
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 9, SEPTEMBER 2000 1289

Large Magnetooptical Kerr Rotation with High
Reflectivity from Photonic Bandgap Structures with

Defects
M. J. Steel, M. Levy, and R. M. Osgood, Jr., Fellow, IEEE

Abstract—We perform a theoretical study of enhancement of
magnetooptical rotation on reflection of light from a periodic
system with a defect. Using calculations based on a coupled
mode approach and the transfer matrix method we demonstrate
that an asymmetric placing of a single defect allows arbitrary
Kerr rotations with better than 99% reflectivity from very short
devices.

Index Terms—Defect, Faraday rotation, Kerr rotation, magne-
tooptical rotation, periodic structure, photonic crystal, transmis-
sion resonance.

I. INTRODUCTION

M AGNETOOPTICAL rotation is most commonly associ-
ated with Faraday rotation—the rotation of plane polar-

ized light ontransmissionthrough a magnetic medium due to
magnetic circular birefringence. However, the analogous rota-
tion obtained by reflection from a magnetic medium, known as
the Kerr effect, is also important. Well-known applications in-
clude the characterization of thin films, and information read out
from magnetooptical disks. A variety of dielectric materials ex-
hibit magnetooptical rotation. In integrated optics, a notable ex-
ample is bismuth-substituted yttrium iron garnet (Bi-YIG) due
to its comparatively strong rotation, low loss, and its suitability
for heterogeneous integration by single-crystal liftoff and direct
bonding [1] or sputtering. Due to the small interaction lengths
on reflection, Kerr rotations are normally small compared to
Faraday rotations, and while Bi-YIG has a higher rotation per
loss than most materials, Kerr rotations of only fractions of a
degree are typical. For a number of applications, it would thus
be useful to extract larger Kerr rotations.

Recently, there have been several studies of the enhancement
of magnetooptical rotation in periodic systems with defects
[2]–[6] (and also in random structures [7]). Periodic systems
such as thin-film stacks, fiber Bragg gratings [8], and photonic
crystals [9], are, of course, characterized by the existence
of photonic bandgaps (PBGs)—frequency bands in which
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incident light is strongly reflected. The addition of defects
to periodic structures leads to the creation of transmission
resonances associated with trapped states—a familiar example
is distributed feedback lasers constructed from a dielectric stack
with a central phase shift. The essential finding of this work
[2]–[4] is that these systems can produce both Faraday and
Kerr rotations far larger than possible for comparable uniform
systems. The enhancement operates in the following basic
fashion [5]. The structure is illuminated with linearly polarized
light at or close to the frequency of an in-bandgap resonance
associated with the defect(s). The light is trapped inside, local-
ized in the vicinity of the defects, with a consequent increase in
the mean optical path length of the emitted light. As the mean
path length grows, there is also an increase in the optical path
differencebetween the two equally excited circularly polarized
modes as the magnetic circular birefringence acts over a longer
path. The emitted light thus suffers a larger rotation.

In this way, propagation lengths for a given rotation may be
reduced greatly—Faraday rotations of 45or more are predicted
for lengths of a few tens of micrometers, and experiments have
confirmed the effect with observation of both Faraday and Kerr
rotations in excess of 10at visible wavelengths, from stacks
of only 10 m in length [3]. However, the structures initially
studied, which have a single central defect, are far from optimal
because the observed rotation decreases with the intensity of the
output light. In other words, the transmissivity is small when the
Faraday rotation is large, and the reflectivity is small when the
Kerr rotation is large. Indeed, the largest Kerr rotations in the
experiments were achieved with reflectivities less than 1%.

In an earler paper [5], we introduced a coupled-mode
description to study enhancement in the Faraday (transmis-
sion) case. It was shown that the tradeoff associated with a
single central defect was unavoidable, but that using two de-
fects placed appropriately, the structure contained sufficient
degrees of freedom to obtain both high output and high
rotations. Such improved performance with multiple defects
was initially predicted for a certain limited class of designs
in [4]. However, the improvements were unexplained and did
not allow high transmission for all angles. Our own work
[5] explained the improved transmission and considered a
broader class of structures so that high transmission was
possible for a very large range of rotations.

