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Efficient Curvature Analysis of Buried Waveguides
Phillip D. Sewell, Member, IEEE,and T. M. Benson,

Abstract—The highly efficient free space radiation mode
method is extended, enabling for the first time its use in de-
termining the lossy modes of curved buried semiconductor
waveguides. Both the real and imaginary parts of the propagation
constant along with the corresponding field profiles, are found
with an accuracy comparable to that of more computationally
intensive methods.

I. INTRODUCTION

CURVED waveguides are an essential ingredient of modern
integrated optoelectronics and therefore design tools that

can accurately predict their field properties are of significant in-
terest. In particular, precise determination of their modal prop-
erties, including the bending losses, is highly desirable. Thus,
many approaches have applied to this problem over the years.
These range from perturbations of straight waveguide solutions
and simple asymptotic approximations for the curvature loss,
through to full wave mode matching methods, and more numer-
ical techniques such as the finite difference method, the method
of lines, and beam propagation methods, [1]–[17]. While the
perturbation methods are useful for bends with large radii of cur-
vature, recent demands for relatively tight and, hence, relatively
lossy bends, has encouraged the use of the latter approaches
which are more accurate and widely applicable. It is also note-
worthy that one particular stimulation for the development of
accuratefully vectorialmethods is the recent interest in the po-
larization conversion properties of waveguide bends, both as a
cause of performance degradation and as the basis of useful de-
vices, [18], [19]. However, as it is known that this phenomenon
is primarily associated with structures containing large refrac-
tive index contrasts, such as those found in deeply etched rib
waveguides, there is a still a substantial role for advancedpolar-
izedanalyzes to play, specifically the study of moderately tight
bends in buried waveguides.

Semi-analytical methods are often an attractive prospect for
the designer who wishes to investigate a wide variety of design
possibilities as they can combine good accuracy with fast execu-
tion times. Many such methods are available for a range of prac-
tical components, although it is usual that each method is ideally
suited to a particular class of problems. One such semi-analyt-
ical approach is the free space radiation mode (FSRM) method,
[20]–[27], which has been successfully applied to problems in-
volving structures that have a relatively small refractive index
contrast transverse to the direction of propagation. This class of
problem encompasses a wide range of useful devices, in par-
ticular those based upon buried semiconductor waveguides and
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Fig. 1(a)–(c) illustrate schematically some of the structures that
can be analyzed. A modified FSRM method, referred to as the
half space radiation mode (HSRM) method, [28], allows the
analysis to be readily extended to buried waveguides in the pres-
ence of a strong transverse index discontinuity, such as might
occur at a semiconductor-air boundary, [see Fig. 1(d)].

In the past few years, the FSRM approach has been applied
as a mode solver, including the vector case, to the demanding
problem of coated and angled laser facet reflectivity as well as
a propagation method used to analyze the performance of spot
size converters, [20]–[27]. In each case, the results produced
by the FSRM method were of comparable accuracy to those
produced by far more numerically intensive approaches but with
a substantial saving in calculation time.

The FRSM approach is based upon one simple approxima-
tion. It is assumed that the fields in a guiding structure pos-
sessing a small refractive index contrast can be expressed as a
superposition of the fields of the local guided modes along with
a simple plane wave spectrum which models the radiation field.
This plane wave spectrum is subsequently treated as if it exists in
a uniform medium of refractive index . Clearly, this assump-
tion is valid as the index contrast tends to zero, although in prac-
tice it has been found to yield accurate results for differences of
up to 10%. Furthermore, the method is relatively insensitive to
the exact choice of . In fact, although one can usually find
a specific value for that maximizes the accuracy of a par-
ticular type of analysis, such as a finding the modes of straight
waveguides, [21], simply using the value of the cladding index
generally yields very good results.

The efficiency of the FSRM method can be traced to the ease
with which transverse junction problems are handled. Unlike the
mode matching method for example, which upon enforcing the
boundary conditions requires the solution of a moderately large
number of linear equations, the FSRM method explicitly ex-
presses the plane wave amplitudes on either side of the junction
in terms of the Fourier transforms of the local guided modes.
Subsequently, requiring that thetotal radiation field which is
represented by this plane wave spectrum to be orthogonal to the
local guided modes then yields either a determinental equation
in the case of a mode solver, or else the guided mode scattering
coefficients in the case of a facet problem.

