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Photonic Bandgaps with Defects and the Enhancement
of Faraday Rotation

M. J. Steel, M. Levy, and R. M. Osgood, Jr., Fellow, IEEE

Abstract—We investigate enhancement of magnetooptical rota-
tion in periodic magnetic garnet thin-film stacks with defects using
a combination of coupled-mode theory and matrix calculations. We
prove that a combination of high rotation per unit length and high
output is unattainable for a symmetric grating with a single central
defect. We demonstrate that the addition of a second defect intro-
duces sufficient degrees of freedom to allow high transmission for a
much larger range of rotation angles than was previously possible.
We present a number of designs with emphasis on achieving 45
rotation in very short propagation lengths.

Index Terms—Faraday rotation, gratings, magnetooptical, pho-
tonic bandgaps (PBGs).

I. INTRODUCTION

M AGNETOOPTIC materials are important in a number of
branches of integrated optics. Prominent among these is

the exploitation of magnetic garnets for the construction of inte-
grated isolators [1]–[5]. These devices exploit the off-diagonal
elements of the dielectric tensor in magnetic materials to pro-
duce either a nonreciprocal rotation of the plane of polarization
(Faraday effect) or a nonreciprocal phase change. While many
designs have been suggested and demonstrated, a cheap and
practical integrated isolator is yet to appear, due to complica-
tions such as birefringence and polarization dependence. Alter-
natively, one might imagine heterogeneous integration of bulk-
style isolators onto a chip. However, bulk isolators have lengths
on the order of a millimeter, and without waveguiding, diffrac-
tion losses would be unacceptable. So a significant enhancement
of the intrinsic Faraday rotation with a corresponding reduction
in isolator lengths would be most desirable. Magnetooptical ma-
terials also exhibit the Kerr effect, that is, polarization rotation
on reflection. Among other applications, this effect has been ex-
ploited in certain types of magnetooptical data storage disks, and
for material characterization. In most cases, Kerr rotations are
of the order of a fraction of a degree. Enhancement of Kerr ro-
tation would thus allow better designs for existing applications
and might open new possibilities, such as mirrors that rotate the
reflected light, or in reflective nonreciprocal devices such as cir-
culators.
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Another subject of fundamental importance in optics is the
exploitation of periodic systems. One-dimensional (1-D) stacks
or “gratings” have been employed as filters and mirrors for many
years, and over the past decade optical fiber Bragg gratings have
found innumerable applications as filters, sensors, and compo-
nents of larger devices [6]. At the same time, great interest has
been attracted by high-index contrast, two- (2-D) and three-di-
mensional (3-D) periodic structures, known as “photonic crys-
tals” [7], [8] which can exhibit complete photonic bandgaps
(PBGs). A special class of periodic structures are those with in-
ternal defects, in which the periodicity is broken at a localized
point, perhaps by a “phase shift” or missing layer. Such struc-
tures have useful properties, notably the introduction of trans-
mission resonances (associated with high-modes), into the
otherwise reflective PBGs. Photonic crystals with defects are
currently in vogue, but defects are also of great importance in
1-D geometries, notably in distributed feedback lasers, and very
narrow-band fiber filters and sensors.

Recently, several groups have begun to study systems that
combine magnetooptical rotation with the resonant effects of pe-
riodic structures. They have considered periodic thin-film stacks
in which there are one or more defects, and for which at least
one of the component materials is magnetic. It has been demon-
strated theoretically [9]–[11] and experimentally [12] that for
frequencies associated with a defect resonance, the rotation per
unit length for both Faraday (transmission) and Kerr (reflec-
tion) effects can be significantly enhanced by propagation in
such structures (see Fig. 1). Thus it may indeed be possible to
construct shorter isolators or interesting reflective devices that
rotate polarization.

From these initial studies, a number of important issues
remain. The enhanced rotation is typically accompanied by
a reduction in transmission for the Faraday effect or low
reflection for the Kerr effect. Indeed, in the experiments of
Inoue et al. [12], in which a single active magnetic layer is
sandwiched in a periodic dielectric stack, the maximum Kerr
rotation is associated with a minimum of reflection which
limits its usefulness. Sakaguchi and Sugimoto [11] have ob-
served that for the Faraday effect, the use of repeated identical
substacks (see Fig. 2) with two or three defects allows the
enhanced rotation to be accompanied by some improvement
in transmission. However, they found improvements only for
certain, apparently arbitrary combinations of substacks and the
tradeoff between output and rotation, while somewhat reduced,
was not eliminated. Other multiple-defect designs produced
no improvement over the performance of a single defect. No
physical explanation for these improvements or a systematic
procedure for optimization was given. Finally, the theoretical
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Fig. 1. Connection between thin-film stack and coupled-mode formalism. The upper panel shows a quarter-wave stack(NM) (MN) of materials with
refractive indexesM andN and the lower panel, a schematic representation of the corresponding coupled-mode picture. The incoming and outgoing fields
are also indicated for both linear(A ;A ;B ;B ) and the corresponding circular polarizations(C ;D ).

