/kin < 1 at the filter according to (3d), the As a numerical illustration of the stability analysis, we con-
frequency is always stabilized at= 0, the center frequency sider a dispersion map and amplifier arrangement as shown in
of the filter. It is also found from (3d) that the stabilization ofFig. 1. The unit cell of the dispersion map consists of anoma-
frequency is more efficient when the spectral width of the puldeus (2.55 ps/nm/km)- and normal-2.45 ps/nm/km)-disper-
(xV1+47%C?/7) is larger at the filter location. sion fibers with equal length of 100 km, with which the averaged
We now examine the stability of amplitude, temporal widthjispersion is 0.05 ps/nm/km. Four amplifiers are inserted in the
and chirp after the frequency is stabilizedsat= 0. We lin- unit cell with a spacing of 50 km (they are inserted at 0, 50,
earize (1a)—(1c) around a stationary DM soliton solutigZ), 100, and 150 km in Fig. 1). One of the four amplifiers is accom-
70(Z), andCy( %) and obtain equations for the evolution of thgpanied by a narrowband filter. Fiber loss and nonlinearity are

I1l. NUMERICAL EXAMPLES

small deviationsA A, A7, andAC as follows [12], [13]: 0.2 dB/km andny/Aey = 0.4 x 1079W 1, respectively, and
are the same for the anomalous- and normal-dispersion fibers.
dAA = D(CyAA + AgAC) (4a) Fig. 2 shows varia'Fions of temporal and spectral V\{idthS. of
az the pulse along the fiber of DM soliton solutions having dif-
dAT = —2D(CyAT + 1oAC) (4b) f_erent energies in the ab_senc_e of filter_s. These periodi<_: solu-
az ) tions were found by an iterative shooting method applied to
dAC 1 A (AA A7 the reduced model derived by the variational procedure using
——— =4DCHAC + 3 YNL . . .
dz V2 18\ Ao To Gaussian ansatz. The solutions closely agree with those ob-
z Ar tained by the split-step Fourier method. Stability analysis below
cexp | —2 / rdz" | +2D = (4c) is made when these DM soliton solutions are attempted to be
Za 0 stabilized by bandpass filters.

We also linearize (3a)—(3c) in terms of the small deviations Fig. 3 shows the maximum absolute eigenvalue versus the en-

) S ergy (at the output of amplifiers) of the pulse which the filter
of the variables §4, Ar, andAC), resulting in attempts to stabilize for four different locations of filters. It is

Aoy =K11AAj, + K19 ATy + K13AC, (52) found thatP_ls significantly smaller than unity only for the filter
locationz; = 0 (or 200 km), suggesting that the pulse energy,

ATouy = Ko1 AdAin + K ATin + K23ACm  (5b)  chirp, and width are effectively stabilized when the filter is lo-

ACou = K31 A A, + Ko Aty + K33 ACy,. (5¢) cated near the middle of the anomalous-dispersion fiber section.
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Fig. 4. Spectral width at = 0 km (solid curve), 50 km (dotted curve), 100
;ET 60 ' ' ' km (dashed curve), and 150 km (dash-dotted curve) versus pulse energy of a
5] DM soliton solution.
£
h= N . . .
g 40 the filter is not very small, we need to use analysis as given in
s the previous section. In Fig. 3, we also plot the frequency stabi-
q,%’- ook 0.5 lization coefficient
2 08 Prroq = 78 1/ l72 o + 28(1 + 472 . C2 7
§ treq = 70 in/ 170, in T 28(1 + 475 1,C5 in)] (7
@ o : . . . I .
0 50 100 150 200 see (3d). It is shown that weaker stabilization of the amplitude
distance (km) accompanies weaker stabilization of the frequency.
(b) In Figs. 5 and 6, we show actual evolution of pulse en-