This paper applies the FSRM method to finding the lossy
modes of curved buried waveguides. Although the detailed dis-
cussion is limited to a buried waveguide of rectangular core
cross section, the principle applies to any waveguide with low
transverse index contrast. It is important to note that the method
gains further advantage in the determination of lossy modes as
it is does not require the use of an artificially truncated calcula-
tion space and therefore correctly models the truly open nature
of the problem.
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Fig. 1. (a)–(c) Schematic diagrams of buried structures which can be analyzed using the FSRM. (d) HSRM methods. (Note that all the refractive indexes,except
that of the air in (d), must be within 10%) (a) Buried rectangular cores, [21], [22]. (b) Multilayer buried cores, for example, a double heterostructure laser [23]. (c)
General buried guide structures, [23]. (d) Buried guides near to the air-semiconductor boundary [28].

II. THEORY

The structure under consideration is shown in Fig. 2. The
guide cross section consists of a core of refractive index,
height and width , buried in a cladding material of index

. As discussed above, the FSRM approach is applicable when
the index contrast between the core and the cladding is small,
typically less than 10%. In such a case, the polarized approxima-
tion to the true vector field is a good one, [29], and the cross-po-
larization coupling that has been observed in air-semiconductor
structures is negligible.

In this work, both scalar and five component polarized formu-
lations have been developed. For transverse electric (TE) modes,
the principal field components explicitly appearing in the anal-
ysis are and and for transverse magnetic (TM) modes,

and .
Helmholtz’s equation, conveniently expressed in cylindrical

coordinates, requires that

for the TE case and

for the TM case. (1)

Subsequently, will be used to represent either (TE case)
or (TM case).

Fig. 2. The cross section of the curved buried rectangular waveguide.

The structure is divided into three regions as shown in Fig. 2.
In regions I and III, the total field can be represented exactly
as a superposition of plane waves and in region II the field is
expressed as a superposition of the guided mode of a vertical
three-layer slab and a radiation field. As discussed in the in-
troduction, the radiation field is approximated by a plane wave
spectrum assumed to exist in a uniform medium of refractive
index .

Consequently, we represent the field,as
Region I:

(2)
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Region II:

(3)

Region III:

(4)
where

1) even symmetry has been assumed in thedirection;
2) is the propagation constant of the vertical three-layer

slab mode in region II;
3) is the field profile of the vertical three-layer slab

mode in region II, specifically represented below as
and for the TE and TM cases respectively;

4) , and below and , are the Fourier trans-
forms of the field profiles of the three-layer slab mode;

5) and ;
6) ;

7) being the free space wavelength;
8) and are constants and and are the spectral

coefficients of the radiation field.
It is observed that at the edges of the guide, and

, the representation of the field in (2)–(4) is already
continuous as required.

It is also necessary, to enforce continuity of in the TE case
or in the TM case at and . To enable this it is
noted that for the plane waves;

TE

TM (5)

where the subscript “” indicates “ ” for regions I and III and
“ ” for region II.

Similarly for the guided mode of the three-layer slab

TE

TM for

for (6)

Taking the Fourier transform of (5) and (6) with respect to, the
continuity of is satisfied for the TE case if, in the transform
space, as shown in (7) and (8) at the bottom of the page where

denotes , etc.
Similarly, for the TM case, continuity of requires that, as

shown in (9) and (10) at the bottom of the next page. Note that
to avoid a convolution the transform is calculated directly
from (6) in the space domain rather than from .

(7)

and

(8)
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Equations (7) and (8) for the TE mode or (9) and (10) for the
TM mode can now be straightforwardly rearranged to give

(11)

where is a 2 2 matrix.
It is commented here that if the true radiation mode spectrum

of the three-slab had been used rather than the FSRM approxi-
mation to it, then it would not have been possible to derive an
explicit expression for the spectral coefficients as in (11). Rather
an integral equation for the total fields atand would be ob-
tained. Even if the discrete radiation modes of a boxed slab had
been used, it would be necessary to solve a large set of linear
equations to recover the spectral coefficients. Thus, it is (11)
that is the key to the simplicity of the FSRM method.

The total FSRM radiation field, denoted below by the
subscript “un,” is now required to be orthogonal to the guided
modes of the three-layer slab and this is enforced at both
and in the form, [24],

(12)
This is conveniently evaluated in the transform space using
(2)–(11) and for compactness the overall result is written in the
form,

(13)

The modes of the buried guide are characterized by the values of
which reduce the determinant of the matrix

to 0 and the fields are then given by (2), (3), (4), (6) and (11).
There exist a number of straightforward extensions to the

basic approach which increase its flexibility.

1) A vectorial formulation of this analysis is also possible
if deemed necessary by combining the above procedure
with the vectorial approach of [22], however this is not
required for many examples of buried waveguide struc-
tures with low transverse refractive index contrast such
as those presented below.

