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Complex Propagators for Evanescent Waves in
Bidirectional Beam Propagation Method
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Abstract—EXxisting algorithms for bidirectional optical beam problems was the domain of resource-intensive FDTD algo-
propagation proposed to simulate reflective integrated photonic rithms2

devices do not propagate evanescent fields correctly. Thus inaccu- However, a significant weakness remains in current bidirec-

racy and instability problems can arise when fields have significant ti | BPM techni t ted at i
evanescent character. We propose complex representations of the el ectiniques—evanescent waves are generaied at in-

propagation operator by choosing either a complex reference wave terfaces but are not propagated correctly by the conventional
number or a complex representation of Padé approximation to BPM propagator [10]. This creates two problems. Not only does
address this issue. Therefore correct evolution of both propagating the incorrect modeling of the evanescent fields add error to the
waves and evanescent waves can be simultaneously realizedgna solytion; also these waves can lead to serious instability
significantly reducing the inaccuracy and instability problems. . . . -
Both test problems and practical problems are presented for p_roblems |_n bidirectional BPM. The examples discussed in [8]
demonstration. did not noticably suffer from these problems because the evanes-
cent portions of the field were not large enough to ruin the
stability and the accuracy of the calculations. But there are a
number of reflective devices in which the behavior of evanes-
cent waves is critical, as we see in the following section.
In this paper, we counter both of the above problems by using
a complex representation for the field propagator, either a com-
plex reference wave number or a complex Padé approximation.
HE BEAM propagation method (BPM) [1]-[3] has provedThe former formulation, suggested by Chang [11], was first
to be very useful and popular in numerical simulation of phanentioned in our previous work [8]. The latter has been used in
tonic integrated circuit devices because of its accuracy in a lattpe context of undersea acoustical wave propagation [12], [13]
class of practical problems and its efficiency compared to othend was introduced to the integrated optics area by Yeatiek
algorithms [such as finite difference time domain (FDTD)] [4][14]. More precisely, the studies of Yeviek al.[14] and our-
As a one-way propagator however, conventional BPM suffeselves [8] only applied complex operators at interfaces between
from the well-known deficiency of being unable to treat refleaegions of contrasting refractive index. This procedure correctly
tions generated by refractive index variations. To overcome tlgenerates evanescent field components at the interface itself and
serious limitation, several bidirectional BPM techniques hawe doing so, helps to overcome the most serious stability prob-
been introduced to deal with reflections at a single interfaéems. However, as mentioned above, it does nothing to capture
[5]-[7]. These methods are useful for simple problems such the behavior of the evanescent part of the fieddsayfrom the
reflection from a single laser facet, or the rear wall of a mulnterface. The evanescent portion of the fields should of course,
timode interference (MMI) device. However, numerous impogrow or decay through a single region. In this paper, we extend
tant photonic devices such as gratings or certain add—drop filténe previous studies by applying the complex representation to
contain many reflecting surfaces. Recently we proposed a copoth interface operators and propagation operators. Thus we are
prehensive bidirectional formulation [8] to treat systems withble to both control stability and produce a qualitative as well
an arbitrary number of reflecting interfaces. We demonstratad quantitative improvement in the representation of the field.
accurate and efficient modeling of a number of familiar devicdsvanescent fields can now decay and grow.
such as distributed feedback Bragg gratings, antireflection/highdn the next section, we first examine the role of the com-
reflection coatings, and add—drop multiplexers in WDM applex reference wave number/complex Padé approximation and
plications. Previously, a complete description of these devick®&n demonstrate that this idea can enable simultaneous propa-
gation of pure evanescent waves and normal propagating waves.
Next, the proposed idea is further demonstrated through com-
parison with theoretical results on a structure exhibiting frus-