Fig. 2. (a) Temporal width and (b) spectral width of the DM soliton solutior(Iergy obtained either by the variational analysis based on (1)

versus distance along the fiber in a unit cell of the dispersion map. Pulse enerG8$l (3) or by the numerical 50|Uti0n.0f (2) with USing_the
at the amplifier output are 0.2, 0.5, and 0.8 pJ. No filters are inserted. Gaussian spectral response for the filter. In each of Figs. 5

and 6, filters having 3 dB bandwidth of 1.0 nm are located
1.0 ——@————1———1— at (@):zy = 0 or (b) z; = 100 km. The excess gaif is
chosen so that the relation (6) is satisfied for respective filter
location and equilibrium pulse energy. The excess gain is
'ls‘ab'e adjusted slightly (within 0.2%) in the numerical solution
so that the steady-state pulse energy becomes roughly the
same for the variational and numerical analyses. Fig. 5(a)
and (b) are the results when a pulse with eneljy = 0.2
pJ is stabilized. The initial pulse at = 0 is Gaussian with
0.85 L . . (A(0) 7(0), C(0)) = (A, 7, Cy), (1.01A4,, 1.017, Cy), OF
70 0.2 0.4 06 0.8 1 (0.99A4., 0997, C.), whereA,, ., andC,. are those of the
pulse energy (pJ) DM soliton solution in the presence of filters witf}, = 0.2 pJ.
The pulse energy is attracted to a fixed value in both Fig. 5(a)

Fig. 3. Maximum absolute eigenvalué = max(|A.|, [Az]. |As]) of the  gng (b), with stronger stabilization in Fig. 5(a) than in Fig. 5(b
transfer matrix forA A, Ar, andAC versus the pulse energy. Filter locations (b), 9 9. 5(a) 9. 5(b),

arez,; = 0 km (solid curve), 50 km (dotted curve), 100 km (dashed curve), (erhiCh agrees with the preceding Stab!"ty analysis. It is also
150 km (dash-dotted curve). Frequency stabilization coeffidient, for these  shown that the variational and numerical results agree well.

filter locations is also shown. Fig. 6(a) and (b) are the results when a pulse with energy
E, = 0.8 pJis attempted to be stabilized. When the filter
When filters are placed at other amplifier locatiofstemains location isZ; = 100 km [Fig. 6(b)], the pulse energy is not
close to unity and even becomes larger than unityfor= 100  stabilized at a fixed value, which agrees with the result of the
km, indicating that the energy, chirp, and width of the pulse mayability analysis wheré” is larger than unity whea; = 100
be destabilized by the filters. This is qualitatively understood ym and £, = 0.45 pJ.
the spectral behavior of the DM soliton solution: spectral width In the numerical example the filter bandwidth is fixed at 1.0
of the pulse becomes decreasing function of the pulse energyat Qualitatively the same dynamical pulse behavior is obtained
z = 100 km in Fig. 1 when the energy is sufficiently large asvith shorter distance scale for narrower filter bandwidths. In this
shownin Fig. 4. When enhanced pulse energy leads to decreasask, however, another kind of instability caused by the growth
spectral width, the bandpass filter acts on the pulse to destaifibackground radiation appears at relatively short transmission
lize its energy [10]. The accurate stability, however, can not lgiistances. The background instability can be avoided by sliding
predicted by the relation between the spectral width and enethg center frequency of the filter, which enables us to use strong
in the steady state. The relation only describes slow adiabdiiters. Filter-induced instability analyzed here will be more im-
dynamical behavior of the pulse energy. When the strengthmdrtant for such circumstances.

Tunstable
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Fig.5. Evolution of pulse energy when a Gaussian filter with 1-nm bandwidfrig- 6. Evolution of pulse energy when a Gaussian filter with 1-nm bandwidth
is inserted at: (ay = 0 and (b)z = 100 km. Solid and dotted curves are IS |n_serted at: (ay = 0 and (b)_: = 100 I_(m. Solid and dotted curves are
obtained by the split-step Fourier numerical method and by the variatiorffitained by the split-step Fourier numerical method and by the variational
method, respectively. The excess gaiis chosen so that the pulse energy is tdnethod, respectively. The excess gaiis chosen so that the pulse energy is to
be stabilized af£, = 0.2 pJ. be stabilized aF, = 0.8 pJ.