2) A further extension that may be appropriate occurs when
the vertical three-layer slab of region II supports more
than one guided mode. In this case the analysis is mod-
ified in a manner similar to that presented in [25] for
the case of propagation in straight guides. In this circum-
stance, the simple constantsand above become vec-
tors and the orthogonality between the FSRM radiation
field and each local guided slab mode is imposed sepa-
rately. This yields a matrix equivalent to in (13) whose
order is twice the number of guided modes supported by
the slab.

3) The case of diffused channel waveguides, which have a
small index contrast between the channel and substrate
but a large contrast between the guide and the air above
[see Fig. 1(d)], can be dealt with by combining the fol-
lowing approach with the HSRM method described in
[28].

4) Finally, more complex structures such as that shown in
Fig. 1(c) can be tackled in a manner similar to that pre-
sented in [23]. In each of the regions supporting guided
slab modes, (analogous to region II of Fig. 2), an expan-
sion like that of (3) is available and continuity between the
regions is sufficient to determine the FSRM spectral co-
efficients in each. Again, application of the orthogonality
requirement in each region yields an equation equivalent
to (13).

The practical implementation of the approach presented here
is simple in practice. However, as is well known, care needs to
be taken to ensure sufficiently accurate evaluation the Bessel
functions of complex order. In this work we have used the uni-
form asymptotic expansions for these as well as for the neces-

(9)

and

(10)
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TABLE I
THE MODAL PARAMETERS OF THEFUNDAMENTAL (A) TE AND (B) TM MODES. � = 1:55 �m, 2W = 6 �m, 2H = 3 �m, n = 1:50 AND

n = 1:52. (FREE SPACE RADIATION MODE METHOD, FSRM, SOURCE TYPE INTEGRAL METHOD, STIM, METHOD OF LINES, MOL,
SEMI-VECTORIAL FINITE DIFFERENCE, SVFD AND EFFECTIVE INDEX, EI)

(a)

(b)

sary Airy functions since although they are more complicated
than the Debye expansions, they are more generally applicable,
[11], [31].

III. RESULTS

In order to validate the accuracy of the extended FSRM ap-
proach, we will first compare the results obtained with results
from other methods which have been reported in the literature.
Furthermore, we have also produced results from a polarized
(semivectorial) finite difference (SVFD) mode solver, imple-
mented in cylindrical coordinates and using perfectly matched
layers as absorbing boundaries, [32].

The first example has core and cladding indexes of 1.52 and
1.50, respectively, m, m and

m. Results are presented in Table I for the effective index,,
which to be consistent with [12] is defined asRe

, and Im , the curvature loss for a
bend. It is noted that the results from the method of lines,

(MoLs) and the source type integral equation method (STIM)
taken from [12] are in fact vectorial.

From Table I(a) and (b) it is immediately apparent that there is
excellent agreement between the FSRM results and those from
the other methods. To emphasize this, Fig. 3(a) and (b) plot the
percentage difference between the results from each method and
the STIM. To allow close scrutiny, this has been done for the
real part of propagation constant using the more sensitive nor-
malized quantity

Re

It is seen that the agreement with the STIM is especially good
for both TE and TM cases which not only confirms the accuracy
of the FSRM approach, but also validates the use of polarized

fields for this example. Finally, it is clear that the simple effec-
tive index (EI) method is inadequate for this example, particu-
larly in predicting the bending loss. However, it is interesting to
observe that the FSRM analysis reduces to the EI method if one
neglects the radiation fields in the core region, although their
inclusion for this problem is clearly necessary.

Fig. 4 shows a selection of field profiles produced by the
FSRM approach which not only clearly demonstrate the ex-
pected mode distortion caused by the bending, but also that the
required field continuity is achieved.

To produce the results for the preceding example,has
been used as the uniform index of the FSRM radiation field
in region II. The integration appearing in (12) is performed
numerically, and convergence with both the upper limit and
number of sample points confirmed. The overall calculation
time depends upon the search algorithm used to identify
the zeros of (13); the EI method can be used to identify a
suitable initial estimate which is then refined using a stan-
dard zero search routine, [30]. Typically, calculation of each
point on the curves using the FSRM method requires less
than 20 s on a 600-MHz Pentium III PC for convergence
to the accuracy presented here. In comparison, some of the
SVFD results required substantially longer to compute. The
fastest SVFD calculation times were found to be possible by
using direct matrix techniques as opposed to iterative ones,
although this required substantial quantities of memory.
Typically on a 550-MHz alpha workstation the calculation
time per point using the SVFD method could be brought
down to no more than 20 min although this required about
200 MB of memory (using a mesh of 280 120 points and
taking advantage of symmetry). It is also worth recalling
that as described above, the complex order Bessel functions
required by the FSRM method have been evaluated with the
emphasis on accuracy rather than speed and it is possible
that faster operation could be obtained by careful use of the
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(a)

(b)

Fig. 3. Comparison of the normalized real part of the propagation constant of the fundamental (a) TE and (b) TM modes.� = 1:55 �m,2W = 6 �m,2H = 3
�m,n = 1:50 andn = 1:52. �b = (b � b )=b . b = ([Re(n )] � n )=(n � n ).

faster Debye expansions without compromising the overall
accuracy. Notwithstanding this, the FSRM clearly provides a
fast, yet precise tool for the purpose of practical design.

