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Complex Propagators for Evanescent Waves in
Bidirectional Beam Propagation Method
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Abstract—Existing algorithms for bidirectional optical beam
propagation proposed to simulate reflective integrated photonic
devices do not propagate evanescent fields correctly. Thus inaccu-
racy and instability problems can arise when fields have significant
evanescent character. We propose complex representations of the
propagation operator by choosing either a complex reference wave
number or a complex representation of Padé approximation to
address this issue. Therefore correct evolution of both propagating
waves and evanescent waves can be simultaneously realized,
significantly reducing the inaccuracy and instability problems.
Both test problems and practical problems are presented for
demonstration.

Index Terms—Beam propagation method (BPM), bidirectional,
evanescent wave, integrated optics.

I. INTRODUCTION

HE BEAM propagation method (BPM) [1]–[3] has proved
to be very useful and popular in numerical simulation of pho-
tonic integrated circuit devices because of its accuracy in a large
class of practical problems and its efficiency compared to other
algorithms [such as finite difference time domain (FDTD)] [4].
As a one-way propagator however, conventional BPM suffers
from the well-known deficiency of being unable to treat reflec-
tions generated by refractive index variations. To overcome this
serious limitation, several bidirectional BPM techniques have
been introduced to deal with reflections at a single interface
[5]–[7]. These methods are useful for simple problems such as
reflection from a single laser facet, or the rear wall of a mul-
timode interference (MMI) device. However, numerous impor-
tant photonic devices such as gratings or certain add–drop filters
contain many reflecting surfaces. Recently we proposed a com-
prehensive bidirectional formulation [8] to treat systems with
an arbitrary number of reflecting interfaces. We demonstrated
accurate and efficient modeling of a number of familiar devices
such as distributed feedback Bragg gratings, antireflection/high-
reflection coatings, and add–drop multiplexers in WDM ap-
plications. Previously, a complete description of these devices
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problems was the domain of resource-intensive FDTD algo-
rithms.1

However, a significant weakness remains in current bidirec-
tional BPM techniques—evanescent waves are generated at in-
terfaces but are not propagated correctly by the conventional
BPM propagator [10]. This creates two problems. Not only does
the incorrect modeling of the evanescent fields add error to the
final solution; also these waves can lead to serious instability
problems in bidirectional BPM. The examples discussed in [8]
did not noticably suffer from these problems because the evanes-
cent portions of the field were not large enough to ruin the
stability and the accuracy of the calculations. But there are a
number of reflective devices in which the behavior of evanes-
cent waves is critical, as we see in the following section.

In this paper, we counter both of the above problems by using
a complex representation for the field propagator, either a com-
plex reference wave number or a complex Padé approximation.
The former formulation, suggested by Chang [11], was first
mentioned in our previous work [8]. The latter has been used in
the context of undersea acoustical wave propagation [12], [13]
and was introduced to the integrated optics area by Yevicket al.
[14]. More precisely, the studies of Yevicket al. [14] and our-
selves [8] only applied complex operators at interfaces between
regions of contrasting refractive index. This procedure correctly
generates evanescent field components at the interface itself and
in doing so, helps to overcome the most serious stability prob-
lems. However, as mentioned above, it does nothing to capture
the behavior of the evanescent part of the fieldsawayfrom the
interface. The evanescent portion of the fields should of course,
grow or decay through a single region. In this paper, we extend
the previous studies by applying the complex representation to
both interface operators and propagation operators. Thus we are
able to both control stability and produce a qualitative as well
as quantitative improvement in the representation of the field.
Evanescent fields can now decay and grow.

In the next section, we first examine the role of the com-
plex reference wave number/complex Padé approximation and
then demonstrate that this idea can enable simultaneous propa-
gation of pure evanescent waves and normal propagating waves.
Next, the proposed idea is further demonstrated through com-
parison with theoretical results on a structure exhibiting frus-
trated total internal reflection. Finally, as a practical example

1We note that one other BPM investigation [9] has also described a multi-in-
terface algorithm. That formulation however, relied on correctly “guessing” the
transmitted field. For most interesting photonic structures however, the output
field does not possess a simple form, and, in fact, can have many spatial fea-
tures including a radiation component, which can not be guessed. In contrast,
our formulation is completely general and relies only on a specification of the
input field as with conventional BPM.
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and a challenging problem for bidirectional BPM, a simulation
of a T-shaped power splitter is presented.

