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Photonic Bandgaps with Defects and the Enhancement
of Faraday Rotation

M. J. Steel, M. Levy, and R. M. Osgood,,Jellow, IEEE

Abstract—We investigate enhancement of magnetooptical rota-  Another subject of fundamental importance in optics is the
tion in periodic magnetic garnet thin-film stacks with defects using  exploitation of periodic systems. One-dimensional (1-D) stacks
a combination of coupled-mode theory and matrix calculations. We or “gratings” have been employed as filters and mirrors for many

prove that a combination of high rotation per unit length and high . ) .
output s unattainable for a symmetric grating with a single central  Y&2rs, and over the past decade optical fiber Bragg gratings have

defect. We demonstrate that the addition of a second defect intro- found innumerable applications as filters, sensors, and compo-
duces sufficient degrees of freedom to allow high transmission for a nents of larger devices [6]. At the same time, great interest has

much larger range of rotation angles than was previously possible. peen attracted by high-index contrast, two- (2-D) and three-di-
We present a number of designs with emphasis on achieving 45 1 ansional (3-D) periodic structures, known as “photonic crys-
fotation in very short propagation lengths. tals” [7], [8] which can exhibit complete photonic bandgaps
Index Terms—Faraday rotation, gratings, magnetooptical, pho- (pBGs). A special class of periodic structures are those with in-
tonic bandgaps (PBGs). ternal defects, in which the periodicity is broken at a localized
point, perhaps by a “phase shift” or missing layer. Such struc-
tures have useful properties, notably the introduction of trans-
mission resonances (associated with highmodes), into the

|. INTRODUCTION otherwise reflective PBGs. Photonic crystals with defects are
urrently in vogue, but defects are also of great importance in

AGNETOOPTIC materials are important in a number o, . R
. . : -D geometries, notably in distributed feedback lasers, and very
branches of integrated optics. Prominent among these is . .
narrow-band fiber filters and sensors.

the exploitation of magnetic garnets for the construction of inte-
. : . . Recently, several groups have begun to study systems that
grated isolators [1]-[5]. These devices exploit the off-diagonal - ; . )
: . . . . combine magnetooptical rotation with the resonant effects of pe-
elements of the dielectric tensor in magnetic materials to pro- .. . SR
. i . .. riodic structures. They have considered periodic thin-film stacks
duce either a nonreciprocal rotation of the plane of polarization . .
. : in which there are one or more defects, and for which at least
(Faraday effect) or a nonreciprocal phase change. While man o .
0 er?f the component materials is magnetic. It has been demon-

designs have been suggested and demonstrated, a cheapsra}g ed theoretically [9]-[11] and experimentally [12] that for

practical integrated isolator is yet to appear, due to complica- ; . : .
. S R requencies associated with a defect resonance, the rotation per
tions such as birefringence and polarization dependence. Alter- T
. Lo ) : . nit length for both Faraday (transmission) and Kerr (reflec-
natively, one might imagine heterogeneous integration of bulk- o o
i ; X Ion) effects can be significantly enhanced by propagation in
style isolators onto a chip. However, bulk isolators have lengths - . . )
- . Ty . stich structures (see Fig. 1). Thus it may indeed be possible to
on the order of a millimeter, and without waveguiding, diffrac- . . . . X
. L construct shorter isolators or interesting reflective devices that
tion losses would be unacceptable. So a significant enhancemen o
o . X : . rotate polarization.
of the intrinsic Faraday rotation with a corresponding reduction

o . . From these initial studies, a number of important issues
inisolator lengths would be most desirable. Magnetooptical ma- . L ; .
. L . A ._remain. The enhanced rotation is typically accompanied by
terials also exhibit the Kerr effect, that is, polarization rotation L .
. - : a reduction in transmission for the Faraday effect or low
on reflection. Among other applications, this effect has been ex-, = : :
o . . X feflection for the Kerr effect. Indeed, in the experiments of
ploited in certain types of magnetooptical data storage disks, gn . . . . . .
: L . noue et al. [12], in which a single active magnetic layer is
for material characterization. In most cases, Kerr rotations are_~ . o . X
. sandwiched in a periodic dielectric stack, the maximum Kerr
of the order of a fraction of a degree. Enhancement of Kerrro-, . . : . - X :
: . o . . rotation is associated with a minimum of reflection which
tation would thus allow better designs for existing appllcatlorr