trated total internal reflection. Finally, as a practical example
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and a challenging problem for bidirectional BPM, a simulatiormeroth-order accuracy for amy. Consequently, the evanescent
of a T-shaped power splitter is presented. fields generated at the interfaces are treated as propagating fields
and cannot decay or grow as they should. Finally, as pointed out
II. COMPLEX REPRESENTATION OF THEFIELD PROPAGATOR in [14], this inappropriate treatment of evanescent modes leads
to computational instability, because the evanescent modes are
assigned real eigenvalues which can result in a vanishing de-
nominator in evaluation of the reflection operator. Even if the
simulation remains stable, calculation of reflection and trans-
mission coefficients can be grossly inaccurate as an evanescent
field propagates through the system rather than being localized
[ujut} _ M. [u;;} ) at an interface [10]. _ - _
= ’ The solution to these inaccuracy and instability problems is to
) i . find a better propagator which does not map to the real axis. Two
In some regions, the fields we discuss here are largely evangsgons are to choose a complex-valued reference wave number
cent. In that case, the fields, andu_ are more correctly g or 16 yse a complex representation of the Padé approxima-

describ_ed as “decaying” and “growing” respective!y. F_Otrion [12]-[15]. The former approach is straightforward. A phase
convenience we use the forward and backward deS|gnat|QQ§tOr o, is added to the reference wave number

throughout. The matri¥/ is constructetias

In the bidirectional BPM formulation in [8], the electric field
at any point is represented by the two-component vdctes
[ut(z),u™ ()] of “forward” (+) and “backward’(—) waves.
The overall transfer matrix/ relating the fields at the frontt
and rean=,, of the structure is defined by

U-

Uout n

_ Lo
M=T, 1P ... P2T12P 2 b= koe ®
wherek is the original real-valued reference wave number. The
latter approach has several alternative schemes [12], [13]. One
of them is to rotate the branch cut of the square-root operator

where matrixP; (¢ = 1,2,...,n) stands for the propagation
matrix in regioni, i.e.

e—ifﬁi dz 0 in making the Padé approximation [14], [15]. That is, when ap-
b= 0 o [ ciaz 3) proximating the operatof,, the branch cut of the square-root
function is rotated away from the original negative real axis
andT; ;4 for the interface matrix connecting regioand: +1, _ . :
Le. Li=ky/1+ = k214 [+ e - 1]
A1+ LML 1- LN L ~ Rl |14 a1+ e —1] ©
Linr =5 [1 — L ML 1+ L HL] “) ; 140 [(1+ e — 1]
Both £’s and 7;,;41's contain a square-root operatdl;, where is the rotation angle. Note thain the above expression
which is given by can be either real-valued or complex-valued. We show in the
— Appendix that the complex method and rotated branch cut
L =T+ 92/ + ni(x)?kG — k2 (5) Method with real-valuefl are completely equivalentdf = 2.
‘ k? Thus, while we only speak in terms of the complex wave number

. . _ S scheme in the following, all results apply to both pictures.
wheren;(x) is the index profile in region, %o is the vacuum .
= The literature [8], [14] has so far only used the complex repre-
wave numberk is the reference wave number, and where we

assume a 2D/TE-nolarized case. for simolicity. This s uare_rosentation on the interface operators to eliminate the interface in-
. polar ) ' plcity. ThiS Sq s%bility mentioned above. But in some devices, correctly mod-
operator is usually rationalized by Padé approximants. For

iN= : . .
. . gllng the exponential behavior of the evanescent field propaga-
stance, in Padé ordén, n) tion can also be critical, from both stability and accuracy points
. zn: a;é of view. Thus, we have to consider also applying the complex
— 140§

L~k (6) representation when rationalizity in BPM propagators.

where A. Demonstration of the Idea on a Test Problem

9 9 2,9 79 In the following test problem, we see that a complex reference
8% /0x” + ni(x)°ky — k . .
w2 . (7) wave number can help evanescent fields exponentially decay,