In this paper, we continue this study by turning to the op-
timization of Kerr rotation. We again overcome the tradeoff
between rotation and reflectivity by introducing an extra de-
gree of freedom to the design; in this case, by exploring
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Fig. 1. Connection between thin-film stack and coupled-mode formalism. The upper panel shows a quarter-wave stack(NM) (MN) of materials with
refractive indexesM andN and the lower panel, a schematic representation of the corresponding coupled-mode picture. The incoming and outgoing fields
are also indicated for both linear(A ; A ; B ; B ) and the corresponding circular polarizations(C ; D ).

asymmetric structures. It is particularly easy to optimize such
designs because different parts of the structure are largely
separately responsible for the two aims of high reflection and
high rotation.

The paper is structured as follows. In Section II, we review the
essential points of the model presented in [5]. In Section III, we
briefly explain the tradeoff observed for symmetric structures.
Section IV shows that asymmetric structures escape this tradeoff
and we examine the performance of a number of designs using
both the coupled-mode theory and the transfer-matrix method.
We show that our designs permit rotation over the entire range
0 –90 with essentially 100% reflection.

II. SUMMARY OF MATHEMATICAL MODEL

A. Coupled-Mode Description

In this section, we summarize the main points of our cou-
pled-mode description, which was developed in [5] and to which
the reader is referred for details. Fig. 1 shows the basic ge-
ometry. Incoming linearly polarized light is incident on a
quarter-wave stack (upper half of Fig. 1) or general periodic
system (lower half) that contains one or more isolated defects
separating strictly periodic regions. The defects consist of a
missing layer or phase slip in the periodicity. The object is
to calculate the reflection and transmission coefficientsand

and the degree of rotation and ellipticity of the emitted light.
We denote the front of the stack by and the rear by

.
We assume an external magnetic field is applied in the longi-

tudinal direction to saturate the magnetic material. In a mag-
netic layer, the dielectric tensor then has nonvanishing off-diag-
onal elements , while in nonmagnetic layers,
it is assumed isotropic. To obtain a coupled-mode description,

the dielectric tensors for the individual layers are replaced by an
approximate Fourier expansion in each periodic section

(1)

Here , is the stack period, and
varies from one section to the next to account for the phase shift.
To date, work on magnetooptical rotation in such structures
has concentrated on one-dimensional (1-D) thin-film stacks, but
consideration of corrugated waveguides [5] or 1-D photonic
crystal devices would also be possible. For a corrugated wave-
guide, (1) is interpreted as a description of theeffectivedielectric
tensor of the device. Note that we do not include dispersion be-
tween the transverse electric [TE]() and transverse magnetic
[TM] ( ) modes, as significant dispersion inhibits the magne-
tooptical rotation through phase mismatch [5] and would de-
stroy the effects we wish to discuss. In a waveguide geometry,
the structure would have to be designed to minimize dispersion.

The electric field at wavelength is written

(2)

where are the normalized mode functions for TE
and TM modes, which for a stack geometry reduce to

plane waves with and polarization. Equations (1) and (2)
are substituted into the Maxwell wave equation and nonphase-
matched terms discarded to obtain the coupled-mode equations.
As shown in [5], the problem is best expressed in terms of the
circular polarization modes

(3a)

(3b)
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With the assumption of degeneracy between the TE and TM
modes, the coupled-mode system separates into pairs of equa-
tions for the mode pairs and , which each
satisfy the well-known equations for a periodic structure

(4)
The quantities , where represent
detunings from the resonant Bragg frequencyand contain a
contribution from the mean indexand mean magnetic strength

. Note that , with .
Similarly, the grating coupling strengths de-
pend on both the periodicity in the index profile through

and the periodic part of the magnetic terms
. Note that the signs of and depend on the

direction of the applied magnetic field.
In solving (4), we use (3) to apply the boundary conditions

and , representing
a single TE ( polarized) input of unit amplitude at the front of
the structure (see Fig. 1).

B. One-Defect Systems

In this paper, we concentrate on structures with a single
phase shift separating two periodic gratings (more complex
structures were treated in [5]). We denote such a structure
as : indicating the coupling strength
and length of each section. To precisely describe a cor-
responding thin-film stack we write expressions of the form

, where denotes a magnetic layer and
a nonmagnetic layer. [These stack structures are solved by

the transfer matrix method [2], [4], [10], with all layers being
quarter-wave plates of thickness .] The relation
between the two pictures is indicated schematically in Fig. 1.