Fig. 2. General form of the two types of structures considered in the paper.
A–Single symmetric defect. B–Two defects in length ratioL : fL : L. The
dashed lines in each structure are used only to highlight the phase shifts. All
structures have transmissionT and reflection coefficientsR, but for structure B
we optimize forT only.

studies rely solely on the transfer matrix method. While this is
an exact method for thin-film stacks, it provides little insight
into the underlying reasons for the enhancement and is not
easily extended to other geometries of importance for photonic
integrated circuits, such as corrugated planar waveguides.

Recently, we studied a broader class of two-defect stacks in
which the relative placement of the defects was allowed to vary
[13]. We showed that using these designs, the tradeoff between
rotation and transmission could be completely overcome, and
explained how the optimum design could be found for a given
desired rotation. The key to this procedure is to create an acci-
dental degeneracy between transmission resonances for light of
opposite circular polarization.

In the present work, we explore the properties of our proposed
stacks in detail. We introduce a coupled-mode description that
reduces the complex stack geometries to a few simple parame-
ters, and thus highlights the essential physics much more clearly
than a necessarily numerical implementation of the transfer-
matrix method. It is thus easier to explain the enhancements
and determine the best designs, and in some cases, we can ex-
tract simple analytic results. While the coupled-mode picture
becomes inaccurate for systems with large index jumps, the
insight and basic physical pictures established for the smaller
index variation remain valid for high index contrast systems. In
addition, a continuous picture such as a coupled-mode theory,
allows us to vary certain parameters independently, whereas a

matrix method entwines different aspects of the geometry to-
gether.

The paper is structured as follows. In Section II, we present
the coupled-mode system for the periodic magnetic equations
and discuss some properties of the uniform system and certain
realizations. In Section III-A we explain the origin of the trans-
mission–rotation tradeoff for one-defect systems. Proceeding to
two-defect structures in Section III-B, we consider varying the
position of the defects along the structure. We show for essen-
tially any required rotation, there is a particular arrangement of
the defects that gives high transmission from very short struc-
tures.

II. M ODEL

The basic geometry is shown in Fig. 1. Linearly polarized
light is incident on a periodic structure that contains one
or more defects. The structure may be a quarter-wave thin-film
stack (upper half of Fig. 1), or a general periodic system (lower
half). Due to the magnetic material in the system, the transmitted

and reflected light is emitted with some rotation of the
polarization and some ellipticity . We wish to calculate these
quantities for both the outgoing waves, aiming to find designs
that produce a specified (large) rotation with as much energy as
possible emitted in the desired mode (transmission or reflection)
in a very short length. For most applications, notably isolators,
we also require that the output field have negligible ellipticity.

A. Statement of the Problem and Dielectric Tensor

Our discussion is based on a coupled-mode treatment of a
lossless magnetic medium with cubic crystal structure. A static
magnetic field is applied in the propagation directionto satu-
rate the magnetooptic response and produces nonzero off-diag-
onal elements in the dielectric tensor . These
off-diagonal elements are, of course, the source of the magne-
tooptic rotation. A grating or periodicity is now introduced into
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the problem. We allow both the diagonal and off-diagonal com-
ponents to have periodic parts so that the dielectric tensor takes
the form

(1)

where . For a thin-film stack of al-
ternating quarter-wave layers , this form for
is obtained straightforwardly by approximating the discrete pe-
riodic changes by their lowest order Fourier components. The
period is the length of a single unit while represents
a possible phase shift. For moderate index differences, the re-
striction to two Fourier terms is an excellent approximation, pro-
vided we study frequencies close to the lowest Bragg resonance.
The influence of higher Fourier components of the structure is
largely felt at higher Bragg resonances. Note that we have as-
sumed there is no birefringence between theand directions.

B. Coupled-Mode Equations

To derive a coupled-mode representation, the electric field at
a wavelength is written as

c.c. (2)

In a uniform nonmagnetic medium, the amplitudes of forward-
propagating ( and ) and backward-propagating ( and

) waves are constant. Here, the amplitudes are coupled by
the periodic and magnetic parts of the dielectric tensor, and they
acquire a -dependence. Inserting (2) into Maxwell’s equations
and discarding nonphase-matched terms leads to the coupled
system

(3)

where and are matrices, and we have expressed the
problem in terms of the “circularly polarized” amplitudes

(4a)

(4b)

The matrices contain the familiar terms of the coupled-mode
equations for contra-propagating systems

(5)

while for a nonbirefringent medium, the off-diagonal matrix
. Thus the circular modes of positive and negative sense

of polarization are completely decoupled.
The parameters in (5) are defined in terms of a reference

Bragg wavelength and the mean index
which together satisfy the standard Bragg relation

(6)

That is, in a uniform grating, light at the wavelength
is strongly Bragg-reflected. The mean index is trivially

where the two types of layers have index
and thickness , while .

Returning to the other parameters in (5), ,
where , represent wavenumber detunings from
the Bragg resonance. The periodicity in the system couples the
forward and backward modes with a strength given by

, where is the contribution of the periodicity in the
diagonal part of the dielectric tensor. For a stack with moderate
index jumps, . Finally, the magnetic
effects are expressed through the parameters
and . The signs of and are determined by
the sense of the applied static magnetic field.

