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Efficient Curvature Analysis of Buried Waveguides

Phillip D. Sewell Member, IEEEand T. M. Benson

Abstract—The highly efficient free space radiation mode Fig. 1(a)—(c) illustrate schematically some of the structures that
method is extended, enabling for the first time its use in de- can be analyzed. A modified FSRM method, referred to as the
termining the lossy modes of curved buried semiconductor half space radiation mode (HSRM) method, [28], allows the

waveguides. Both the real and imaginary parts of the propagation . - . . .
constant along with the corresponding field profiles, are found analysis to be readily extended to buried waveguides in the pres-

with an accuracy comparable to that of more computationally €nce of a strong transverse index discontinuity, such as might
intensive methods. occur at a semiconductor-air boundary, [see Fig. 1(d)].

In the past few years, the FSRM approach has been applied
|. INTRODUCTION as a mode solver, including the vector case, to the demanding

URVED waveguides are an essential ingredient of rnode[?rqoblem of_coated and angled laser facet reflectivity as well as
integrated optoelectronics and therefore design tools tli\apropagatlon method used to analyze the performance of spot
can accurately predict their field properties are of significant i ize converters, [20}-{27]. In each case, the results produced

" . T . rE)y the FSRM method were of comparable accuracy to those
terest. In particular, precise determination of their modal pro

N . . o . roduced by far more numerically intensive approaches but with
erties, including the bending losses, is highly desirable. Th Ssubstantial saving in calculation time.

many approaches have applied to this problem over the year he ERSM approach is based upon one simple approxima-

These range from perturbations of straight waveguide solutions : . . -
i . L tion. It is assumed that the fields in a guiding structure pos-
and simple asymptotic approximations for the curvature loss, . L
. seéssing a small refractive index contrast can be expressed as a
through to full wave mode matching methods, and more numér- " ) . .
. : S superposition of the fields of the local guided modes along with
ical techniques such as the finite difference method, the method: : 2
a Simple plane wave spectrum which models the radiation field.

of lines, and beam propagation methods, [1]-{17]. While thlehis lane wave spectrum is subsequently treated as if it exists in
perturbation methods are useful for bends with large radii of cur- P P N y

. . . a}uniform medium of refractive index,,,. Clearly, this assump-
vature, recent demands for relatively tight and, hence, relatN? dn is valid as the index contrast tends to zero although in prac-
lossy bends, has encouraged the use of the latter approagh '

which are more accurate and widelv aoplicable. It is also notéq%slt has been found to yield accurate results for differences of
y app ' p to 10%. Furthermore, the method is relatively insensitive to

worthy that one particular stimulation for the development (%Lte exact choice of,,,. In fact, although one can usually find

accuratdully vectorialmethods is the recent interest in the po- - -
N . . ; a specific value fomn,, that maximizes the accuracy of a par-
larization conversion properties of waveguide bends, both as a X g .
: . Icular type of analysis, such as a finding the modes of straight

cause of performance degradation and as the basis of usefulwae\;e uides, [21], simply using the value of the cladding index
vices, [18], [19]. However, as it is known that this phenomenon 9 ' ’ Py 9 9

is primarily associated with structures containing large refrad. nerally yields very good results.
tive index contrasts, such as those found in deeply etched vr\ill%The efficiency of the FSRM method can be traced to the ease

waveguides, there is a still a substantial role for advapaat- ith which transverse junction problems are handled. Unlike the

izedanalyzes to play, specifically the study of moderately tigﬁpOde matching method fqr example, V\.’hiCh upon enforcing the
bends in buried waveguides. boundary conditions requires the solution of a moderately large

Semi-analytical methods are often an attractive prospect f&;mber of linear equations, _the FSRM_methc_)d exphcnjy ex-
esses the plane wave amplitudes on either side of the junction

the designer who wishes to investigate a wide variety of des@ﬁterms of the Fourier transforms of the local guided modes.

possibilities as they can combine good accuracy with fast exe%lu_bsequently requiring that thetal radiation field which is
tion times. Many such methods are available for a range of pra}c- resented b, thi
§P y this plane wave spectrum to be orthogonal to the

(®

tical components, although itis usual that each method is idea| . ) X . .
P 9 1 al guided modes then yields either a determinental equation

suited to a particular class of problems. One such semi—anag{%tj-the case of a mode solver, or else the guided mode scatterin
ical approach is the free space radiation mode (FSRM) methad, . . : 9 9
coefficients in the case of a facet problem.