The solution for a stack with a single defect separating peri-
odic sections of length and is simply

(5)

where the phasediffers by in the matrices and . From
the reflection and transmission coefficients for the
individual circular polarizations

(6)

(7)

combined with (3), we can find the main parameters of interest:
the total transmission and reflection coefficients

(8)
and the Faraday and Kerr rotations, , and corresponding
ellipticities and , defined as

(9)

Fig. 2. Schematic of structures considered: A–Single symmetric defect.
B–Single asymmetric defect. The dashed lines in each structure are used only
to highlight the phase shifts. Our interest is in optimizing the reflectionR for
Structure B.

(10)

where and . For
the special case that , it is easy to show that the
ellipticity vanishes and that

(11)

This is an important relation. Similarly, if , we have
and

(12)

C. Summary of Effects

Equation (4) indicates that in a uniform structure (no de-
fects), each pair of circularly polarized modes ( and

exhibits a PBG, centered at the points , re-
spectively, due to the periodicity. Light of frequencies inside
the bandgap is strongly reflected by the structure with a peak
reflectivity . The magnetic circular birefringence
resulting from the average magnetooptical strength induces a
small splitting in the location of the bandgaps.
Due to the periodic magnetic term , the reflectivities for op-
posite polarizations are also slightly different, though as we ex-
plain later, this effect can be neglected in the present case. Once
the problem is solved for the individual circular components,
the total response expressed in terms of linear polarizations is
easily found by summing the components using (3).

Equation (5) describes the response when a phase shift or de-
fect is introduced into the system (see Figs. 1 and 2). The prin-
cipal effect of adding one or more phase shifts is the introduc-
tion of narrow transmission resonances near the center of the
bandgaps. In general, the width of the bandgaps ,
and the magnetic effects are regarded as a perturbation to the
grating. However, the bandwidth of thedefect resonancescan
be comparable to and, as we see below, the two effects can
interact strongly to produce enhancement.

D. Physical Units

Our calculations are performed for thin-film stacks con-
structed of either bismuth-substituted YIG (Bi-YIG) and GGG,
or Bi-YIG and SiO , for higher contrast devices We also show
results for corrugated Bi-YIG waveguides on a GGG substrate.
The diagonal elements of the dielectric tensors of these ma-
terials are , , and .
The off-diagonal element for Bi-YIG is which
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corresponds to a Faraday rotation of 0.48 m . We
assume a resonant frequency of 1.55 m.

We frequently use dimensionless units in which all param-
eters are scaled by the intrinsic rotation per unit length of the
magnetic material: . For YIG/GGG stacks,

0.00266 m and the main parameters take the values
, , and [6].

III. SYMMETRIC STRUCTURES

To date, most attention has focused on enhancement of
magnetooptical rotation in highly symmetric structures [2]–[4]
(though Inoueet al. have also examined random multilayers.)
The simplest example is a strictly alternating stack of magnetic
and nonmagnetic layers with a single layer removed in the
exact center (see Structure A in Fig. 2). An alternative but
similar scheme is to place a single magnetic layer at the center
of a nonmagnetic stack in the form .
This latter type was used in experiments [3]. Both transfer-ma-
trix models and experiments showed that when tuned to the
transmission resonances of these structures, transmitted and
reflected light exhibited highly enhanced rotations. As men-
tioned earlier, however, the enhancement is associated with a
substantial decrease in the output intensity, with an increasing
penalty in intensity as the rotation increases. In [5], we used
the coupled mode theory to explain this trade-off and showed
that it is unavoidable for the single-defect symmetric system.
Indeed the rotation and output were shown to be connected by
the simple relations

(13)

so that large rotations 45 imply low output intensities.
The reason for this tradeoff may be understood physically

from Fig. 3(a) and (b). The mathematical description is avail-
able in [5]. Our discussion is framed for operation in transmis-
sion, but the reflection problem is exactly analogous. Fig. 3(a)
shows the transmission coefficients for Structure
A with YIG/GGG parameters for a length 9.5 m. The
transmission resonances at the center of the bandgap are clearly
apparent, though the splitting is hardly visible on this scale. The
upper panel of Fig. 3(b) shows a blowup of the resonances indi-
cating the splitting of the two modes, and also includes the asso-
ciated phase profiles (dotted lines). The lower panel shows
the same situation but expressed in terms of linear polarizations.