- without degrading the normal evolution of propagating fields
If the reference wave numbgrand the Padé coefficients and in standard BPM. This is important because in practical de-
b; are all real-valued, then operaty corresponds to a mappingvices, the propagating components and evanescent components
of the real axis onto itself. As a result, although the propagatiage usually present at the same time.
modes, corresponding to real-to-real mapping, are accurate tén our test problem, awide Gaussian beam is launched onto an
the order of the approximation, the evanescent modes, whioterface between a high permittivity dielectric, say a semicon-
should be mapped onto the positive imaginary axis, only retailuctor, and air with an incident angle either below or above the

, o . _ . critical anglesin ! (n, /n, ), as schematically shown in Fig. 1(a)

Note that matrix\/ is never explicitly calculated; only its application to a

vectorU is required. This is obtained by propagating the’‘and “—" compo- and (b_)’ respectively. Elementary 0pti(fs states _that a norma_l
nent of the vector forward through the system. Gaussian beam propagates beyond the interface in case (a) while

3
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Fig.1. A Gaussian beamis launched onto an interface between semiconductor 18- e —

and air with an incident angle (a) below the critical angle and (b) above the 10 20 30 40
critical angle. Then propagating Gaussian beam and evanescent field appear on

the interface in case (a) and case (b) respectively. (?Siegree)
i ) i 0.4 1

an evanescent wave is generated and localized at the interface =~ ] Pade (1.0)
in case (b). We use one-way BPM simulation with the complex £ 034 Pade (2,2)
representation to model the evolution of both fields after the 2 ] ;a de (4
interfaces. g 024 a—

This test problem has exact solutions found by applying the ks ] e 68
Fresnel formulae to each spatial Fourier component of the in- £ %17 .
coming beam. The reflected and transmitted beams are obtained g 0 0_1 .
by integrating the reflection and transmission of each compo- W . e
nent over the whole Fourier space. Fig. 2(a) and (b) plots, re- o 2 | 80 40
spectively, the error in power of the propagating beam in case @(degree)
(a) and the error in decay rate of the evanescent field in case (b) (b}

as a function ofz. We see that the compléxmethod degrades _ _ _ _

the normal field propagation but improves the evanescent fiit§- 2. (a) Error in power of the propagating beam as a function of the angle
. h under different Padé orders; (b) Error in decay rate of the evanescent field as

propagation. The two figures seem to suggest that some med@mmon of,> under different Padé orders.

value ofy should be used for both fields to propagate accurately.

But since they also indicate as expected that the Sensitivity torpig hehavior occurs as almost 100% of the field present in the
falls with increasing Pade order, raising Pade order can always ragion is evanescent due to the first dielectric/air interface.
improve the performance in both cases for any nongero  pyyically this field should decay very rapidly, but due to the
The results of the above test serve as a necessary Con_d'P@é‘l-to-real mapping of operatd, it propagates as a traveling
that the use of the two schemes can be applied to bidirectiopal, e As an evanescent field, it largely consists of high-fre-

BPM. quency spatial components. Thus it essentially acts as a source
of noise, and spreading out in all regions, catastrophically de-
grades the calculation. However, if the complerethod (i.e.

We now construct an example in which a complex treatmegat# 0°) is used for the propagation in the air region, then a rea-
of the BPM propagator is critical in bidirectional BPM mod-sonable solution can be obtained.
eling. A structure displaying frustrated total internal reflection Fig. 3(a) shows a field contour pattern obtained by bidirec-
(FTIR) is formed by adding another dielectric layer to the toponal BPM wheny = 25° in the air layer. A closeup of the
of the structure of case (b) in the previous section with a smékld around the air gap is shown in Fig. 3(b). The quantity
air gap. Instead of studying just the propagation of a particuldif E(x)|? dz, wherez is the direction parallel to the interfaces,
field in a particular region as in the previous section, we aie measured for the backward fie[d = w«_(z)), and the
now interested in finding the reflectivity and transmissity of thitotal field (£ = w.(x) + u_(z)) over the propagation dis-
whole structure with bidirectional BPM. Note that this exampl&ance in this closeup region [see Fig. 3(c)]. Comparison with
is presented here for test purposes, because it again has a caineeanalytic solution indicates an excellent agreement. Since
nient analytic solution in the Fourier representation and can akb® scale of the discrepancy is within 1% and would not be
be simulated by rotating the system by’ 3hd using standard visible in the figure, we have excluded the analytic result in
BPM. (Standard BPM solutions could also be used as a ref€ig. 3(c). In contrast, Fig. 3(d) shows the highly unphysical re-
ence solution, though here we only compare against the analidt obtained when the compléxtechnique is not employed
results.) (¢ = 0°). Notably, for the complex calculation, the backward