[20]-[27], which has been successfully applied to problems i This paper applies the FSRM method to finding the lossy

volving structures that have a relatively small refractive index ; . : .
contrast transverse to the direction of propagation. This Classga(f)s(iieosnors(:lljixﬁg dbltjg'ef g\llj 6:}/:3[;\';;32 ﬁ‘:ghemé?Tégfageﬁg?dcg'rse'
problem encompasses a wide range of useful devices, in pa;i!- s section, the principle applies t?) any wave uid?a with low
ticular those based upon buried semiconductor waveguides %n o P pi€ app y 9

ransverse index contrast. It is important to note that the method

_ _ . gains further advantage in the determination of lossy modes as
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Fig. 1. (a)—(c) Schematic diagrams of buried structures which can be analyzed using the FSRM. (d) HSRM methods. (Note that all the refractescemtexes,
that of the air in (d), must be within 10%) (a) Buried rectangular cores, [21], [22]. (b) Multilayer buried cores, for example, a double heteedasecfas]. (c)
General buried guide structures, [23]. (d) Buried guides near to the air-semiconductor boundary [28].

Il. THEORY y po >
The structure under consideration is shown in Fig. 2. Th o
guide cross section consists of a core of refractive indgx T
height2H and width2W, buried in a cladding material of index i
ns. As discussed above, the FSRM approach is applicable wh R, l r
the index contrast between the core and the cladding is sm: "
typically less than 10%. In such a case, the polarized approxirr Region I Region IT Region I
tion to the true vector field is a good one, [29], and the cross-p.
larization coupling that has been observed in air-semiconductor
structures is negligible. Fig. 2. The cross section of the curved buried rectangular waveguide.

In this work, both scalar and five component polarized formu-
lations have been developed. For transverse electric (TE) modes,
the principal field components explicitly appearing in the anal-
ysis areH, and E, and for transverse magnetic (TM) modes, The structure is divided into three regions as shown in Fig. 2.

v

E, and Hg. In regions | and Ill, the total field can be represented exactly
Helmholtz's equation, conveniently expressed in cylindric&ls a superposition of plane waves and in region Il the field is
coordinates, requires that expressed as a superposition of the guided mode of a vertical

) ) three-layer slab and a radiation field. As discussed in the in-
[1 9 r 9 + L iy - L} H,(r, y)e ™" =0 troduction, the radiation field is approximated by a plane wave
ror or 9y r? spectrum assumed to exist in a uniform medium of refractive
for the TE case and indexz,y.
18 8 9 1 on2 , 2 oy Con_sequently, we represent the fieldas
[;$75+8_y§8—y+k —T—Q}Ey(uy)e =0 Region I:
for the TM case. D

o0 Jolpr) + N
Subsequentlyy will be used to represent eithéf, (TE case) o(r y) = /0 ds\/2/m cos(sy) 7, (o) (g(s)A + a(s)).

or E, (TM case). @)
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7) k, = 2/7, A being the free space wavelength;

Region Il ,
8) A andB are constants ani{s) andb(s) are the spectral
o(r, y) coefficients of the radiation field.
It is observed that at the edges of the guide—= . — W and
= $(v) ro = r.+ W, the representation of the field in (2)—(4) is already

o (1) HE (ygm2) = HE (y7) y (72) A continuous as required.
Ju(vgm1) H( ) )—H,EQ) (vgr1)du (vgr2) Itis glso necessary, to enforce continuityfafin the TE case
H® HD (Vg ] or Hy in the TM case at = 71 andr = 7. To enable this it is
S (1) o (v 1)_ v (157)Ju (371 B) noted that for the plane waves;