First we study the circular modes in the upper panel of Fig.
3(b). In order to achieve a zero ellipticity, we require

, which occurs at . The phase profiles have the
form of smoothed step functions and naturally exhibit the same
magnetic splitting as the intensity profiles. As a result, there
is a considerable phase difference (denoted by the
vertical arrow), which via (12) corresponds to a Faraday ro-
tation. This is apparent in the corresponding linear polariza-
tion panel below. At , a significant fraction of the trans-
mitted energy is TM polarized. In fact, the Faraday rotation

41 . However, it is also apparent that the total transmis-
sion is only , con-
sistent with the transmission of the circular modes at .

Now consider the behavior as the strengthof each grating
is increased. Increasing the grating strength also increases the

quality or energy storage of the transmission resonances, and,
therefore, the linewidth of the resonances must decrease. From
the upper panel of Fig. 3(b), we see that this would reduce the
transmission of each of the circular modes at and so the
total transmission is reduced. On the other hand, the phase pro-
files must also follow the decrease in linewidth, and hence
they grow more step-like with increasing length. The phase dif-
ference at and thus the Faraday rotation, therefore, in-
crease, tending toward 90 , as the bandwidth and trans-
mission tend to zero. An exactly analogous argument can be
made for rotation of the reflected light. Thus the behavior is in
accord with (13).

With the assumption of a symmetric structure, there are no
available degrees of freedom other than the grating strength
and we conclude that the tradeoff is inescapable.

IV. A SYMMETRIC STRUCTURES

In [4], it was shown that for Faraday rotation, certain
stack designs containing two defects could achieve higher
transmission while still maintaining enhanced rotations. We
subsequently performed a systematic study of two defect
systems [5], [6], explaining how the defects should be placed
in order to attain high transmission (99 ) for essentially any
desired rotation. The improvement results from the additional
degree of freedom introduced by the second defect, which
permits an accidental degeneracy between two resonance peaks
of opposite parity.

Here, we aim to optimize Kerr rotation and again seek to in-
troduce an extra degree of freedom in order to overcome the
tradeoff occurring in the symmetric single-defect structures. In
this case, our answer is not to introduce a second defect, but
to use an asymmetric placement of the single defect. Consider
the effect of moving the central defect in Structure A (Fig. 2)
toward the front of the stack (Structure B). We also allow the
rear coupling strength to be larger so that we have the structure

with . It is to be expected that
the reduction in symmetry affects the transmission resonance.
Indeed, (5) is easily solved to give the peak transmission

(14)

so that the structure is essentially opaque, once
– . Compared to the front grating, the rear grating may then

be regarded as an essentially perfect reflector, and the reflec-
tion spectrum is featureless and close to unity throughout the
bandgap. However, as we see below, whereas the transmission
at the former resonance vanishes, a signature of the defect re-
mains in the form of a rapid variation in the phase profiles of
the reflected light . These profiles induce a large
phase difference and rotation, just as was found for the trans-
mission phases in the symmetric case of Fig. 3. However, as
the rear grating strength significantly exceeds that of the first,
the light must be highly reflected and we succeed in breaking
the rotation-intensity tradeoff in Kerr mode.

In evaluating the properties of such asymmetric structures, we
consider two types of systems that differ in the distribution of
magnetic layers. Type I systems have the same materials on both
sides of the defect, i.e., stacks of the form , with
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(a)

(b)

Fig. 3. Response of a symmetric grating with a central� phase shift.� = 123,� = 0:47,� = 0:626,L = 0:0252. (a) Transmissionjt j (solid) andjt j
(dashed). (b) Upper panel: blowup of (a) including phase profiles� (fine dotted) and� (coarse dotted). Lower panel: Transmission of linearly polarized modes
jA j (solid), jA j (dashed), ellipticity� (dotted).

and . Type II systems have no magnetic layers
in the rear section: . This permits the use of
higher index contrast in the rear section (i.e., ), reducing
the total length of the device while achieving essentially the
same effects. The same separation into Types I and II can be
made for corrugated waveguides.