S . . )
and might open new possibilities, such as mirrors that rotate tHQ'tS its usefulness. Sakaguchi and Sugimoto [11] have ob-

. . . : : served that for the Faraday effect, the use of repeated identical
reflected light, or in reflective nonreciprocal devices such as cit- : )
culators. substacks (see Fig. 2) with two or three defects allows the

enhanced rotation to be accompanied by some improvement

in transmission. However, they found improvements only for
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Fig. 1. Connection between thin-film stack and coupled-mode formalism. The upper panel shows a quarter-wave sfaitkl/ NV )* of materials with
refractive indexes\/ and N and the lower panel, a schematic representation of the corresponding coupled-mode picture. The incoming and outgoing fields
are also indicated for both lineér., A,.., B., B..) and the corresponding circular polarizatiqds;, D ).

A matrix method entwines different aspects of the geometry to-

gether.

The paper is structured as follows. In Section Il, we present
the coupled-mode system for the periodic magnetic equations
and discuss some properties of the uniform system and certain
realizations. In Section IlI-A we explain the origin of the trans-
Fig. 2. General form of the two types of structures considered in the papgpllsswn—rotatlon trade_Off for Qne'defeCt SyStemS' Procegdlng to
A-Single symmetric defect. B-Two defects in length ratia fL : L. The two-defect structures in Section I1I-B, we consider varying the
dashed lines in each structure are used only to highlight the phase shifts. p?ﬂisition of the defects along the structure. We show for essen-
structures have transmissi@nand reflection coefficient®, but for structure B . I ired . h . icul f
we optimize forT' only. tially any require _rotatpn, there is a partlcu ar arrangement o

the defects that gives high transmission from very short struc-

/ K, L ‘
1

B K L

studies rely solely on the transfer matrix method. While this }lsj e
an exact method for thin-film stacks, it provides little insight
into the underlying reasons for the enhancement and is not
easily extended to other geometries of importance for photonic
integrated circuits, such as corrugated planar waveguides.  The basic geometry is shown in Fig. 1. Linearly polarized
Recently, we studied a broader class of two-defect stacksjight (1) is incident on a periodic structure that contains one
which the relative placement of the defects was allowed to vagy more defects. The structure may be a quarter-wave thin-film
[13]. We showed that using these designs, the tradeoff betwegsick (upper half of Fig. 1), or a general periodic system (lower
rotation and transmission could be completely overcome, aggif). Due to the magnetic material in the system, the transmitted
explained how the optimum design could be found for a given) and reflected R) light is emitted with some rotation of the
desired rotation. The key to this procedure is to create an aggsiarizationd and some ellipticity;. We wish to calculate these
dental degeneracy between transmission resonances for ligh§@éntities for both the outgoing waves, aiming to find designs
opposite circular polarization. that produce a specified (large) rotation with as much energy as
In the present work, we explore the properties of our proposg@ssible emitted in the desired mode (transmission or reflection)
stacks in detail. We introduce a coupled-mode description thata very short length. For most applications, notably isolators,
reduces the complex stack geometries to a few simple parame-also require that the output field have negligible ellipticity.
ters, and thus highlights the essential physics much more clearly
than a necessarily numerical implementation of the transf
matrix method. It is thus easier to explain the enhancemen
and determine the best designs, and in some cases, we can e®ur discussion is based on a coupled-mode treatment of a
tract simple analytic results. While the coupled-mode pictutessless magnetic medium with cubic crystal structure. A static
becomes inaccurate for systems with large index jumps, timagnetic field is applied in the propagation directioto satu-
insight and basic physical pictures established for the smaltate the magnetooptic response and produces nonzero off-diag-
index variation remain valid for high index contrast systems. lonal elements in the dielectric tensgy, = —¢,, = i¢,. These
addition, a continuous picture such as a coupled-mode theasif;diagonal elements are, of course, the source of the magne-
allows us to vary certain parameters independently, whereamaptic rotation. A grating or periodicity is now introduced into