+ @ @
Jo(vgr1) Ho (vgr2) — Hu™ (g71) Ju(vg72)
e jwite OH,
+ ds\/2/m cos(sy) TE: Ep = k‘éw_uSQ 7‘”
0 @
S B () = B () () | o ™: H, — 3t OBy ©)
,],,(’wl)H,(,Q)(’wg)—H,@(’Wl)] (yr2) e k} —s2 or
(2) (2)
Jo(yr)Hy 1) —Hy ) (yr 7 . . .
+ () (2)(771) (2)(77) 1) b(s)) where the subscript:* indicates ‘s” for regions | and 1l and
L (e ) By (yr2) = Hu™ (1) L (y2) un” for region I1.
(3)  Similarly for the guided mode of the three-layer slab
Region IlI; _ Jwpe OH,
TE: E
o= v2 o Or
o0 H(Q) or - - o 2
o) = [ sy cos(su>ﬁ<¢g<s>3+ B(s)) T s = 9 2B oy <
pr2 V2 "
4)
—jwn? 9E,
where Hy =202 500 forjy| > h. )

1) even symmetry has been assumed injth@ection;

2) ~4 Is the propagation constant of the vertical three-layer
slab mode in region lI; Taking the Fourier transform of (5) and (6) with respeaj tthe

3) ¢4(y) is the field profile of the vertical three-layer slabcontinuity of Hy is satisfied for the TE case if, in the transform
mode in region Il, specifically represented below:g&) space, as shown in (7) and (8) at the bottom of the page where
ande,(y) for the TE and TM cases respectively; JI(z) denoteg8J,(z)/0z), etc.

4) ¢,(s),and belowh,,(s) andé,,(s), are the Fourier trans- ~ Similarly, for the TM case, continuity of, requires that, as
forms of the field profiles of the three-layer slab mode; shown in (9) and (10) at the bottom of the next page. Note that

5) v = k%, — s> andp = \/kZ — s?; to avoid a convolution thetransforﬁag(s)is calculated directly
6) k. = nsko, ke = noko, kun = nunks; from (6) in the space domain rather than frém(s).

2

~ / . HIS?) Y H,/,(Q) -, . A B
hyg(s)A—i—d(s) <J,’,(p7’1)> o (s (Ju('yg”) ('7ﬂ72) ('Vﬂ”)‘] ('7g72)) + Vg1
— Cp
p Jopr)) Ty (v ) HED (g72) = HE? (g71) T (vg2)
9 .
) (O BD () = HD (ra) u(ra) ) als) + ()
+o YT @, ) ()
v T (yr)Hy” (yra) — Hy” (yr1) Lo (yre)

and

A+ () HD (1) = HEP (372) 3u(771) ) B

hwo($)B + b H (pr
vo($)B + b(s) (pr2) — oy ()7, 22 @ )
Lo (vgr1) Ho™ (vgr2) — Hu'™ (vgr1) Ju(vg72)

L als) + (.J;(W)Hé” (yry) — H® (m),]y(m)) b(s)

L (8)
g T (v ) HD (vr2) — HE (1), (yr2)
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Equations (7) and (8) for the TE mode or (9) and (10) for the 1)
TM mode can now be straightforwardly rearranged to give

(11)

2)
whereM (s)is a2x 2 matrix,

It is commented here that if the true radiation mode spectrum
of the three-slab had been used rather than the FSRM approxi-
mation to it, then it would not have been possible to derive an
explicit expression for the spectral coefficients as in (11). Rather
an integral equation for the total fieldsratandr, would be ob-
tained. Even if the discrete radiation modes of a boxed slab had
been used, it would be necessary to solve a large set of linear
equations to recover the spectral coefficients. Thus, it is (11)
that is the key to the simplicity of the FSRM method.