II. COMPLEX REPRESENTATION OF THEFIELD PROPAGATOR

In the bidirectional BPM formulation in [8], the electric field
at any point is represented by the two-component vector

of “forward” and “backward” waves.
The overall transfer matrix relating the fields at the front
and rear of the structure is defined by

(1)

In some regions, the fields we discuss here are largely evanes-
cent. In that case, the fields and are more correctly
described as “decaying” and “growing” respectively. For
convenience we use the forward and backward designations
throughout. The matrix is constructed2 as

(2)

where matrix stands for the propagation
matrix in region , i.e.

(3)

and for the interface matrix connecting regionand ,
i.e.

(4)

Both ’s and ’s contain a square-root operator,,
which is given by

(5)

where is the index profile in region is the vacuum
wave number, is the reference wave number, and where we
assume a 2D/TE-polarized case, for simplicity. This square-root
operator is usually rationalized by Padé approximants. For in-
stance, in Padé order

(6)

where

(7)

If the reference wave numberand the Padé coefficients and
are all real-valued, then operatorcorresponds to a mapping

of the real axis onto itself. As a result, although the propagating
modes, corresponding to real-to-real mapping, are accurate to
the order of the approximation, the evanescent modes, which
should be mapped onto the positive imaginary axis, only retain

2Note that matrixM is never explicitly calculated; only its application to a
vectorU is required. This is obtained by propagating the “+” and “�” compo-
nent of the vector forward through the system.

zeroth-order accuracy for any. Consequently, the evanescent
fields generated at the interfaces are treated as propagating fields
and cannot decay or grow as they should. Finally, as pointed out
in [14], this inappropriate treatment of evanescent modes leads
to computational instability, because the evanescent modes are
assigned real eigenvalues which can result in a vanishing de-
nominator in evaluation of the reflection operator. Even if the
simulation remains stable, calculation of reflection and trans-
mission coefficients can be grossly inaccurate as an evanescent
field propagates through the system rather than being localized
at an interface [10].

The solution to these inaccuracy and instability problems is to
find a better propagator which does not map to the real axis. Two
options are to choose a complex-valued reference wave number

[8] or to use a complex representation of the Padé approxima-
tion [12]–[15]. The former approach is straightforward. A phase
factor, , is added to the reference wave number

(8)

where is the original real-valued reference wave number. The
latter approach has several alternative schemes [12], [13]. One
of them is to rotate the branch cut of the square-root operator
in making the Padé approximation [14], [15]. That is, when ap-
proximating the operator , the branch cut of the square-root
function is rotated away from the original negative real axis

(9)

where is the rotation angle. Note thatin the above expression
can be either real-valued or complex-valued. We show in the
Appendix that the complex method and rotated branch cut
method with real-valued are completely equivalent if .
Thus, while we only speak in terms of the complex wave number
scheme in the following, all results apply to both pictures.

The literature [8], [14] has so far only used the complex repre-
sentation on the interface operators to eliminate the interface in-
stability mentioned above. But in some devices, correctly mod-
eling the exponential behavior of the evanescent field propaga-
tion can also be critical, from both stability and accuracy points
of view. Thus, we have to consider also applying the complex
representation when rationalizing in BPM propagators.

A. Demonstration of the Idea on a Test Problem

In the following test problem, we see that a complex reference
wave number can help evanescent fields exponentially decay,
without degrading the normal evolution of propagating fields
in standard BPM. This is important because in practical de-
vices, the propagating components and evanescent components
are usually present at the same time.

In our test problem, a wide Gaussian beam is launched onto an
interface between a high permittivity dielectric, say a semicon-
ductor, and air with an incident angle either below or above the
critical angle , as schematically shown in Fig. 1(a)
and (b), respectively. Elementary optics states that a normal
Gaussian beam propagates beyond the interface in case (a) while
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Fig. 1. A Gaussian beam is launched onto an interface between semiconductor
and air with an incident angle (a) below the critical angle and (b) above the
critical angle. Then propagating Gaussian beam and evanescent field appear on
the interface in case (a) and case (b) respectively.

an evanescent wave is generated and localized at the interface
in case (b). We use one-way BPM simulation with the complex
representation to model the evolution of both fields after the
interfaces.