Il. MODEL

.'SStatement of the Problem and Dielectric Tensor
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the problem. We allow both the diagonal and off-diagonal confhat is, in a uniform grating, light at the wavelengiy
ponents to have periodic parts so that the dielectric tensor takesstrongly Bragg-reflected. The mean index is trivially
the form 7i = (n1d; +nods)/ A where the two types of layers have index
_ o nj = \/€zz,; and thicknesg; = A\/(4n;), while A = d; + ds.
o [fdfr Gii,g(z)]’ IL[f" +€,:’g(z)]’ 0 JReturninJg to the other ;)ararze(:terjs) in (3 = g % ao,
e= |~ t g2, [aate(z), 0 @ whereq = (w —wp)7n /¢, represent wavenumber detunings from
0, 0, €2z the Bragg resonance. The periodicity in the system couples the
whereg(z) = cos[(2rz/A) + 6]. For a thin-film stack of al- forward and backward modes with a strength giver-hy =
ternating quarter-wave laye LHLHL . .., this form for ¢ m.i aq /2, wherex is t.he coptnbunon of the per|od|p|ty in the
is obtained straightforwardly by approximating the discrete pgiagonal part of the dielectric tensor. For a stack with moderate
riodic changes by their lowest order Fourier components. THIEX Jumps,x & 7(ny — n1)/(2aA0). Finally, the magnetic
period A is the length of a single uniéf L while & represents €TT€CtS are expressed through the parametgrs= e, /(7))
a possible phase shift. For moderate index differences, the 389 = 7€,/ (nA). The signs ofy, anda, are determined by
striction to two Fourier terms is an excellent approximation, pr(’jhe sense of the applied static magnetic field.
vided we study frequencies close to the lowest Bragg resonancet) Waveguides:With some minor adjustments in interpreta-
The influence of higher Fourier components of the structure $9N: the coupled-mode equations are, of course, also applicable

largely felt at higher Bragg resonances. Note that we have §3Propagation in waveguides which have a periodicity intro-

sumed there is no birefringence betweendtendy directions. duced say, by surface corrugation. In this case, (1) is regarded
as a description of theffectivedielectric constant with the pa-

B. Coupled-Mode Equations rameters determined by the details of the geometry, field polar-
ization, and the shapes of the waveguide modes [14], the ampli-
b functions modulate transverse electric (TE) and transverse
magnetic (TM) modes, rather than plane waves. Due to modal
E = [(A(9)& + A (2)§) exp(inz/A) + (B.(2)& dispersion, the off-diagonal matriX is no longer necessarily

zero but takes the form
+ B.(2)Y) exp(—imz/A)] exp(—iwt) + c.c.  (2)

To derive a coupled-mode representation, the electric field
a wavelength\ = 2rc/w is written as

In a uniform nonmagnetic medium, the amplitudes of forward- . A/2 (Ar/2)e™

propagating 4. and A,,) and backward-propagatind3( and V=i _(ARj2)c —AJ2 (7)

B,,) waves are constant. Here, the amplitudes are coupled by

the periodic and magnetic parts of the dielectric tensor, and thgjere A — Be(wo) — Bm(wo) is the difference in propagation
acquire a-dependence. Inserting (2) into Maxwell’'s equationgonstants of the TE and TM modes. The mean index becomes
and discarding nonphase-matched terms leads to the cougledmeareffectiveindexn — (Be + Bm)/(2wo). The grating

system coupling is also different for each mode, so that= (r. +
C C km)/2 IS now a mean coupling strength whilex = . — &,
+ + ; ; ; ; -
d | D Ut v D, is the difference in the coupling coefficients. The values of all
e C+ = {V U_} C (3) these parameters and the magnetic tesnandca; depend on
) D_ D_ the shape of the waveguide modes. A nonzero matroom-

plicates the solution of (3), and, in fact, strongly dispersive sys-

whereUT andV are2 x 2 matrices, and we have expressed th&ms can destroy many of the properties we explore in the paper.

problem in terms of the “circularly polarized” amplitudes ~ For instance, ifA > ao, the resultant phase mismatch pro-
duces elliptical polarization of the transmitted light, and a dra-

Cy = (Ac Tidm)/V2 (4a) matic decrease in the achievable Faraday rotation. Birefringence
D* = (B, FiBn)/V2. (4b) s indeed the major difficulty in constructing integrated isola-
tors based on polarization rotation. It can be countered by tech-
The matrice&)® contain the familiar terms of the coupled-moddiques such as quasiphase matching [15] or compensation of

equations for contra-propagating systems modal birefringence with strain birefringence of opposite sign
N [16]. With careful waveguide and grating design we can also ar-
Ut —; Qi;é re’ (5) range for similar coupling coefficientsrg = xrn. Therefore,
—kxe " —qp we assume throughout that the off-diagonal matfix 0.