1) Waveguides:With some minor adjustments in interpreta-
tion, the coupled-mode equations are, of course, also applicable
to propagation in waveguides which have a periodicity intro-
duced say, by surface corrugation. In this case, (1) is regarded
as a description of theeffectivedielectric constant with the pa-
rameters determined by the details of the geometry, field polar-
ization, and the shapes of the waveguide modes [14], the ampli-
tude functions modulate transverse electric (TE) and transverse
magnetic (TM) modes, rather than plane waves. Due to modal
dispersion, the off-diagonal matrix is no longer necessarily
zero but takes the form

(7)

where is the difference in propagation
constants of the TE and TM modes. The mean index becomes
the meaneffectiveindex . The grating
coupling is also different for each mode, so that

is now a mean coupling strength while
is the difference in the coupling coefficients. The values of all
these parameters and the magnetic termsand depend on
the shape of the waveguide modes. A nonzero matrixcom-
plicates the solution of (3), and, in fact, strongly dispersive sys-
tems can destroy many of the properties we explore in the paper.
For instance, if , the resultant phase mismatch pro-
duces elliptical polarization of the transmitted light, and a dra-
matic decrease in the achievable Faraday rotation. Birefringence
is indeed the major difficulty in constructing integrated isola-
tors based on polarization rotation. It can be countered by tech-
niques such as quasiphase matching [15] or compensation of
modal birefringence with strain birefringence of opposite sign
[16]. With careful waveguide and grating design we can also ar-
range for similar coupling coefficients . Therefore,
we assume throughout that the off-diagonal matrix .

2) Solution to Coupled-Mode Equations:Equation (3) de-
scribes the field evolution in a uniform section of the grating of
length . With the assumption , the solution relating the
fields at the front and rear is shown in (8)

and (9) at the bottom of the next page where .
We choose a TE input of unit amplitude (see Fig. 1)
so that , while the condition that no light enters
from the rear of the grating gives . Equation (8) is
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then solved for the unknowns and , to yield the
transmission and reflection coefficients

(10a)

(10b)

More generally, we are concerned with a series of gratings of
length , whose phase parameters(and perhaps other param-
eters), change in each section. Notably a “missing” layer in a
stack corresponds to a shift inof . The complete response is
found from the product of the individual matrix operators
for each uniform grating

(11)

where is the length of the entire structure. Equa-
tions (10) remain valid. In (11), it is assumed that the mean
index is unchanged in adjacent gratings, which is the case for the
problems we consider here. For structures with changes in the
mean index, additional transition matrices are inserted between
each propagation matrix to account for Fresnel re-
flections [17].

At times, we also calculate the response of our structures
using the transfer matrix method, which is exact for thin-film
stacks. The procedure is analogous to the matrix concatenation
for the coupled mode equations in (11), except that a separate
matrix is required for each layer of the stack. The theory is
well-known and the reader is referred elsewhere for details [10],
[11], [18].

3) Basic Properties:We first summarize some properties of
(3) for a single uniform grating. Due to the block-diagonal struc-
ture of (3), the response of the system may be considered sep-
arately for each sense of circular polarization. As the funda-
mental property of a periodic system, each pair of modes (
or ), exhibits a PBG—incident light in the frequency range

experiences strong reflection, while light outside the
gap is largely transmitted. The reflectivity at is given by

, while the width of the band gap is and
is approximately proportional to the strength of the index mod-
ulation. For nonmagnetic materials, the band center is given by
the Bragg condition (6) corresponding to .

Expressing (3) in terms of circularly polarized modes has two
advantages. First, the decoupling of the polarizations allows us
to make simple interpretations of the system response to in-
coming linearly polarized light—we analyze each structure for
its separate response to each circular polarization, and then com-
bine the results using (4). Second, there is a clear separation of

the effects of the two magnetic parametersand . The de-
tuning which is associated with themeanrefractive index is
split by the mean magnetic strength into the quantities ,
with . In the absence of periodicity, the splitting
of and simply represents the magnetic circular birefrin-
gence which accounts for the normal Faraday rotation of lin-
early polarized light. Here, the splitting induces a separation be-
tween the centers of the band gaps for left- and right-circular po-
larization. Similarly, the grating strengthwhich derives from
theperiodicpart of the refractive index is split by the periodic
magnetic coupling . As a result, the two band gaps are not
only shifted by the splitting but exhibit slightly different re-
flectivities. For realistic dielectric materials, and
the magnetic effects may be considered as perturbations to the
influence of the grating. This is not necessarily true for metallic
ferromagnets such as the cobalt layer used in [12].

C. Realistic Values and Dimensionless Units

We now describe our notation for different structures and
give some realistic physical parameters. A grating structure is
denoted by an expression of the form
indicating the coupling strength and length of each
section. A colon indicates a phase shift. Discrete thin-film
stacks are expressed as a sequence of repeated units such
as , where and denote
magnetic and nonmagnetic layers, respectively. All layers are
quarter-wave plates of thickness . The relation
between the two pictures is indicated schematically in Fig. 1.