The refractive index of the dielectric i = 3, the vacuum field in the air gap grows even as the total field energy decays,
wavelength is\ = 0.86 um, and the angle of incidence 30°. as theory predicts. This is not seen fore= 0°. Thus this simple
The air gap is chosen to be 0.L2n thick (~1 decay length). FTIR problem clearly demonstrates the utility and significance
Using bidirectional BPM without a complex treatment of thef complex-valued propagaticn
propagator (i.e.o = 0°), the calculation blows up and we Fig. 4 plots transmission and total power (reflectign
are unable to obtain a solution, even if the instability due toansmission) as a function @f under different propagation
the interface is eliminated by using compl&xon interfaces. Padé orders. The two dashed lines without symbols mark

B. Simulation of Frustrated Total Internal Reflection
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Analytic results

Total power
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0.7 e
Pade(4,4); T
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: = ° Fig.5. Dependence of the transmission and total power on the thickness of the
1o Total field ¢ air gap under different Padé orders in TE polarization case. The valpdarf
the air gap is 25.

Semicunductorl Air{0.12pm) [Semicnndunlor

129
Fig. 3. (a) Field contour pattern of frustrated total internal reflection structure
described in the text where the air gap is 0/ thick. It is obtained by 10 - -— 7'

bidirectional BPM with compleX (¢ = 25°) in air region; (b) The closeup of E >/ Analytic results
(a) around the air gap. (The solid lines bound the air gap region); (c) Quantity -—=-
J1E(2)|? da for the total field and the backward field in (b) as a function 0.8 Total power Pade(2,2); T

of propagation distance. They agree with the analytic ones (not shown here)

within 1%. For reference, in (d) is also shown this quantity for the total field ‘5 0] Padeld 4 T
and the backward field calculated without complex,, = 0°) in air region. 27 Pade(6.6); T
They are just too unphysical due to the noise problem, as mentioned in the text. ~ 7] A—
(Note: the scales in (a) and (b) are not in proportion with reality.) 0.4 4 Pade(2,2); R+T
Transmission . —

Pade(4,4); R+T
—

Pade(6,6); R+T
A—

0.2 0.3 04
Thickness of air gap

Total power
Fig. 6. Dependence of the transmission and total power on the thickness of the
air gap under different Padé orders in TM polarization case. The valudaf

the air gap is 25.

Intensity

Further calculations are performed to obtain the dependence
g p g on thickness of the air gap, as shown in Figs. 5 and 6 for trans-
0 verse electric (TE) and transverse magnetic (TM) cases, respec-
AN AL A 40 tively. The value ofp for the air gap is chosen to be 2&nd we
o{degree) see that_g_ood agreement with analytic results can be achieved
with sufficient Padé order.

Fig. 4. Transmission and total power (reflectipriransmission) as a function . .
of » under different propagation Padé orders. The two dashed lines withéat T-Junction Power Splitter

symbols mark the theoretical values of the transmission and total power (unity). . . .
The lines with circles, squares and triangles stand for the bidirectional BPM LaStly' we present _a more practmgl Strl_JCture which requ_”es
solutions under Padé (3, 3), (5, 5), and (8, 8), respectively. the current method (if a BPM technique is to be used). It is a