hile f birefri t medi the off-di | matri 2) Solution to Coupled-Mode Equation&quation (3) de-
while for a nonbirefnngent medium, the ofi-dlagonal matriX .o < e field evolution in a uniform section of the grating of
V=0 Thu_s the circular modes of positive and negative senr%%gthL. With the assumptiov = 0, the solution relating the
of polarization are c.ompletely degouplgd. fields at the front(z = 0) and rear(z; = L) is shown in (8)

The parameters in (5) are defined in terms of a reference 5 5
Bragg wavelength\, = 2rc/wo and the mean index(w,) 2nd (9) atthe bottom of the next page whete= /r3. — ¢x.

which together satisfy the standard Bragg relation We choose a TE input of unit amplitudi (0) = 1 (see Fig. 1)
so thatC1(0) = 1/+/2, while the condition that no light enters

Ao = 27(wg)A. (6) from the rear of the grating giveB, (z;) = 0. Equation (8) is
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then solved for the unknowrS..(z;) and D+ (0), to yield the the effects of the two magnetic parametegsandc; . The de-

transmission and reflection coefficients tuning ¢ which is associated with th@eanrefractive index is
Ci(zp) split by the mean magnetic strengtly into .the. quantitie%E ,

ty = T2 (0) (10a) with ¢ —g_ = 2ao. In the absence of periodicity, the splitting

D4(0) of ¢4 andg_ simply represents the magnetic circular birefrin-

Ty = . (10b) gence which accounts for the normal Faraday rotation of lin-
C+(0) early polarized light. Here, the splitting induces a separation be-
More generally, we are concerned with a series of gratingstfeen the centers of the band gaps for left- and right-circular po-
lengthz;, whose phase parametéréand perhaps other param-|al’izati0n. Similarly, the grating strengthwhich derives from
eters), change in each section. Notably a “missing” layer intl@ae periodic part of the refractive index is split by the periodic
stack corresponds to a shiftérof 7. The complete response ismagnetic couplingv;. As a result, the two band gaps are not
found from the product of the individual matrix operatdfs only shifted by the splittingc but exhibit slightly different re-

for each uniform grating flectivities. For realistic dielectric materials,>> («g, o1 ) and
the magnetic effects may be considered as perturbations to the
[Ci } _ Ui U e Us UTa [ Ci} influence of the grating. This is not necessarily true for metallic
De]._. z=0 ferromagnets such as the cobalt layer used in [12].
(11)

wherez; = >, # is the length of the entire structure. Equag Realistic Values and Dimensionless Units