For physical values we choose a resonant frequency of
1.55 m and consider structures of either bismuth-substituted
yttrium iron garnet (Bi-YIG) and gallium gadolinium garnet
(GGG), or Bi-YIG and SiO. Bi-YIG is a favorable magnetic
material as it has a high Faraday rotation, low loss at commu-
nications wavelengths, and may be integrated into circuits by
sputtering or single crystal liftoff techniques [19], [20]. GGG is
a convenient substrate for growing YIG. Alternatively, YIG may
also be sputtered on to SiOwhich makes for larger index con-
trasts and thus stronger resonant effects. The diagonal elements
of the dielectric tensor have the values

, and . The off-diagonal element for Bi-YIG
is which corresponds to a Faraday rotation of

0.48 m . To obtain dimensionless units we normalize
by , the intrinsic rotation per unit length of the
magnetic material. For YIG/GGG stacks, m ,
and the normalized parameters are , ,
and . This scaling is always used in the results below
unless otherwise specified. For corrugated slab waveguides, the
gratings have much weaker strength—the maximum attainable
values are of order , while and .

(8)

(9)
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III. D EFECTS

As discussed earlier, several authors have predicted, and in
one case measured, enhanced rotation both in transmission and
reflection when a thin-film stack contains one or more defects.
The basic explanation of the enhancement is simple. In a uni-
form magnetooptic medium (with the saturating magnetic field
oriented longitudinally), the two circularly polarized modes are
transmitted with a slightly different optical path length due to the
magnetic circular birefringence. Incoming linear light, which
excites equal contributions of the circular modes is therefore
rotated. In a periodic system with one or more defects, trans-
mission resonances appear inside the PBG. When illuminated
with light near a resonant frequency, a large quantity of en-
ergy is stored inside the structure, strongly localized near the
defects. The trapped light thus experiences an extended optical
path length and there is an increase in the pathdifferencebe-
tween the two circularly polarized components over the path
difference obtained on transmission through a uniform medium
(or on reflection from a single interface). As a result, the overall
Faraday or Kerr rotation is increased.

Such enhancements have been described for several types
of hypothetical structures with different numbers of defects
[9]–[12]. A single central defect has been found to improve
rotation but at the cost of output intensity—a structure designed
to achieve high rotation on reflection suffers from low reflec-
tivity. Multiple defects have been found to help improve the
output intensity in transmission. Up until our previous paper
[13], however, no detailed physical picture of the enhancement
(beyond the simple path difference description), or the role of
multiple defects had been presented. In the following sections
we discuss each of the structures shown in Fig. 2. We begin by
providing a complete explanation of the single-defect tradeoff
(Structure A). We then study two-defect systems for a broader
class of structures than has been done previously and show how
we can achieve new levels of optimization (Structure B).

In all cases, we consider rotation of incoming TE- or-po-
larized light of unit intensity . Thus a pure TM
output represents 90 rotation.

A. Single Symmetric Defect

Two types of thin-film stacks with a single defect have been
studied previously. In one type, the structure consists of an
equal number of alternating magnetic and nonmagnetic layers
with a skipped middle layer in the form or

[10], [11]. In the other type, the design is again
symmetric but the middle magnetic layer may be extended and
may be the only magnetic layer in the system [10], [12], for
example, . In transmission or Faraday
mode, both these classes of structures show similar behavior:
the rotation increases dramatically with the number of layers,
but the transmission simultaneously decreases. In the reflection
or Kerr mode, there is a similar tradeoff between the rotation
and the reflectivity. In the experiment of [12], for example, Kerr
rotations of up to 10 were recorded, but each enhancement
was associated with a minimum of the reflectivity, which was
less than 1% for the highest rotation. Here we investigate
whether this tradeoff can be overcome.

The coupled-mode version of the skipped layer stacks is the
simple structure —two identical gratings with a
central phase shift (see Fig. 2, Structure A). The properties of
such a structure without magnetic effects are well known—the
gratings produce a band gap while the defect induces a per-
fect transmission resonance at the center of the band gap with
a bandwidth that decreases exponentially with[21]. Phase
shifts other than produce similar resonances located away
from the band center. Throughout this paper, we consider only
symmetric shifts for the sake of symmetry and to limit the pa-
rameter space.

The coupled-mode equations for this problem with the mag-
netic effects included are easily solved using (11); the manipula-
tions can be simplified by the use of an effective medium picture
[17]. The individual transmission coefficients for each circular
polarization [see (10)], are

(12)

where . For a strong grating in the vicinity of
the resonance at , we have and so
that the amplitude transmission coefficients reduce to the simple
forms

(13)

Similarly, we can find limiting forms for the reflection coeffi-
cients

(14)

From these relations and (4) and (10), we find the parameters of
main interest: the total transmission and reflection

(15)

the Faraday and Kerr rotations

(16)

and the corresponding ellipticities

(17)

Here and . Note
that when , the transmitted light is linearly polarized

with . Similarly,
when .