T-shaped power splitter taken from Ref. [1@]s illustrated in

the theoretical values of the transmission and total pow&ld- 7(a). A beam coming from the bottom wider waveguide is
(unity). Again we observe that higher Padé order provides maiglit into the two narrower waveguides with power equally di-
freedom in choosing the azimuthal anglekof. vided. In the natural orientation [Fig. 7(a)], the whole structure
Note that the use of the complex reference wave numberG@an not be simulated by conventional BPM due to theradge
the propagator is applied judiciously by restricting it to the alf Propagation direction, but a bidirectional method works. In
gap region. Analogy with plane-wave optics tells us that littihe bidirectional approach, the structure is rotated by 4%
evanescent field is present in regions other than air. If a coff10wn in Fig. 7(b) and only one interface (the horizontal side of
plex  is also used in those regions, normal propagating wavide notch) needs to be considered as a reflecting interface. Thus

d'SpIay.grOW'ng Or deca_Y'”g behavior during S|mglat|on which 55 slight change has been made to the original structure by removing the slow
could give rise to instability. We have observed this effect.  tapering in the input waveguide.
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Fig. 7. T-shaped power splitter (a) in normal orientation (b) rotated BytdSuit the need of bidirectional BPM simulation.

I1l. CONCLUSION

We have proposed and demonstrated the use of complex treat-
ment of the propagation operator to properly handle the propa-
gation of evanescent waves in bidirectional BPM simulations.
Our method mitigates the inaccuracy and instabilities which are
otherwise encountered. The complex treatment of the propaga-
tion operator can be made either through a complex reference
wave number or a complex representation of Padé approxima-
tion (say, rotated branch cut Padé approximation).

APPENDIX
EQUIVALENCE OF COMPLEX REFERENCEWAVE NUMBER
Fig. 8. Simulated field pattern of the T-shaped power splitter obtained bVI ETHOD AND ROTATED BRANCH CUT PADE APPROXIMATION
bidirectional BPM with the orientation shown in Fig. 7(b). METHOD

Below we refer to the complex reference wave number
the two physically symmetric arms are treated differently in théethod as method A and rotated branch cut Padé approxima-
numerics. The propagation of the reflected field into the top-lefbn as method B.
arm is taken care of by normal wide-angle BPM, whereas the re4{n method A, combining (6)—(8), the approximation of oper-
flected beam into the bottom-right arm should be handled layor £, is rewritten as
the interface reflection operator. Therefore, this problem is a
challenging test for bidirectional BPM as well as a practical ex- "L g
ample. Note that beyond the horizontal interface, both the prop- 1+ Z 14 b€
agating component on the left and the evanescent component on =t
the right have to be propagated correctly at the same time. Thugn method B, wherk in rotated branch cut Padé approxima-
we require the use of a complex representation of the propRm is real-valued, i.e; = %o, £ becomes
gator.

Fig. 8 shows a contour plot of the beam splitting simulated
by bidirectional BPM withy chosen as 12in a finite region
(~0.7 wavelength) after the interface. The symmetry is basi-
cally preserved but not perfectly, e.g., the two radiation bearfi§cording to (9), operato€; in method B is approximated as

scattered from the corners at the junction travel into the cladding

0?0z + ni(x)2k3 — ki

£0 = ]:/g

(11)

e
region(n = 2.295) at different angles, and the powers in each Lim L
outgoing arm are 39 and 41%, respectively. This is of course a R |1 4 Z a;[(1+ &)e ™™ — 1] (12)
penalty for treating the structure in an asymmetric manner as o¢ L4bi[(14&)emi = 1] |

we are forced to do in order to apply a BPM technique. Our
discussion of Fig. 2 suggests the result could in principle be im-Comparing (11) to (7), we obtain

proved by raising the Padé order in propagation since only Padé ‘

order (1, 1) was used to obtain Fig. 8. However, we have found (1+&)e ™ =1+¢ (13)
that for this example, applying a high order Padé algorithm pre-

vents us from obtaining stable solutions. This notwithstandin§nus, (12) is rewritten as
our method permits a BPM approach of reasonable accuracy to a

problem that is otherwise completely inaccessible to BPM tech- L:Z(B) = Foei®/? |1
nigues.

n

Z @i ] (14)
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