The total FSRM radiation field, denoted below by the 3)
subscript “un,” is now required to be orthogonal to the guided
modes of the three-layer slab and this is enforced atbethr;
andr = r5 in the form, [24],

/ BBy, ) % Hunly, 1)+ Bl 1) x Hy(y, 1) =0 4

(12)
This is conveniently evaluated in the transform space using
(2)—(11) and for compactness the overall result is written in the

C [ese(d)-()

A
B

0
0

(13)
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A vectorial formulation of this analysis is also possible
if deemed necessary by combining the above procedure
with the vectorial approach of [22], however this is not
required for many examples of buried waveguide struc-
tures with low transverse refractive index contrast such
as those presented below.

A further extension that may be appropriate occurs when
the vertical three-layer slab of region Il supports more
than one guided mode. In this case the analysis is mod-
ified in a manner similar to that presented in [25] for
the case of propagation in straight guides. In this circum-
stance, the simple constamisand B above become vec-
tors and the orthogonality between the FSRM radiation
field and each local guided slab mode is imposed sepa-
rately. This yields a matrix equivalent g, in (13) whose
order is twice the number of guided modes supported by
the slab.

The case of diffused channel waveguides, which have a
small index contrast between the channel and substrate
but a large contrast between the guide and the air above
[see Fig. 1(d)], can be dealt with by combining the fol-
lowing approach with the HSRM method described in
[28].

Finally, more complex structures such as that shown in
Fig. 1(c) can be tackled in a manner similar to that pre-
sented in [23]. In each of the regions supporting guided
slab modes, (analogous to region Il of Fig. 2), an expan-
sion like that of (3) is available and continuity between the
regions is sufficient to determine the FSRM spectral co-
efficients in each. Again, application of the orthogonality
requirement in each region yields an equation equivalent
to (13).

The modes of the buried guide are characterized by the values of he practical implementation of the approach presented here

v which reducethedetermlnantofth&2matnxf dsN_(s)

is simple in practice. However, as is well known, care needs to

to 0 and the fields are then given by (2), (3), (4), (6) and (11)be taken to ensure sufficiently accurate evaluation the Bessel
There exist a number of straightforward extensions to tlienctions of complex order. In this work we have used the uni-

basic approach which increase its flexibility.

form asymptotic expansions for these as well as for the neces-

(5 om0 HS (gra) = P (1) Jugra) ) A+

B

eyg(S)A+” CL( ) <]1//(p71)> :BO (3)’}/ Wryng
p Ju(pr1) e Jo(vgr1 ) HS (ygra) — HS (vgr1) T (7g72)
- 2 -
n2 (Jl/,(’yrl)HlE?) (yr2) — H:/(Q) (77>1)J,,(’y7>2)) a(s) + s b(s)
+2 @ @ = @)
gl Jo(yr1)Hy (yre) — Hy™ (1) (yr2)
and
A+ (] HY H® (ygr2)dy(v4m1) ) B
€yg(8)B + n2b(s) <H/(2)(p7’2)>  Fong(5) Y472 ( v(Yg72) (971 = (3972) (7971))
- a q
p HP (pry) T (rgr ) S (hgr2) = HiP (4m1) 0 (4572)
2 N ~
n2 o () (T ) B () = B (o) () ) ()
+ o @ @ (10)
v o (yr1)Hy” (yr2) — Hy™ (yr1) Ju(y72)
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TABLE |
THE MODAL PARAMETERS OF THEFUNDAMENTAL (A) TE AND (B) TM MODES A = 1.55 pym,2W = 6 pm,2H = 3 pum,n, = 1.50 AND
n. = 1.52. (FREE SPACE RADIATION MODE METHOD, FSRM, SURCE TYPE INTEGRAL METHOD, STIM, METHOD OF LINES, MoOL,
SEMI-VECTORIAL FINITE DIFFERENCE SVFD AND EFFECTIVE INDEX, EI)