Fig. 3 presents typical results for a single symmetric defect
using YIG/GGG parameters (see Section II-C). The spectral re-
sponses for circular and linear polarizations are given in the
upper and lower panels, respectively. We remind the reader that
the two circular modes act independently and that the linear re-
sponse is to be considered as the summed effect of the two cir-
cular polarization responses. The upper panel shows the trans-



1302 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 9, SEPTEMBER 2000

Fig. 3. Response of a symmetric grating with a central� phase shift.� = 123; � = 0:47; � = 0:626; andL = 0:0252. Upper panel: Transmission and
phase of circularly polarized modes:jt j (solid), jt j (dashed),� (fine dotted), and� (coarse dotted). Lower panel: Transmission of linearly polarized
modesjA (z )j (solid), jA (z )j (dashed), and ellipticity� (dotted).

mitted intensities (solid and dashed lines) and
phases (dotted lines) according to (12) as a
function of the detuning . Each circular component sees
an identical transmission resonance with the general Lorentzian
form indicated by (13). Due to the circular magnetic birefrin-
gence, the resonances are separated in frequency by. (Note
that with , the edges of the reflection band are far out-
side the domain of the figure and we see only the central reso-
nances.) In the vicinity of each resonance, the associated phase
(dotted lines) increases by. At , the transmitted intensi-
ties are the same and the phase difference has
a maximum (indicated by the vertical arrow). The lower panel
shows the transmission for the linearly polarized modes which
is obtained from the results in the upper panel using (4a). The
greatest rotation, i.e., the greatest conversion into the TM po-
larization (dashed line), occurs at the band center , where
both circular components are transmitted with equal intensity
and the phase difference is largest. Note, however, that the
total transmitted intensity . The
dotted line in the lower panel denotes the ellipticity. The el-
lipticity (dotted line) vanishes at where the circular
modes are transmitted equally, but is nonzero elsewhere.

Fig. 4 shows the response of the same system with the length
increased to . In accord with (13), the bandwidth of
the resonances is smaller (corresponding to the increase in the

-factor of the resonance). Further, the phase functionsare
more step-like, with their variation localized about the points

, respectively. This causes an increase in the phase dif-
ference , and thus in the rotation. However, the nar-
rowing of the resonances also leads to a decrease in the total
transmission at band center, because the point now lies

further into the wings of each resonance. There is thus a basic
compromise between the rotation and the transmission. Similar
arguments based on (14) show that such a tradeoff also occurs
with the rotation of reflected light.

Indeed, in the limit (which is invariably true for
garnets), (13)–(15) lead, after a little algebra, to the relations

(18)

(19)

where

(20)

or simply

(21)

Equation (21) states that an increase in rotation directly implies
a reduction in output intensity for both transmissive and reflec-
tive modes of operation. This system simply has insufficient de-
grees of freedom to be optimized for both large rotation and
significant optimization. For thin-film stacks with large index
variation, the precise results depart from these relations, but the
basic tradeoff remains and may be confirmed by matrix calcula-
tions. Thus the low output observed in the experiments of [12]
is now seen as a result of the competing demands placed on the
shapes of the resonances for the circularly polarized modes—we
cannot simultaneously obtain a broad resonance needed for high
output and large phase difference needed for high rotation. We
conclude that a structure based on a single symmetric defect is
not suitable for efficient, high-output devices.
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Fig. 4. As for Fig. 3 withL = 0:03.

B. Two Defects in Transmission

With the limited possibilities of a single defect, the introduc-
tion of an additional phase shift is now motivated by the need
to introduce extra degrees of freedom. Sakaguchi and Sugimoto
[11] have considered designs in which two defects are placed
at one quarter and three quarters of the way through the stack,
for example, . Thus the lengths of each
section are in the ratio . They showed that with
such designs the rotation can be maintained with some degree
of improvement in transmission, up to a maximum of 95%, but
for each design, high transmission occurred only for a partic-
ular value of . They found some further improvements with
three-defect structures of the form . How-
ever, a fundamental problem remains. The transmission and ro-
tation cannot be controlled independently—the number of rep-
etitions is determined by the requirement of achieving high
transmission, and one is left with whatever rotation the system
generates. In particular, the maximum transmission for rotations
close to 45, which are important for isolator applications, was

75%-80%.
Recently, we suggested using a broader class of two-defect

structures of the form where
[13]. Our preliminary results showed significant advances. By
varying the ratio we were able to obtain high transmission
for essentially any desired rotation, overcoming the tradeoff we
have discussed earlier. Here we explore these designs in greater
detail using the perspective of the coupled-mode theory. In the
coupled-mode description, the analogous structures have their
lengths in the ratio where is a free pa-
rameter corresponding to the ratio (see Fig. 2, Structure B).
Note that with this form for the gratings, we introduce more flex-
ibility into the designs than considered by others, yet retain a
high degree of symmetry. The coupled-mode results then allow

Fig. 5. Circular polarization transmission spectra of a two-defect system with
L = 0:0103,f = 1:4, and� = 123. Line styles denote transmissionT forC
(solid) andC (dashed), and phases� (fine dotted) and� (coarse dotted).

us to explain why the earlier multiple defect designs [11] (for
which ), exhibited an improvement over the single-de-
fect design. Moreover, we demonstrate that the freedom intro-
duced by the parameter allows the improvement in trans-
mission to be tuned over a much wider range of rotation angles
again. Finally, the coupled-mode description allows us to sep-
arate the roles of the scale lengthand the length ratio . By
contrast, when modeling discrete stacks [13], the addition of a
single layer changes both the overall length and the relative sizes
of each section, which complicates the interpretation of results.