This test problem has exact solutions found by applying the
Fresnel formulae to each spatial Fourier component of the in-
coming beam. The reflected and transmitted beams are obtained
by integrating the reflection and transmission of each compo-
nent over the whole Fourier space. Fig. 2(a) and (b) plots, re-
spectively, the error in power of the propagating beam in case
(a) and the error in decay rate of the evanescent field in case (b)
as a function of . We see that the complexmethod degrades
the normal field propagation but improves the evanescent field
propagation. The two figures seem to suggest that some medium
value of should be used for both fields to propagate accurately.
But since they also indicate as expected that the sensitivity to
falls with increasing Padé order, raising Padé order can always
improve the performance in both cases for any nonzero.

The results of the above test serve as a necessary condition
that the use of the two schemes can be applied to bidirectional
BPM.

B. Simulation of Frustrated Total Internal Reflection

We now construct an example in which a complex treatment
of the BPM propagator is critical in bidirectional BPM mod-
eling. A structure displaying frustrated total internal reflection
(FTIR) is formed by adding another dielectric layer to the top
of the structure of case (b) in the previous section with a small
air gap. Instead of studying just the propagation of a particular
field in a particular region as in the previous section, we are
now interested in finding the reflectivity and transmissity of this
whole structure with bidirectional BPM. Note that this example
is presented here for test purposes, because it again has a conve-
nient analytic solution in the Fourier representation and can also
be simulated by rotating the system by 90and using standard
BPM. (Standard BPM solutions could also be used as a refer-
ence solution, though here we only compare against the analytic
results.)

The refractive index of the dielectric is , the vacuum
wavelength is m, and the angle of incidence .
The air gap is chosen to be 0.12m thick ( 1 decay length).
Using bidirectional BPM without a complex treatment of the
propagator (i.e., ), the calculation blows up and we
are unable to obtain a solution, even if the instability due to
the interface is eliminated by using complexon interfaces.

Fig. 2. (a) Error in power of the propagating beam as a function of the angle
' under different Padé orders; (b) Error in decay rate of the evanescent field as
a function of' under different Padé orders.

This behavior occurs as almost 100% of the field present in the
air region is evanescent due to the first dielectric/air interface.
Physically this field should decay very rapidly, but due to the
real-to-real mapping of operator , it propagates as a traveling
wave. As an evanescent field, it largely consists of high-fre-
quency spatial components. Thus it essentially acts as a source
of noise, and spreading out in all regions, catastrophically de-
grades the calculation. However, if the complexmethod (i.e.

) is used for the propagation in the air region, then a rea-
sonable solution can be obtained.

Fig. 3(a) shows a field contour pattern obtained by bidirec-
tional BPM when in the air layer. A closeup of the
field around the air gap is shown in Fig. 3(b). The quantity

, where is the direction parallel to the interfaces,
is measured for the backward field , and the
total field over the propagation dis-
tance in this closeup region [see Fig. 3(c)]. Comparison with
the analytic solution indicates an excellent agreement. Since
the scale of the discrepancy is within 1% and would not be
visible in the figure, we have excluded the analytic result in
Fig. 3(c). In contrast, Fig. 3(d) shows the highly unphysical re-
sult obtained when the complextechnique is not employed

. Notably, for the complex calculation, the backward
field in the air gap grows even as the total field energy decays,
as theory predicts. This is not seen for . Thus this simple
FTIR problem clearly demonstrates the utility and significance
of complex-valued propagation.

Fig. 4 plots transmission and total power (reflection
transmission) as a function of under different propagation
Padé orders. The two dashed lines without symbols mark
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Fig. 3. (a) Field contour pattern of frustrated total internal reflection structure
described in the text where the air gap is 0.12�m thick. It is obtained by
bidirectional BPM with complex�k (' = 25 ) in air region; (b) The closeup of
(a) around the air gap. (The solid lines bound the air gap region); (c) Quantity

jE(x)j dx for the total field and the backward field in (b) as a function
of propagation distance. They agree with the analytic ones (not shown here)
within 1%. For reference, in (d) is also shown this quantity for the total field
and the backward field calculated without complex�k (' = 0 ) in air region.
They are just too unphysical due to the noise problem, as mentioned in the text.
(Note: the scales in (a) and (b) are not in proportion with reality.)

Fig. 4. Transmission and total power (reflection+ transmission) as a function
of ' under different propagation Padé orders. The two dashed lines without
symbols mark the theoretical values of the transmission and total power (unity).
The lines with circles, squares and triangles stand for the bidirectional BPM
solutions under Padé (3, 3), (5, 5), and (8, 8), respectively.

the theoretical values of the transmission and total power
(unity). Again we observe that higher Padé order provides more
freedom in choosing the azimuthal angle of .