TEq
Degr Lrag
(RAWYA | STIM[12] [ MoL[12] | EIM[12] [ SVFD FSRM STIM[12] | MoL[12] | EIM[12] | SVFD | FSRM
800 1.5068269 | 1.5068216 | 1.5071128 | 1.506836 1.5068253 | 0.3689 0.3635 0.7837 0.3656 | 0.3683
700 1.5064572 | 1.5064507 | 1.5067771 | 1.506467 1.5064556 | 0.8541 0.8421 1.7131 0.8506 | 0.8528
600 1.5059981 | 1.5059887 | 1.5063663 | 1.506008 1.5059958 | 1.9097 1.8844 3.5774 1.901 1.9073
500 1.5054095 | 1.5053956 | 1.5058465 | 1.505410 1.5054065 | 4.0816 4.0317 7.0747 4.053 4.0777
400 1.5046160 | 1.5045934 | 1.5051494 | 1.504617 1.5046120 | 8.2558 8.1663 13.172 8.221 8.2516
300 1.5034476 | 1.5033661 | 1.5041183 | 1.503454 1.5034428 | 15.694 15.549 23.047 15.66 15.696
@
TMyo
Degr Lrad
(RHW)/A STIM[12] | MoL[12] EIM[12] SVFD FSRM STIM[12] | MoL{12] | EIM[12] | SVFD | FSRM
800 1.5067611 | 1.5067598 | 1.5070402 | 1.506768 1.5067602 | 0.3958 0.3887 0.8393 0.3925 | 0.3952
700 1.5063941 | 1.5063911 | 1.5067067 | 1.506402 1.5063931 | 0.9054 0.8901 1.8111 0.9048 | 0.9039
600 1.5059382 | 1.5059322 | 1.5062986 | 1.505947 1.5059360 | 2.0003 1.9692 3.7348 2.006 1.9978
500 1.5053538 | 1.5053433 | 1.5057817 | 1.505365 1.5053510 | 4.2246 4.1659 7.2986 4.243 4.2209
400 1.5045658 | 1.5045465 | 1.5050878 | 1.504569 1.5045618 | 8.4483 8.3468 13.442 8.382 8.4450
300 1.5034044 | 1.5033661 | 1.5040591 | 1.503415 1.5034001 | 15.890 15.731 23.290 15.91 15.896
(b)

sary Airy functions since although they are more complicatdiglds for this example. Finally, it is clear that the simple effec-
than the Debye expansions, they are more generally applicalilee index (EI) method is inadequate for this example, particu-
[11], [31]. larly in predicting the bending loss. However, it is interesting to
observe that the FSRM analysis reduces to the EI method if one
lll. RESULTS neglects the radiation fields in the core region, although their

In order to validate the accuracy of the extended FSRM ai _cllgsio4n f?}r this probller? Is CI??_”)'/ dnecef_slsary. duced bv th
proach, we will first compare the results obtained with resul Slé?\/l S owsha Sﬁ_ er? lon o Ile | prcljlgs produce hy €
from other methods which have been reported in the literatufe; red appdroa(ljc_ tWt' ich not Ogg Ctr? arby de_mo%sttratle ¢ tﬁ ?i(h
Furthermore, we have also produced results from a polari € (rjnfg Ig IS ?r '9,? c.:ausi. yd € bending, but aiso that the
(semivegtoria!) f"?“e differe_nce (SVFD) mode solver, impleregl'ltj)lr;roc;icecﬁhnelr;glsﬁlz <’i‘lt():r Itehvee p.receding example has
mented in cylindrical coordinates and using perfectly matCh%%en used as the uniform index of the FSRM radiati’on field
layers as absorbing boundaries, [32]. ) ) . . o .