tions (10) remain valid. In (11), it is assumed that the meanWe now describe our notation for different structures and
index is unchanged in adjacent gratings, which is the case for tiiee some realistic physical parameters. A grating structure is
problems we consider here. For structures with changes in thenoted by an expression of the fo(my, L1) : (k2, L2) : ...
mean index, additional transmon matrices are inserted betwendicating the coupling strengtik; and lengthZ; of each
each propagation matrkxxp(U z;) to account for Fresnel re- section. A colon indicates & phase shift. Discrete thin-film
flections [17]. stacks are expressed as a sequence of repeated units such
At times, we also calculate the response of our structuras (M N) (NM)™(MN)"..., where M and N denote
using the transfer matrix method, which is exact for thin-filnmagnetic and nonmagnetic layers, respectively. All layers are
stacks. The procedure is analogous to the matrix concatenatiprarter-wave plates of thickness= \q/(4n;). The relation
for the coupled mode equations in (11), except that a separagtween the two pictures is indicated schematically in Fig. 1.
matrix is required for each layer of the stack. The theory is For physical values we choose a resonant frequengy ef
well-known and the reader is referred elsewhere for details [1Q}55 xm and consider structures of either bismuth-substituted
[11], [18]. yttrium iron garnet (Bi-YIG) and gallium gadolinium garnet
3) Basic Properties:We first summarize some properties of{GGG), or Bi-YIG and SiQ. Bi-YIG is a favorable magnetic
(3) for a single uniform grating. Due to the block-diagonal struenaterial as it has a high Faraday rotation, low loss at commu-
ture of (3), the response of the system may be considered sejpations wavelengths, and may be integrated into circuits by
arately for each sense of circular polarization. As the fundaputtering or single crystal liftoff techniques [19], [20]. GGG is
mental property of a periodic system, each pair of modes (@ convenient substrate for growing YIG. Alternatively, YIG may
—), exhibits a PBG—incident light in the frequency rangalso be sputtered on to Si@vhich makes for larger index con-
l¢x| < k4 experiences strong reflection, while light outside th&rasts and thus stronger resonant effects. The diagonal elements
gapis Iargely transmitted. The reflectivity@t = 0 is given by of the dielectric tensor have the valueg® = 4.75, ¢5¢¢ =
R = tanh? k4 L, while the width of the band gap &<y and 3.71, ande>i9: = 2,25, The off-diagonal element for Bi-YIG
is approximately proportional to the strength of the index modk ¢,, = 0.00269 which corresponds to a Faraday rotation of
ulation. For nonmagnetic materials, the band center is given #y = 0.48 m~1!. To obtain dimensionless units we normalize
the Bragg condition (6) correspondingg¢a= 0. by vo = me,y /(7iXg), the intrinsic rotation per unit length of the
Expressing (3) in terms of circularly polarized modes has twoagnetic material. For YIG/GGG stackg, = 0.00266 ;ym™—!,
advantages. First, the decoupling of the polarizations allows aisd the normalized parameters arg = 0.47, «; = 0.626,
to make simple interpretations of the system response to ardx = 123. This scaling is always used in the results below
coming linearly polarized light—we analyze each structure famless otherwise specified. For corrugated slab waveguides, the
its separate response to each circular polarization, and then cgnatings have much weaker strength—the maximum attainable
bine the results using (4). Second, there is a clear separatiowvalies are of ordet,, x,,, < 20, while ¢y ~ 1 anday = 0.

Cy _ Ut | Cx
cosh O':|:L + i= smh oxL LK—i sinh O':|:L Cy 9
o —La smh o+ L cosh O':|:L —iZE Slnh oxL| | Dy _, ©)
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lll. DEFECTS The coupled-mode version of the skipped layer stacks is the
imple structurér, L) : (x, L)—two identical gratings with a

As discussed earlier, several authors have predicted, amié%c!]ralw phase shift (see Fig. 2, Structure A). The properties of

e e e talon bt ansisin &l a sructure wihout magnet fects ae wekoun e
ratings produce a band gap while the defect induces a per-

]:rhe basic e>t(plart1.at|0n(;).f the e_?ﬁ?ﬁcemtenttlls simple. Itr_1 i.u ct transmission resonance at the center of the band gap with
orm magnetooptic medium (wi € salurating magnetic Nel -, qwidth that decreases exponentially wifh[21]. Phase

oriented longitudinally), the two circularly polarized modes arg i< other thad — o produce similar resonances located away

transmitted with a slightly different optical path length due to thﬁ‘om the band center. Throughout this paper, we consider only

magnetic circular birefringence. Incoming linear light, Whin% mmetricr shifts for the sake of symmetry and to limit the pa-
excites equal contributions of the circular modes is therefo meter space

rotated. In a periodic system with one or more defects, trans-r coupled-mode equations for this problem with the mag-

m.|§13||c.>nh:esonances appe?; inside the PFG' When ;!{umlfnaW ic effects included are easily solved using (11); the manipula-
with ight near a resonant frequency, a arge quantity ot ), ¢ can pe simplified by the use of an effective medium picture

ergy is stored inside t'he structure, sltrongly localized near t eiﬂ. The individual transmission coefficients for each circular
defects. The trapped light thus experiences an extended opt A5 rization [see (10)], are

path length and there is an increase in the pitferencebe-

tween the two circularly polarized components over the path i —i(k3 —q3)
difference obtained on transmission through a uniform mediurfit = [t = — ; : >
erence obtained on transmissio ough a unifo ediu ¢ cosh(204 L) +igeor sinh(20L L) — k%
(or on reflection from a single interface). As a result, the overall (12)
Faraday or Kerr rotation is increased.
Such enhancements have been described for several typigres, = ,/x% — ¢3.. For a strong grating in the vicinity of

of hypothetical structures with different numbers of defectgq resonance aty = 0, we havesy > g4 andoy — Ky SO