A. Type I Structures

We first consider the Type I system in which .
For the remainder of the paper we neglect the influence of the
periodic magnetic factor on the coupling strengths and
take . This is an especially good approximation here,

where since the reflectivity is very close to unity, variations in
the exact coupling strength have a negligible effect. In contrast,
this effect is somewhat important in transmission problems [5].
With our assumption that the rear grating is very strong, we can
make the approximation that no light is transmitted. In solving
the coupled-mode equations (5) we impose this condition by
allowing only decaying solutions in the rear grating; the coef-
ficients of any growing solutions are set to zero. With this ap-
proximation, we obtain an analytic solution for the reflection
coefficient of a single component inside the bandgap

(15)
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Fig. 4. Enhancement of rotation in reflection for a Type I structure with� =

123, � = 0:47, and lengthL = 0:023 chosen to obtain�90 rotation at
q = 0. Line styles are (fine dotted), (coarse dotted), and� = ���
(dot-dashed).

where . As the rear grating is a perfect reflector,
has no dependence on . Fig. 4 shows the typical form of

the reflection coefficients, in an analogous fashion to the trans-
mission results studied in Fig. 3. Inside the bandgap,
to an excellent approximation, so we do not plot the ampli-
tudes. The phase functions obtained from (15) are shown
as the dotted lines in Fig. 4 (fine dotted for , coarse dotted
for ). They have a step-like profile centered around the points

with the usual magnetic splitting of . This is the re-
maining signature of the defect, which still persists though the
transmission resonance has vanished. Now by (15), we see that
near the center of the gap ( ), both circular compo-
nents are equally reflected with . Thus the reflected
light is linearly polarized with zero ellipticity and a rotation
given by (11). Across the resonance shown in Fig. 4, the rota-
tion varies smoothly from zero to a maximum value of 90
at .

The rotation angle is shown as a function offor a variety
of lengths in Fig. 5, For shorter lengths (solid line), mod-
erate rotations of 20–30 occur over a large bandwidth. For
larger lengths (dashed and dot-dashed lines), the central part of
the spectrum tends toward experiencing a simplephase shift
(rotation of 180), and large rotations of 90 are only found
for . For such a configuration, the phase profiles in Fig.
4 are no longer smoothly rising but have become discrete step
profiles.

Concentrating just on the rotation at , and assuming
in (15), we use (11) to obtain the rotation

(16)

In Fig. 6 we plot for a structure with and
, . (Plotting rather than removes an

unimportant global phase delay.) The rotation given by (16) is
indistinguishable from the exact numerical result shown. Con-
sistent with the curves in Fig. 5, the rotation increases mono-
tonically with the strength of the front grating . This is as-
sociated with the phase functions becoming more step-like

Fig. 5. Rotation as a function ofq=� for lengthsL = 1.83�m (solid), 2.52
�m (dotted), 3.22�m (dashed), and 3.91�m (dot-dashed). Other parameters are
as for Fig. 4.

Fig. 6. Rotation� = 180 � � as a function of the first grating lengthL
(solid line) and 1 bandwidths according to numerical measurement (dotted)
and analytic estimate (dot-dashed) for a Type I structure. The dashed and
double-dot-dashed lines show the rotation and bandwidth for a corresponding
Type II structure. Parameters are� = 123 and� = 0:47,� = 0:626.

around the points in Fig. 4 so that the phase difference at
increases. Eventually, however, the increase in phase for

each component becomes a discrete step function at the points
. Once this happens, the phase difference at

is fixed at a maximum of and the reflected light ex-
periences a simple phase shift of 180rather than a rotation.
Therefore, the rotation shown in Fig. 6 levels off at 180.

Note, finally, from Fig. 5 also that there is always a stationary
point in the rotation at , and hence the largest bandwidth
is obtained by choosing such that the desired rotation occurs
at . In fact, using a Taylor expansion around in
(16), we can find an estimate of the bandwidth over which
the rotation varies by less than a desired limit

(17)
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This bandwidth is shown in Fig. 6 for
1 as the dot-dashed line. The dotted line indicates the numerical
calculation of the bandwidth.

B. Type II Structures

Equation (16) applies to a periodic structure with the same
properties on either side of the defect (Type I). It is also fruitful
to consider a second class of structures (Type II), for which a dif-
ferent grating structure is used behind the phase shift. This can
have a number of advantages. One can choose a rear grating with
higher index contrast, allowing a shorter total system. For ex-
ample, for the Type I structure considered in Fig. 6, we obtained
90 rotation with a first grating length of only 9 m. How-
ever, the total structure would have a length of order 30m in
order to satisfy the condition that the rear grating be stronger
than the first. A stronger rear grating could reduce this length
by a factor 2. Moreover, if the magnetic material is located only
at the front, any applied magnetic field used for switching the
rotation can be localized to a smaller region. For Type II struc-
tures, the relation corresponding to (16) becomes