The first example has core and cladding indexes of 1.52 ahgregon Il. The integration appearing in (12) is pe_rfo-rmed
1.50, respectively) = 1.50 um, 2H = 3.0 um and2W = 6 numerically, and convergence with both the upper limit and

o ) Lo f le poi fi . Th [l calculati
pam. Results are p_resente_d in Tal_ale | f(_)r the effective index, E;n;bg;;enzasms;or?otlﬁ;s gggr!rTZ?goritﬁrﬁng q Ct?)CiL:thr:S[Ji?y
which to be consistent with [12] is defined &8e(v) /ko(X. + the zeros of (13); the El method can be used to identify a
W), andL;pq = —107Im In(10), the curvature loss fora = e ' L . )
902)bend It |ds noted ;rhat(;;])e/ rlégult)s fromlih\:e rzethod of line uitable initial estimate which is then refined using a stan-

: . : ard zero search routine, [30]. Typically, calculation of each

(MoLs) and the source type integral equation method (Sﬂ@zint on the curves using[ th]e FySpRM ymethod requires less
taken from [12] are in fact vectorial. .

s . than 20 s on a 600-MHz Pentium 1lIl PC for convergence

From Table I(a) and (b) it isimmediately apparentthatthereﬁg the accuracy presented here. In comparison someg of the
excellent agreement between the FSRM results and those fr D results ryepuire d substanti.all lon r:ar to C(’)m ute. The
the other methods. To emphasize this, Fig. 3(a) and (b) plot <t SVED ca?culation fimes wer):a fou?qd o be gssiﬁle b
percentage difference between the results from each method g direct matrix techniques as opposed fo ite?ative onei
the STIM. To allow close scrutiny, this has been done for tHﬁ . . . . '

: - . though this required substantial quantities of memory.
real part of propagation constant using the more sensitive n$y_picagllly on a 55qO-MHz alpha workgtation the calculatiorzl
malized quantit . . )
1zed quantity time per point using the SVFD method could be brought
down to no more than 20 min although this required about
200 MB of memory (using a mesh of 280 120 points and
taking advantage of symmetry). It is also worth recalling
that as described above, the complex order Bessel functions
It is seen that the agreement with the STIM is especially gooequired by the FSRM method have been evaluated with the
for both TE and TM cases which not only confirms the accura@mphasis on accuracy rather than speed and it is possible
of the FSRM approach, but also validates the use of polarizédht faster operation could be obtained by careful use of the

,_ [Retna)]? = 2
o n2 —n?
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Fig. 3. Comparison of the normalized real part of the propagation constant of the fundamental (a) TE and (b) TMmodlgs pm,2W =6 um,2H =3
pm,n, = 1.50 andnc =1.52.Ab = (b — bSTIM)/bSTIM- b= ([Re(ncﬂ)]Q — nf)/(nf — Tlg)

faster Debye expansions without compromising the overd#lfiat any variations in the accuracy with which the Bessel func-
accuracy. Notwithstanding this, the FSRM clearly providestens are evaluated for different arguments are minimized. Re-
fast, yet precise tool for the purpose of practical design. sults are given in Table Il for the both the real parts of the prop-
Having established the accuracy and speed of the FSRM agation constants and the radiation loss, noting that in this case
proach, it is appropriate to investigate its range of validity artie more straightforward definition of.s = (Re(v)/k,R.)
thus the refractive index difference between the core and thas been used. Moreover, Fig. 5 again shows the variation of
cladding regions of the waveguide was increased. In ordertte more sensitive parameteit can be seen that the agreement
try to distinguish between the consequences of this index diémains very good untihn, defined agn. — ns)/ns, reaches
ference and other influences on the accuracy of the results, #mut 10% and even at this point, the error is increasing only rel-
height and width of the core were simultaneously varied so aively slowly. Finally, it is appropriate to note that the results
to keep the normalized quantity = (2x/A\)H+/n2 — nZ con- given in Table Il and Fig. 5 are all for polarized case and for
stant withW = 2H. Furthermore, the radius of curvature wasarger refractive index contrasts, attention will need to be given
changed in each case to ensure that the radiation loss remaiiodtie onset of fully vectorial behavior. As discussed above, this
approximately the same for each example. These steps ensuvald be based upon the formulation presented in [22].
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Fig. 4. Field plots for the structure of Fig. 3: (df,|: TE, R. + W = 1200 um, (b)|E|: TE, R.+W = 1200 um, (c)|H,|: TE. R.+ W = 450 pm,
(d)Es|: TE, R + W = 450 um, (&)|E,|: TM, R. + W = 1200 um, (f) |[Ho|: TM, R. + W = 1200 um, () |E,|: TM, R. + W = 450 pm,
(h)|He|: TM, R. + W = 450 um.

