2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

A Linearized Optical Directional-Coupler Modulator at 1.3 µm

Chanin Laliew, Sigurd Weidemann Løvseth, Xiaobo Zhang and Anand Gopinath Fellow, IEEE

Page 1244.

Abstract:

We investigate electrooptic directional-coupler modulators operating at the wavelength of 1.3 µm, to have high linearity in their response function. The inverse Fourier transform technique was used to synthesize the spatially varying coupling function from a specified response function. The resulting coupling function was then used to determine the shape of the modulator structure. Modulators to have the response function of the form of a triangular ("linear") function have been designed,fabricated, and tested. The third-order intermodulation-limited spurious-free dynamic range, at -130-dBm normalized noise floor, of 96.2 dB/Hz2/3 was obtained.

References

  1. L. M. Johnson and H. V. Roussell, "Reduction of intermodulation distortion in interferometric optical modulators", Opt. Lett., vol. 13, no.  10, pp.  928-930, Oct.  1988.
  2. A. Djupsjobacka, "A linearization concept for integrated-optic modulators", IEEE Photon. Technol. Lett., vol. 9, pp.  869 -879, Aug.  1992.
  3. M. L. Farwell, Z.-Q. Lin, E. Wooten and W. S. C. Chang, "An electrooptic intensity modulator with improved linearity", IEEE Photon. Technol. Lett., vol. 3, pp.  792-795,  Sept.  1991.
  4. P.-L. Liu, B. J. Li and Y. S. Trisno, "In search of a linear electrooptic amplitude modulator", IEEE Photon. Technol. Lett., vol. 3, pp.  144 -146, Feb.  1991.
  5. H. Skeie and R. V. Johnson, "Linearization of electrooptic modulators by a cascade coupling of phase modulating electrodes", Integrated Optical Circuits, vol. SPIE-1583, pp.  153-164, 1991.
  6. W. K. Burns, "Linearized optical modulator with fifth order correction", J. Lightwave Technol., vol. 13, pp.  1724-1727, Aug.  1995 .
  7. S. E. Miller, "Coupled wave theory and waveguide applications", Bell Syst. Tech. J., vol. 33, pp.  661-719, 1954.
  8. H. Kogelnik and R. Schmidt, "Switched directional couplers with alternating ", IEEE J. Quantum Electron., vol. QE-12, pp.  396-401, July  1976.
  9. R. C. Alferness, "Titanium-diffused lithium niobate waveguide devices,"in Guided-Wave Optoelectronics, T. Tamir, Ed. 2nd ed.   New York: Springer-Verlag, 1990, pp.  145-206. 
  10. G.-H. Song and S. Y. Shin, "Design of corrugated waveguide filters by the Gel'fand-Levitan-Marchenko inverse scattering method", J. Opt. Soc. Amer., vol. 2, pp.  1905-1915, Nov.  1985.
  11. K. A. Winick, "Design of grating-assisted waveguide couplers with weighted coupling", J. Lightwave. Technol., vol. 9, pp.  1481-1492, Nov.  1991.
  12. S. W. Løvseth, C. Laliew and A. Gopinath, "Synthesis of amplitude response of optical directional coupler modulators", in 1997 IEEE MTT-S Int. Microwave Symp. Dig., vol. III, June 1997, pp.  1717-1720. 
  13. K. A. Winick, "Design of corrugated waveguide filters by Fourier transform techniques", IEEE J. Quantum Electron., vol. 26, pp.  1918-1929, Nov.  1990.
  14. R. C. Alferness and P. S. Cross, "Filter characteristics of codirectionally coupled waveguides with weighted coupling", IEEE J. Quantum Electron., vol. QE-14, pp.  843-847, Nov.  1978.
  15. M. G. Cohen and E. I. Gordon, "Acoustic beam probing using optical techniques", Bell Syst. Tech. J., vol. 44, no. 4, pp.  693-721, Apr.  1965.
  16. S. W. Løvseth, C. Laliew and A. Gopinath, "Amplitude response of optical directional coupler modulators by Fourier transform technique", in 8th Eur. Conf. Integrated Optics Proc., Stockholm, Sweden,Apr. 1997, pp.  230-233. 
  17. E. Gamire, "Semiconductor components for monolithic applications,"in Topics in Applied Physics, T. Tamir, Ed. New York: Springer-Verlag, 1979,vol. 7, pp.  244-304. 
  18. K. L. Johnson, "Nonuniform semi-vectorial finite difference analysis of dielectric waveguide structure", Master's degree thesis, Univ. Minnesota, Minneapolis, 1993.
  19. M. H. Khan, "Electrooptic waveguide directional coupler modulator in aluminum arsenide-gallium arsenide", Ph.D. dissertation, Univ. Minnesota, Minneapolis, 1994.
  20. H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits, New York: McGraw-Hill, 1989.
  21. K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu and W. S. C. Chang, "Linearization of 1.3 µ m MQW electro-absorption modulators using an all-optical frequency-insensitive technique", IEEE Photon. Technol. Lett., vol. 10, pp.  964 -966, July  1998.