(18)
Note again that as the rear grating is assumed to be a perfect
reflector, the rotation depends on neither the mean index,
length, or strength of the rear grating. The only condition [im-
plied by (14)] is that – . As there is less mag-
netic material present, the rotation induced by a given length
is somewhat smaller than for the Type I design; from (16) and
(18) we see that the same rotation is achieved at when

(19)

where the superscripts indicate Type I or II. This modest in-
crease in length of the front section can be more than compen-
sated for by choosing a much shorter and stronger rear grating.
The dashed and double-dot-dashed lines in Fig. 6 show the rota-
tion and bandwidth, respectively, for a YIG/GGG Type II struc-
ture. It is apparent that there is a simple shift inrequired for
the same rotation. The bandwidth for a given rotation is, how-
ever, somewhat reduced.

C. Discrete Stacks and Waveguides

In Fig. 7, we show the enhancement that is possible for a range
of different geometries using Bi-YIG as the magnetic material
with Type I and II structures. The rotation at is plotted
as a function of the length of that part of the structure con-
taining magnetic material. Thus for Type I structures,is the
total length; for Type II structures, and the total length
might typically be of order . As mentioned earlier, the
length of the structure containing magnetic material is of in-
terest for switching purposes.

The straight line in Fig. 7 indicates the rotation that would
be obtained by reflection from a uniform layer of YIG with a
strongly reflecting dielectric mirror behind it. This is simply

. The rotation induced by our structures must be
much higher than this line to be of interest. The two dotted lines

Fig. 7. Rotation as a function of lengthL. Line styles are solid (� = 123,
Type II), dashed (� = 123, Type I) , fine dotted (� = 15, Type II), coarse
dotted (� = 15, Type I), dot-dashed (uniform magnetic medium). Symbols
denote discrete stacks of YIG/GGG (squares and crosses), and YIG/SiO(plus
signs).

for which give the rotation achievable in a typical corru-
gated slab waveguide for Type I (coarse dotted) and Type II (fine
dotted) structures. For these cases, the enhancement of rotation
over the uniform material is rather modest due to the limited
grating strength that can be attained by surface corrugation.

The solid (Type II) and dashed (Type I) lines for cor-
respond to YIG/GGG quarter-wave thin-film stacks. The Type
II design allows a 90rotation with the magnetic YIG confined
to just 10 m and a total length of under 20m. For these struc-
tures, the stacks are sufficiently short that their discrete nature
is apparent—there is a significant change in rotation with the
addition of a single pair of layers. The squares and crosses indi-
cate individual realizations of the stacks in one unit increments.
The points at the Type II and Type I peaks have 22 and 25 layer
pairs in front of the defect, respectively. We emphasize that for
all these points, the reflectivity exceeds 99% and that it could be
increased further by adding additional layers to the rear of the
structure. Note also that the strength of therear gratings were
held constant in all these calculations. Consistent with (16) and
(18), the Kerr rotation depends only on the properties of the front
grating, providing only that the rear grating always exceeds the
strength of the first sufficiently.

Finally, the plus signs denote Type II YIG/SiOstacks with
the number of layers indicated by the adjacent numbers. These
stacks show rotations up to 90with front grating lengths of

8 m and total stack lengths of order 15m, still with re-
flectivity over 99%. It is clear that with the large index differ-
ence of this system, enormous enhancement in rotation is pos-
sible with essentially perfect reflection. Due to the high index
contrast, however, significant jumps in rotation occur with the
addition of a single layer (compare the points marked 8 and 9,
or 10 and 11). If intermediate values of rotation are required,
fine-tuning can be achieved by careful selection of the index of
the medium in front of the stack or by slight doping of the SiO
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layers to change the refractive index. This idea is discussed in
detail in [5]. All calculations here assumed an input medium
with , the same as the YIG/GGG stacks.

V. CONCLUSION

We have examined the problem of achieving high Kerr rota-
tions in periodic stacks without suffering an accompanying loss
in reflectivity. The key to optimization is the introduction of an
extra degree of freedom by allowing the location of the defect
to vary. The rear grating is made sufficiently long to guarantee
reflection, and the length of the front grating is then tuned to
obtain the desired rotation. The two parts of the structure thus
serve two complementary and largely separate roles which sim-
plifies the task of optimization for a particular angle.
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