1) Resonance Structure:Optimization of our two-defect
system is again simplified by considering the combined effects
of the independent transmission resonances for each circularly
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Fig. 6. As for Fig. 5 withL = 0:0253. Note the decreased scale for thex-axis.

polarized mode. To indicate the typical form of the resonances,
in Fig. 5 we show the response according to the coupled-mode
equations for a system with and . Fig. 6
also shows the response for , but with a larger length

. For both figures, the various line styles have the
same interpretation as for the upper panel of Fig. 3, i.e., circular
transmissions as solid and dashed lines, and the corresponding
phases as dotted lines. The obvious manifestation of the extra
defect is an additional transmission resonance for each mode.

Using Figs. 5 and 6, we attempt optimization by analyzing
how the resonance structure changes with the lengthand ratio

. The relevant coupled-mode system can be solved analytically,
but in practice the exact solutions are rather unwieldy, and are no
more useful than numerical solutions to the coupled-mode equa-
tions. However, from basic physics arguments and study of the
numerical results, we can make the following general conclu-
sions about the behavior of the system asand vary. Note the
labeled arrows in Figs. 5 and 6, indicating the splitting of each
peak , a rough estimate of the peak width, and the magnetic
splitting .

1) As there are two defects in the structure, we observe two
transmission resonances (the case is an exception
we discuss later). There is a phase increase ofin the
vicinity of each resonance, so that in traversing both res-
onances the phase is advanced by. The two resonances
are simply symmetric and antisymmetric splittings of the
single resonance introduced by each defect.

2) For , we find that the maximum transmission of
each peak is always unity and the response is symmetric
around .

3) Just as for the single-defect problem, the separation
between the two polarization modes is a constant, fixed
by the magnetooptical strength of the materials. The peak
width and separation for a single mode, however,
depend on the parametersand .

4) For very short lengths, the structures have a low-quality
factor and the peak width is so broad that the
peaks for each polarization overlap and the phase differ-

ence is very small. This is the situation in
Fig. 5, for and .

5) As is increased, we find two general effects:
• the width of each peak decreases.

This is the familiar line-narrowing due to the in-
creasing -factor of the structure, just as with the
single-defect gratings in the previous section. The
situation of Fig. 5 is transformed to more closely
resemble that of Fig. 6.

• the separation of the two peaks also decreases.
This corresponds to a reduction of the splitting

in the symmetric and antisymmetric modes, as the
two defects are pulled further apart, and interact less
strongly. In the limit of infinite , the interaction
vanishes and the two peaks become degenerate.

6) The width obtained for a given separationincreases
with .

This may be observed in Fig. 7(a) and (b) which are
exact analogues of Fig. 3. We concentrate on just the solid
line in the upper panels representing the transmission of
one circular polarization. For (see Fig. 7(a) with

), the two peaks are still relatively well resolved.
As increases, the width for the same separationin-
creases, and the peaks become less distinct (see Fig. 7(b)
for which ). Finally, at , the two peaks
coalesce into a single broad resonance.

2) Optimization with Two Defects:We are now in a posi-
tion to understand the new possibilities for optimization with
two defects. We consider Fig. 6 again, and analyze the com-
bined action of the transmission spectra for both polarizations
(i.e., both solid and dashed lines). As observed in the previous
section, if the length scale is increased for a fixed value of

, the splitting decreases while the magnetic separation
remains fixed. Hence for a certain value of, the rightmost res-
onance of (solid line in Fig. 6) and the leftmost resonance
of (dashed line) can be “dragged through” each other. Thus
we create an accidental degeneracy where the peaks coincide at

. At such a point, we expect perfect transmission but also
a large phase difference because the phases of the coincident
resonances have opposite parity. This situation is shown in the
upper panels of Fig. 7, where the length in each case was chosen
carefully to obtain the accidental degeneracy. The plots show
the circular polarization response for [Fig. 7(a)], and

[Fig. 7(b)]. In each plot, there is a large phase differ-
ence at , while the transmission coefficients are
both unity. In the lower panels, which show the corresponding
linear polarization response, we see that a significant fraction of
the transmitted light at is TM-polarized, and that the sum
of the TE and TM transmitted light is virtually 100%. Also, as
the two circular components are equally transmitted, the ellip-
ticity (dotted line) vanishes for .