The final issue that is addressed is the choice of the badkdty of the present analysis to the exact value used, Fig. 6 shows
ground refractive index.,, in which the radiation fields in the the change in modal parameters caused by varyigg The
waveguide core are assumed to exist. As discussed in the inBbaded bands on the figure show the spread in results obtained
duction, choosingw,, = n, has previously proved a reliablefrom STIM, MoL and SVFD, using..x = (Re(v) /k,R..), and
selection, although to date, there does not exist a completalg used to gauge the sensitivity. Itis clear that as claimed previ-
rigorous justification for doing so. However, to assess the sensissly, the sensitivity to the exact valuernaf, is not a problem.
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TABLE I
THE MODAL PARAMETERS OF THEFUNDAMENTAL TE AND TM MODES A = 1.55 um, (W/3) = /(1.522 — n2)/(n2 — n2), H = 2W,
ns = 1.50 AND An = (n. — ng/ny)

TEoo TMop
Defr Lrad Nefr Lrad
A% (W/um) | RJ/um | FSRM SVFD FSRM SVFD FSRM SVFD FSRM SVFD
1.51 (3.00) 1197 1.5106018 1.510610 0.3683 0.3655 1.5105365 1.510544 0.3952 0.3925
2.98 (2.00) 350 1.5237226 1.523761 0.2889 0.2861 1.5234012 1.523425 0.3358 0.3206
5.23 (1.50) 150 1.5416967 1.541846 0.2157 0.2204 1.5407151 1.540823 0.2803 0.2718
7.45 (1.25) 85 1.5596174 1.559894 0.2265 0.2186 1.5576683 1.557928 0.3217 0.3165
10.4 (1.05) 50 1.5835539 1.581920 0.2248 0.2323 1.5798153 1.578297 0.3582 0.3723
0.53 0.341
0.340
0.52 :
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Fig. 5. Variation of the normalized real part of the propagation constant of the
fundamental TE and TM modes with refractive index contrast, = (n. —

ne/ns). A = 155 pum, W = 2% H andn, = 1.50,b = ([Regncr)]® — 0.40
n?/n? —n?) and3,/1.522 —n2 = H\/n2 — n2.

0.39
However, it is added that for values of,, above about 1.51,
rapid fluctuations do start to occur which are attributable to un 0.38
physical resonances of the FSRM radiation fields in the core
Therefore values o#,,, which allow such resonances to occur 0.37
should not be considered and we conclude that the practice
usingn.,, = n, is a robust, albeit currently empirical, choice. ¢3¢

0.35
1.480

1.490 1.495
Nyn

IV. CONCLUSION (b)

1.485

1.500 1.505

Fig. 6. Variation of the normalized real part of the propagation constant of the
A novel semi-analytical analysis of buried semiconductdgndamental TE and TM modes with background index. A = 1.55 um,

. V.= 6pum,2H =3 um,(R. + W)/A = 800,ns = 1.50 andn, = 1.52.
waveguide bends has been presented. The methqd, based H:o R e(fnoﬂ)]z - nzl; ; (n,(2 ey, )T/he <ot gands iJndicate e spread of
the FSRM approach, has been shown to provide highly accurad®es obtained from STIM, MoL and SVFD given in Table I.
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