[9]-{12]. A single central defect has been found to Improvgs; the amplitude transmission coefficients reduce to the simple
rotation but at the cost of output intensity—a structure designggd s

to achieve high rotation on reflection suffers from low reflec- .
tivity. Multiple defects have been found to help improve the ¢ )
output intensity in transmission. Up until our previous paper iqu/2k4) exp(2r4L)]
[13], however, no detailed physical picture of the enhancemegiiyijarly, we can find limiting forms for the reflection coeffi-
(beyond the simple path difference description), or the role gfnis
multiple defects had been presented. In the following sections )
we discuss each of the structures shown in Fig. 2. We begin by 4, = |y |c™¥+ ~ i L . (14)
providing a complete explanation of the single-defect tradeoff 1+ (2ik+/qs) exp(—2r+L)
(Structure A). We then study two-defect systems for a broadefom these relations and (4) and (10), we find the parameters of
class of structures than has been done previously and show hgWin interest: the total transmission and reflection
we can achieve new levels of optimization (Structure B).

In all cases, we consider rotation of incoming TEwepo- 7 = [A.(zf)[* + |An(zp)]*? R =|B.(0)]* +|B,.(0))?
larized light of unit intensity A, (0)|? = 1. Thus a pure TMy) (15)
output represents90° rotation.

tizl_( (13)

the Faraday F') and Kerr(K') rotations

1 2R :
Orx = = tan™" 2RCXRK) (XF’BQ)
2 1—|xrxl

A. Single Symmetric Defect

Two types of thin-film stacks with a single defect have been (16)

studied previously. In one type, the structure consists of an ) o

equal number of alternating magnetic and nonmagnetic lay&Rd the corresponding ellipticities

with a skipped middle layer in the forrM/ N)/ (NM)? or B 1 (—2Im(xrx)

(NM) (M N)? [10], [11]. In the other type, the design is again 7F,K = tan [5 sin <W>} . (17)
symmetric but the middle magnetic layer may be extended and o

may be the only magnetic layer in the system [10], [12], fdderexr = A, (2f)/Ac(zf) andxx = B, (0)/B.(0). Note
example,( Ny N2 ) (M)*(NaN1)?. In transmission or Faradaythat whenlt,| = |¢_|, the transmitted light is linearly polarized
mode, both these classes of structures show similar behavier: = 0) with 8p = — (¢4 — ¢_)/2. Similarly, 6 = —(1p4 —

the rotation increases dramatically with the number of layers+_)/2 when|ry| = |r_]|.

but the transmission simultaneously decreases. In the reflectioffrig. 3 presents typical results for a single symmetric defect
or Kerr mode, there is a similar tradeoff between the rotatiarsing YIG/GGG parameters (see Section 1I-C). The spectral re-
and the reflectivity. In the experiment of [12], for example, Kersponses for circular and linear polarizations are given in the
rotations of up to 10 were recorded, but each enhancemenpper and lower panels, respectively. We remind the reader that
was associated with a minimum of the reflectivity, which wathe two circular modes act independently and that the linear re-
less than 1% for the highest rotation. Here we investigasponse is to be considered as the summed effect of the two cir-
whether this tradeoff can be overcome. cular polarization responses. The upper panel shows the trans-
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Fig. 3. Response of a symmetric grating with a centrghase shifte = 123, ag = 0.47, oy = 0.626, andL = 0.0252. Upper panel: Transmission and
phase of circularly polarized modgs:. |* (solid), |¢_|*> (dashed)g (fine dotted), and>_ (coarse dotted). Lower panel: Transmission of linearly polarized
modes|A.(z,)|? (solid), |A..(z,)|? (dashed), and ellipticity; (dotted).

mitted intensities’yy = |t+|? (solid and dashed lines) andfurther into the wings of each resonance. There is thus a basic
phasespr = arg(ty) (dotted lines) according to (12) as acompromise between the rotation and the transmission. Similar
function of the detuning;/«o. Each circular component seesarguments based on (14) show that such a tradeoff also occurs
an identical transmission resonance with the general Lorentziaith the rotation of reflected light.