These plots also illustrate the importance of varying the ratio
, in that the shape of the phase profiles and are quite

different for the two cases. For [Fig. 7(a)], the two res-
onances of each single component are well differentiated and
most of the variation in and is localized around the peaks.
The phase difference and we ob-
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(a) (b)

Fig. 7. Response of two-defect system for (a)f = 1:5; L = 0:0301 and (b)f = 1:88; L = 0:0226. Other parameters are� = 123; � = 0:47; and� =

0:626. Upper panels show response for circular polarization components, lower panels for linear polarization. Line styles are the same as in Fig. 3.

tain a rotation close to 90 in the lower panel. By contrast, for
[Fig. 7(b)], the transmission peaks for a single cir-

cular component are strongly overlapping. The phase variation
is more evenly distributed across the width of the whole reso-
nance and so the phase difference is smaller. The lower
plot indicates the Faraday rotation obtained at is 45
(equal output of TE and TM light).

Thus by selecting and correctly we can produce an ac-
cidental degeneracy between the two circular polarizations that
generates both rotation of the desired angle, and close to perfect
transmission. For the Bi-YIG/GGG parameters, the structures in
the two figures have total physical lengths of 39.6m and 33.0

m, respectively. For comparison, the same rotations would be
obtained in a uniform slab of Bi-YIG with lengths of 591m
and 295 m, a factor of 10 or more larger. The ability to create
nonreciprocal, high transmission rotations of 45in a short dis-
tance is of great importance for constructing isolators and hence
the example of Fig. 7(b) is of particular note.

3) Length Dependence:To illustrate the length dependence
of these structures, Figs. 8(a) and (b) show the properties at
band center as a function of the total device length

. We take the same two values ofas in Fig. 7,
plotting the total transmission
(solid lines), rotation (dashed), and ellipticity (dot-dashed)
obtained from solution of the coupled-mode equations. The ver-
tical dotted lines indicate the lengths at which the accidental de-
generacy is obtained, and thus correspond to the values
in Figs. 7. (The discrete points markedand are obtained
from thin-film matrix calculations and are discussed later.) We
discuss the transmission (solid line) first, concentrating on Fig.
8(a). For 5 m, the total transmission is high, as the
transmission resonances for and are broad and overlap-
ping (see item 4) in Section III-B1 and Fig. 5). However, the
phase profiles are very similar, so the rotation is small. As

increases, the resonances sharpen (see item 5) in Section III-B1)
to resemble the situation in Fig. 6 and the transmission at
therefore falls. The transmission briefly rises to unity at
39.6 m as the peaks of opposite polarization pass through each
other [the situation in Figs. 7(a)], and finally drops permanently
once the splitting and the peaks are unable to interact at
all. A similar form is seen for the transmission with
[Fig. 8(b)] but with a much less pronounced dip in the trans-
mission around 25 m. This is in accord with the relative
shapes of the resonances in Figs. 7. The sharper resonance peaks
seen for [Fig. 7(a)] as compared to [Fig.
7(b)] lead to the more dramatic changes in the transmission as
a function of length. In general, the tuning tolerances in length
are tighter for smaller values of.

Turning to the rotation (dashed line) in Fig. 8, in both cases it
increases monotonically with length as the resonance peaks be-
come more defined and the phase profiles more step-like (com-
pare the phase profiles in Figs. 5 and 6). It is also apparent that
the rotation which occurs at optimum transmission may be con-
trolled by choosing —we obtain 87 for and

45 for . In general, larger rotations are opti-
mized for smaller values of.

The dot-dash lines visible near the bottom of each part of
Fig. 8 show the ellipticity at . If we had taken ,
both circular components would be equally transmitted at
and, consequently, the ellipticity would be identically zero. To
best represent the Bi-YIG/GGG system, our results are shown
for , which as discussed in Section II-B3 leads to
slightly different reflection coefficients for the two circular com-
ponents and creates a nonzero ellipticity. In both cases in Fig. 8,
the ellipticity is very small until the system passes the point of
maximum transmission.

4) Discrete Systems:To this point, we have assumed that
we can choose lengths and ratios completely freely.
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(a) (b)

Fig. 8. Output as a function of system length for (a)f = 1:5 and (b)f = 1:88; other parameters as in Fig. 7.

For high index-contrast thin-film stacks, however, the length
change upon adding a single layer is significant and in
general we can only obtain discrete values ofand .
These values may not coincide precisely with the optimal
values suggested by the continuous coupled-mode picture.
This problem is illustrated by the and symbols in Fig.
8, which show the results of matrix method calculations for
YIG/GGG stacks. The stack structures were of the form

, where the repetition numbers
and were selected to match the desired values ofand

as closely as possible. The stack results cluster around
the continuous results, but due to the discreteness, there
are significant gaps between adjacent points. This issue
is a particular problem near the transmission resonances.
Examining the narrow peak of the transmission curve in
Fig. 8(a), we see that the addition of a single layer causes
the discrete transmission to jump from one side of the peak
to the other, with a maximum of only . As in the
previous section, these tolerance problems are tighter for
lower values of . If materials with larger index jumps were
used in order to reduce the stack length, this problem would
become even more acute.

