2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Long-Haul WDM Transmission Using Higher Order Fiber Dispersion Management

M. Murakami, T. Matsuda, H. Maeda and T. Imai

Page 1197.

Abstract:

We propose a fiber dispersion management scheme for large-capacity long-haul wavelength division multiplexing (WDM) transmission systems that considers not only second-but also third-order dispersion characteristics using transmission fibers with opposite dispersion signs. It eliminates the waveform distortion of WDM signals that originates from the existence of third-order dispersion, which is a constraint placed on WDM capacity in conventional dispersion management, while reducing the interchannel interaction caused by the interplay of fiber nonlinearity and second-order dispersion. Design concept of the scheme is discussed to show the feasibility of using actual fiber parameters. An experimental investigation on transmission performance regarding the signal pulse format, nonreturn-to-zero (NRZ) and return-to-zero (RZ), and interchannel interaction caused by four-wave mixing (FWM) and cross-phase modulation (XPM) is described for optimizing WDM system performance. It is experimentally shown that RZ pulse transmission is possible without significant spectral broadening over a wide wavelength range in dispersion managed fiber spans. Using these results together with a wideband optical amplifier gain-bandwidth management technique, yields long-distance WDM transmission with the capacity of 25 × 10 Gb/s over 9288 km.

References

  1. N. S. Bergano, C. R. Davidson, M. Ma, A. Pilipetskii, S. G. Evangelides, H. D. Kidorf, J. M. Darcie, E. Golovchenko, K. Rowitt, P. C. Corbett, R. Menges, M. A. Mills, B. Pedersen, D. Peckham, A. A. Abramov and A. M. Vengsarkar, "320 Gb/s WDM transmission ( 64×5 Gb/s) over 7200 km using large mode fiber spans and chirped return-to-zero signals", in Proc. OFC'98,.
  2. M. Murakami, K. Suzuki, H. Maeda, T. Takahashi, A. Naka, N. Ohkawa and M. Aiki, "High speed TDM-WDM techniques for long-haul submarine optical amplifier systems", Optic. Fiber Technol., vol. 3, no. 4, pp.  320-338, 1997.
  3. G. P. Agrawal, Nonlinear Fiber Optics, New York: Academic,
  4. N. S. Bergano, C. R. Davidson, M. A. Mills, P. C. Corbett, R. Menges, J. L. Zyskind, J. W. Shulhoff, A. K. Srivastava and C. Wolf, "Long-haul transmission using 10 Gb/s channels: A 160 Gb/s (16×10 Gb/s) 6000 km demonstration", in Proc. OAA'97,, Postdeadline PD-9.
  5. K. Mukasa, Y. Akasaka, Y. Suzuki and T. Kamiya, "Novel network fiber to manage dispersion at 1.55 mm with combination of 1.3 mm zero dispersion single mode fiber", Proc. ECOC'97, vol. 1, pp.  127-130, 1997.
  6. K. Yonenaga, A. Matsuura, S. Kuwahara, M. Yoneyama, Y. Miyamoto, K. Hagimoto and K. Noguchi, "Dispersion-compensation-free 40-Gb/s'4 channel WDM transmission experiment using zero-dispersion-flattened transmission line", in Proc. OFC'98,, Postdeadline PD-20.
  7. D. Marcuse, "RMS width of pulses in nonlinear dispersive fibers", J. Lightwave Technol., vol. 10, pp.  17-21, Jan.  1992.
  8. A. Naka and S. Saito, "In-line amplifier transmission distance determined by self-phase-modulation and group-velocity-dispersion", J. Lightwave Technol. , vol. 12, pp.  280-287, Feb.  1994.
  9. Y. Yamamoto, ""Noise and error rate performance of semiconductor laser amplifiers in PCM-IM optical transmission systems", IEEE J. Quantum Electron., vol. QE-16, no. 10, pp.  1073-1081, 1980.
  10. M. Murakami, T. Takahashi, M. Aoyama, T. Imai, M. Amemiya, M. Sumida and M. Aiki, "System performance evaluation of the FSA submarine optical amplifier system", J. Lightwave Technol., vol. 14, pp.  2657-2671, Dec.  1996.
  11. N. S. Bergano, F. W. Kerfoot and C. R. Davidson, "Margin measurements in optical amplifier systems", IEEE Photon. Technol. Lett., vol. 5, no.  3, pp.  948-951, 1991.
  12. M. Murakami, H. Maeda, T. Takahashi, N. Ohkawa and T. Imai, "Transoceanic twelve 10 Gb/s WDM signal transmission experiment with individual dispersion and gain compensation and prechirped RZ pulse format", Electron. Lett., vol. 33, no. 25, pp.  2145-2146, 1997.
  13. T. Matsuda, M. Murakami and T. Imai, "340 Gb/s (34×10 Gb/s) WDM transmission over 8514 km using broadband gain equalization technique for transoceanic systems", Electron. Lett., vol. 35, no. 13, pp.  1090-1091, 1999.