Having established the accuracy and speed of the FSRM ap-
proach, it is appropriate to investigate its range of validity and
thus the refractive index difference between the core and the
cladding regions of the waveguide was increased. In order to
try to distinguish between the consequences of this index dif-
ference and other influences on the accuracy of the results, the
height and width of the core were simultaneously varied so as
to keep the normalized quantity con-
stant with . Furthermore, the radius of curvature was
changed in each case to ensure that the radiation loss remained
approximately the same for each example. These steps ensure

that any variations in the accuracy with which the Bessel func-
tions are evaluated for different arguments are minimized. Re-
sults are given in Table II for the both the real parts of the prop-
agation constants and the radiation loss, noting that in this case
the more straightforward definition of Re
has been used. Moreover, Fig. 5 again shows the variation of
the more sensitive parameter. It can be seen that the agreement
remains very good until , defined as , reaches
about 10% and even at this point, the error is increasing only rel-
atively slowly. Finally, it is appropriate to note that the results
given in Table II and Fig. 5 are all for polarized case and for
larger refractive index contrasts, attention will need to be given
to the onset of fully vectorial behavior. As discussed above, this
would be based upon the formulation presented in [22].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Field plots for the structure of Fig. 3: (a)jH j : TE; R +W = 1200 �m, (b) jE j : TE; R +W = 1200�m, (c) jH j : TE; R +W = 450 �m,
(d)jE j : TE; R +W = 450 �m, (e) jE j : TM; R +W = 1200 �m, (f) jH j : TM; R +W = 1200 �m, (g) jE j : TM; R +W = 450 �m,
(h)jH j : TM; R +W = 450 �m.

The final issue that is addressed is the choice of the back-
ground refractive index, , in which the radiation fields in the
waveguide core are assumed to exist. As discussed in the intro-
duction, choosing has previously proved a reliable
selection, although to date, there does not exist a completely
rigorous justification for doing so. However, to assess the sensi-

tivity of the present analysis to the exact value used, Fig. 6 shows
the change in modal parameters caused by varying. The
shaded bands on the figure show the spread in results obtained
from STIM, MoL and SVFD, using Re , and
are used to gauge the sensitivity. It is clear that as claimed previ-
ously, the sensitivity to the exact value of is not a problem.
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TABLE II
THE MODAL PARAMETERS OF THEFUNDAMENTAL TE AND TM MODES. � = 1:55 �m, (W=3) = (1:52 � n )=(n � n ), H = 2W ,

n = 1:50 AND �n = (n � n =n )

Fig. 5. Variation of the normalized real part of the propagation constant of the
fundamental TE and TM modes with refractive index contrast,�n = (n �

n =n ). � = 1:55 �m,W = 2 � H andn = 1:50, b = ([Re(n )] �

n =n � n ) and3 1:52 � n = H n � n .

However, it is added that for values of above about 1.51,
rapid fluctuations do start to occur which are attributable to un-
physical resonances of the FSRM radiation fields in the core.
Therefore values of which allow such resonances to occur
should not be considered and we conclude that the practice of
using is a robust, albeit currently empirical, choice.

IV. CONCLUSION

A novel semi-analytical analysis of buried semiconductor
waveguide bends has been presented. The method, based upon
the FSRM approach, has been shown to provide highly accurate
results requiring a short calculation time and minimal memory
resources. Excellent agreement has been obtained between
the results of this method and those from more numerically
intensive “exact” techniques for the polarized solutions of
relatively tightly curved structures. Full field profiles have
also been presented. The extension of the approach to more
geometrically complicated structures has been discussed as
well as results demonstrating the range of validity of the
method and the sensitivity to changes in the background index
assumed in the model.

(a)

(b)

Fig. 6. Variation of the normalized real part of the propagation constant of the
fundamental TE and TM modes with background indexn . � = 1:55 �m,
2W = 6 �m,2H = 3 �m, (R +W )=� = 800,ns = 1:50 andn = 1:52.
b = ([Re(n )] � n )=(n � n ). The shaded bands indicate the spread of
values obtained from STIM, MoL and SVFD given in Table I.
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