Fig. 9 shows how this problem may be countered. The plot
shows the peak transmission (solid) and rotation (dashed) as
a function of for the coupled-wave picture corresponding to
YIG/GGG parameters. At every value of, the length has
been chosen to optimize the transmission. [The slight drop in
transmission to around 0.99 for small values ofis another
consequence of the nonzero (see final paragraph of Section
III-B2). Nonetheless, the coupled-mode theory curves predict
that a wide range of rotations can be obtained with very high
transmission. Consider now the discrete points which indicate
thin-film stack realizations close to the continuous parameters.
The open symbols denote the transmission which largely ex-
ceeds 0.99. The closed symbols indicate the rotation at .
To increase the number of discrete rotations available, we have
allowed the refractive index of the GGG layers to take on three
different values. The circles denote stacks with the normal value

, whereas the squares and diamonds denote realiza-

tions in which the GGG index has been reduced by 0.0025 and
0.005, respectively. Changes of this order could be created by
stoichiometric adjustments. By allowing these small index vari-
ations, we can “fill in” some of the gaps observed in Fig. 8;
if the addition of a single layer causes one realization to jump
from one side of the transmission peak to the other, a stack with a
slightly different GGG index may exhibit close-to-perfect trans-
mission with a similar rotation. The dense clustering of points
in Fig. 9 shows that by varying we can indeed obtain virtually
any desired rotation with high transmission over very short dis-
tances.

We have also performed calculations for the higher index-
contrast YIG/SiO system with the aim of optimizing trans-
mission for a rotation of 45—the most interesting rotation
for the purpose of constructing isolators. The small number
of layers in these systems makes it difficult to achieve trans-
missions as favorable as with YIG/GGG. For a structure

we obtain a rotation of 44.9
with transmission 98.4%, where denotes a YIG layer,
and a SiO layer with refractive index 1.495. The total
length of the structure is 15.3 m. These values assume
an external medium with a refractive index of 1.78, equal to
the mean index of the stack so as to reduce Fresnel reflections.
If the external medium is taken as air we obtain 44.9
and 92.4%, assuming the refractive index of the silica
layer is adjusted slightly to 1.498. These values represent
a considerable improvement over the 75% transmissions
obtained in [11].

Finally, in Fig. 9, we have also indicated the bandwidth
of the resonances (dotted line) where the bandwidth is

arbitrarily defined to be the range over which the rotation
varies by less than 1. We have also checked that over this
bandwidth, the ellipticity is always well below . As
expected for highly resonant structures, the bandwidth is rela-
tively narrow, especially for high rotations, but should be suf-
ficient for single-channel operation. It would clearly be im-
possible to use a single device for many wavelength-division
multiplexing (WDM) channels.
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Fig. 9. Optimum transmission (solid) and rotation (dashed) according to the coupled-wave model for YIG/GGG parameters. Open and closed symbols correspond
to transmission and rotation for individual stack realizations. Transmission bandwidth is shown as the dotted line.

C. Discussion and Conclusion

In demonstrating the existence of an optimum lengthfor
each , we have explained the improvement in performance pre-
dicted for two-defect systems in [11] as a particular case when

(see start of Section III-B). In that work it was found that
high transmission only occurred if a certain number of layers

was used. This number of layersis now clearly seen to be
equivalent to the length that optimizes the overlap of the trans-
mission peaks for each circular polarization with a large phase
difference. In fact, the case is not an ideal choice for op-
timization. For , numerical solutions show that the two
peaks in the transmission spectrum coalesce into a single broad
peak with perfect transmission only at the center points .
This is natural when it is realized that a structure with
can be considered as a concatenation of two identical gratings
each with central phase shifts. Each individual grating is per-
fectly transmitting at , and so there must also be a peak at

for the whole structure. Due to the magnetic splitting,
these peaks can never perfectly coincide and so 100% trans-
mission is impossible for designs with . Nevertheless,
the overlapping peaks are much broader than for the single-de-
fect case, allowing a large phase difference while still achieving
quite high transmission.

Finally, it was shown in [11] that concatenations of three iden-
tical structures performed even better than the doubly concate-
nated structures. Observing the impressive performance of the
broader class of two-defect structures in this paper, it is inter-
esting to ask whether there is still an advantage in adding further
defects. The parameter space becomes too large for an exhaus-
tive characterization but we have examined the performance of
three-defect structures of the form . We find that
if we restrict only to structures with , there is indeed an
improvement in transmission with three defects over two as pre-
viously observed [11]. However, if is allowed to vary as in the

present paper, our calculations show that a shorter two-defect
structure can always be found that produces the same rotation
with a larger bandwidth of operation and a transmission at least
as great.

In summary, we have found that the addition of a second de-
fect dramatically improves upon the results of a single defect.
With the extra defect, we can arrange for an accidental degen-
eracy between transmission peaks for the different circular po-
larizations. The degeneracy provides high transmission while
the opposite parity of the overlapping peaks produces the high
rotation. By separately tuning the lengthand spacing of the
defects (through the ratio), we break the tradeoff between
transmission and rotation, so that the system may be optimized
for a large range of angles. Such designs should increase the
practicality of free-propagation integrated isolators by signif-
icantly reducing diffraction losses. In a subsequent paper, we
will consider similar questions for enhanced Kerr rotation.
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