Note that the use of the complex reference wave number in
the propagator is applied judiciously by restricting it to the air
gap region. Analogy with plane-wave optics tells us that little
evanescent field is present in regions other than air. If a com-
plex is also used in those regions, normal propagating waves
display growing or decaying behavior during simulation which
could give rise to instability. We have observed this effect.

Fig. 5. Dependence of the transmission and total power on the thickness of the
air gap under different Padé orders in TE polarization case. The value of' for
the air gap is 25.

Fig. 6. Dependence of the transmission and total power on the thickness of the
air gap under different Padé orders in TM polarization case. The value of' for
the air gap is 25.

Further calculations are performed to obtain the dependence
on thickness of the air gap, as shown in Figs. 5 and 6 for trans-
verse electric (TE) and transverse magnetic (TM) cases, respec-
tively. The value of for the air gap is chosen to be 25and we
see that good agreement with analytic results can be achieved
with sufficient Padé order.

C. T-Junction Power Splitter

Lastly, we present a more practical structure which requires
the current method (if a BPM technique is to be used). It is a
T-shaped power splitter taken from Ref. [16]3 as illustrated in
Fig. 7(a). A beam coming from the bottom wider waveguide is
split into the two narrower waveguides with power equally di-
vided. In the natural orientation [Fig. 7(a)], the whole structure
can not be simulated by conventional BPM due to the 90range
in propagation direction, but a bidirectional method works. In
the bidirectional approach, the structure is rotated by 45as
shown in Fig. 7(b) and only one interface (the horizontal side of
the notch) needs to be considered as a reflecting interface. Thus

3A slight change has been made to the original structure by removing the slow
tapering in the input waveguide.
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Fig. 7. T-shaped power splitter (a) in normal orientation (b) rotated by 45to suit the need of bidirectional BPM simulation.

Fig. 8. Simulated field pattern of the T-shaped power splitter obtained by
bidirectional BPM with the orientation shown in Fig. 7(b).

the two physically symmetric arms are treated differently in the
numerics. The propagation of the reflected field into the top-left
arm is taken care of by normal wide-angle BPM, whereas the re-
flected beam into the bottom-right arm should be handled by
the interface reflection operator. Therefore, this problem is a
challenging test for bidirectional BPM as well as a practical ex-
ample. Note that beyond the horizontal interface, both the prop-
agating component on the left and the evanescent component on
the right have to be propagated correctly at the same time. Thus
we require the use of a complex representation of the propa-
gator.

Fig. 8 shows a contour plot of the beam splitting simulated
by bidirectional BPM with chosen as 12in a finite region
( 0.7 wavelength) after the interface. The symmetry is basi-
cally preserved but not perfectly, e.g., the two radiation beams
scattered from the corners at the junction travel into the cladding
region at different angles, and the powers in each
outgoing arm are 39 and 41%, respectively. This is of course a
penalty for treating the structure in an asymmetric manner as
we are forced to do in order to apply a BPM technique. Our
discussion of Fig. 2 suggests the result could in principle be im-
proved by raising the Padé order in propagation since only Padé
order (1, 1) was used to obtain Fig. 8. However, we have found
that for this example, applying a high order Padé algorithm pre-
vents us from obtaining stable solutions. This notwithstanding,
our method permits a BPM approach of reasonable accuracy to a
problem that is otherwise completely inaccessible to BPM tech-
niques.

III. CONCLUSION

We have proposed and demonstrated the use of complex treat-
ment of the propagation operator to properly handle the propa-
gation of evanescent waves in bidirectional BPM simulations.
Our method mitigates the inaccuracy and instabilities which are
otherwise encountered. The complex treatment of the propaga-
tion operator can be made either through a complex reference
wave number or a complex representation of Padé approxima-
tion (say, rotated branch cut Padé approximation).

APPENDIX

EQUIVALENCE OF COMPLEX REFERENCEWAVE NUMBER

METHOD AND ROTATED BRANCH CUT PADÉ APPROXIMATION

METHOD

Below we refer to the complex reference wave number
method as method A and rotated branch cut Padé approxima-
tion as method B.

In method A, combining (6)–(8), the approximation of oper-
ator is rewritten as

(10)

In method B, when in rotated branch cut Padé approxima-
tion is real-valued, i.e., becomes

(11)

According to (9), operator in method B is approximated as

(12)

Comparing (11) to (7), we obtain

(13)

Thus, (12) is rewritten as

(14)
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By applying (8) again and comparing (10) and (14), it is readily
seen that .
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