It is noted here that although the filter-induced instability igXpression (8) signal-ASE and ASE-ASE beat noise contri-
harmful in general to achieve stable long-distance pulse trafétions are taken into account. Whén = 180, which as-
mission, it may be advantageously utilized in some applicatiofdmes 9000 km distance with amplifier spacing 50 ki, =
where analog information is sent by the modulation of pulse G = 11 dB, B = 2R, andM = 2 (unpolarized detection),
amplitudes. Such applications include passive loop-back life = 0.06 pJ gives rise t@) > 6, or BER < 10~°. Thus the
monitoring where low-index and low-frequency modu|ation§U|Se energy with which the filter-induced instability may occur
are imposed on the pulse train to monitor the status of individugllarger about by an order of magnitude than that required for

in-line amplifiers in a long-distance transmission line [16].  hegligible bit error in terms of the signal-to-noise ratio (SNR).
According to an analysis under the lossless assump-
tion, the filter-induced instability arises when an inequality
IAB" [t (dispersion-map strengti4 for a symmetrical
The results given in the previous section indicate that tiséspersion map withg,./AB” = 0.04, wherel, Ag”, gl...
pulse energy should be larger than about 0.5 pJ for the filt@mdtpwimv are half the dispersion-map period, difference of
induced instability to appear in the dispersion map shown the group-velocity dispersions (GVD) of normal and anoma-
Fig. 1. The pulse energy is far larger than that required to achidoas dispersion fibers, averaged GVD, and FWHM pulse width
error-free transmission in long-distance amplified systems. Thkthe midpoint of the anomalous-dispersion fiber, respectively
Q factor, an equivalent of the electrical SN ratio at the receivgi,0]. According to this inequality the filter-induced instability
is given as a function of pulse energy as [17] may take place at lower pulse energies when the absolute value
of the fiber dispersion is lowered while the dispersion-map
_ E, R ®) period is increased with their product kept constant. However,
\/QNEPRQ T+ MBN?R+VMBNZ2R such a dispersion profile is impractical and, even if it is used,
very long transmission distance will be needed for the unstable
where£,, R, N, B, M are pulse energy, bit rate, power specdynamics of the pulse to be observed. Moreover the interaction
tral density of ASE noise=f Khun,,(G — 1), whereK, hy, between adjacent pulses will limit the error-free transmission
andn,, are the number of amplifiers inserted in the systenjstance for such a large dispersion-map strength.
photon energy, and spontaneous emission factor of the ampliThe filter-induced instability in DM soliton propagation does,
fier), bandwidth of the optical filter prior to photodetectiontherefore, not seem to become a serious issue in long-distance
and the number of detected optical modes, respectively. In tih@nsmission systems. The soliton propagation in an optical fiber

IV. DISCUSSION

Q
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with alternating sign of GVD, on the other hand, is the basis of [3]
the operation of stretched-pulse mode-locked fiber lasers, from
which high-energy subpicosecond pulses can be produced [1814
Since such lasers are usually operated with large dispersion-map
strength and large pulse separation, the filter-induced instabilityt®!
discussed in this paper is expected to appear. Careful consider-
ation on the filter location will be needed for stable operation of [6]
such lasers when filters are incorporated in the cavity.
[71
V. CONCLUSION

We presented a linear stability analysis of DM solitons con- [g]
trolled by bandpass filters. The analysis can show how the fil-
ters can stabilize (or destabilize) the frequency and energy 0{9
the DM soliton depending on their position in the dispersion
map. The destabilization of the pulse may arise when the filtel10]
is located near the midpoint of the anomalous-dispersion fib
section. It was shown, however, that for such instability to take
place the pulse energy and the dispersion-map strength should
be significantly larger than those required for practical Iong-dis-[
tance transmission. The filter-induced instability of DM solitons
will be more pertinent in the operation of the stretched-pulse
mode-locked fiber laser, pulse dynamics in which is similart
to that in long-distance transmission but usually operated with
large pulse energy and small duty ratio. (14]

[15]
APPENDIX

Coefficients appearing in (5a)—(5c) are given as follows:  [16]

Ky =S F7A [17]
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K1 =2 B * Ao (28 + 73 )/ 7 in:

K13 =8 821" * Ag 1nCo, im; el
K> =0,

Koy =I5, in/(F??/QFi/Q)v

K3 = —80(28 + 13 )78, 1nC, i/ (F3 2 F}),

K3 =0,

K3y =83(28 + 702, in)Tg, wCo,in/ F,

Kz = For 1/ FS

whereF; (i =1 ~ 4) are

=01+ 2/3/73, i)+ 16/3203, in’
Fy = (28475 1n)” — 168°75 10C8 in>
F3 = Tg, w2601+ 473, incg, in)s
Fy=(28+475 )" + 163°75 1,C8 -
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