form indicated by (13). Due to the circular magnetic birefrin- Indeed, in the limitx > «ag, a; (which is invariably true for
gence, the resonances are separated in frequeriygoyNote garnets), (13)—(15) lead, after a little algebra, to the relations
that withx = 123, the ed_ges of the reflection band are far out- T=1-R=(1+p)" (18)

side the domain of the figure and we see only the central reso- T

nances.) In the vicinity of each resonance, the associated phase Op =5 —0r= tan™*(p) (19)
(dotted lines) increases hiy At ¢ = 0, the transmitted intensi-

where
ties are the same and the phase differedge= ¢, — ¢_ has
a maximum (indicated by the vertical arrow). The lower panel _ agexp(2xL) 20
o : ; : p=—7p— (20)
shows the transmission for the linearly polarized modes which 2K

is obtained from the results in the upper panel using (4a). TB?simpIy
greatest rotation, i.e., the greatest conversion into the TM po-
larization (dashed line), occurs at the band ceqter0, where T = cos? O R = cos? 0. (21)
both circular components are transmitted with equal intensity
and the phase differena&¢ is largest. Note, however, that theEquation (21) states that an increase in rotation directly implies
total transmitted intensity’ = |A.(0)|?+]A4»(0)|> < 0.6. The a reduction in output intensity for both transmissive and reflec-
dotted line in the lower panel denotes the elliptiejfy. The el- tive modes of operation. This system simply has insufficient de-
lipticity nz (dotted line) vanishes at = 0 where the circular grees of freedom to be optimized for both large rotation and
modes are transmitted equally, but is nonzero elsewhere.  significant optimization. For thin-film stacks with large index
Fig. 4 shows the response of the same system with the lengé#niation, the precise results depart from these relations, but the
increased td. = 0.03. In accord with (13), the bandwidth of basic tradeoff remains and may be confirmed by matrix calcula-
the resonances is smaller (corresponding to the increase intibas. Thus the low output observed in the experiments of [12]
Q-factor of the resonance). Further, the phase functfenare is now seen as a result of the competing demands placed on the
more step-like, with their variation localized about the pointshapes of the resonances for the circularly polarized modes—we
g+ = 0, respectively. This causes an increase in the phase di&nnot simultaneously obtain a broad resonance needed for high
ferenceA¢(q = 0), and thus in the rotation. However, the nareutput and large phase difference needed for high rotation. We
rowing of the resonances also leads to a decrease in the totaiclude that a structure based on a single symmetric defect is
transmission at band center, because the ppiat0 now lies not suitable for efficient, high-output devices.
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Fig. 4. As for Fig. 3 withL = 0.03.

B. Two Defects in Transmission 1.0

With the limited possibilities of a single defect, the introduc-

tion of an additional phase shift is now motivated by the need 0.8
to introduce extra degrees of freedom. Sakaguchi and Sugimoto

[11] have considered designs in which two defects are placed 06
at one quarter and three quarters of the way through the stack, T'
for example(M N)J(N M) (M N)’. Thus the lengths of each

section are in the ratid. : 2L : L. They showed that with 0.4

such designs the rotation can be maintained with some degree

of improvement in transmission, up to a maximum of 95%, but 0
for each design, high transmission occurred only for a partic-
ular value ofj. They found some further improvements with
three-defect structures of the forfn : 2L : 2L : L. How- URUS USRS

ever, a fundamental problem remains. The transmission and ro- -40-30-20-10 0 10 20 30 40

tation cannot be controlled independently—the number of rep- q

etitions ;7 is determined by the requirement of achieving high

transmission, and one is left with whatever rotation the systefig. 5. Circular polarization transmission spectra of a two-defect system with
generstes. In particulr. the maximum ransmission for otstiohe. 8,7 e LU e seson smeniit o,
close to 48, which are important for isolator applications, wa

~75%-80%.

Recently, we suggested using a broader class of two-defastto explain why the earlier multiple defect designs [11] (for
structures of the forfiM N)? (N M)* (M N)’ wherej <k<2j which f = 2), exhibited an improvement over the single-de-
[13]. Our preliminary results showed significant advances. Bgct design. Moreover, we demonstrate that the freedom intro-
varying the ratidk/j we were able to obtain high transmissiorduced by the parametef’ allows the improvement in trans-
for essentially any desired rotation, overcoming the tradeoff wmission to be tuned over a much wider range of rotation angles
have discussed earlier. Here we explore these designs in greatgin. Finally, the coupled-mode description allows us to sep-
detail using the perspective of the coupled-mode theory. In theate the roles of the scale lengthand the length ratig’. By
coupled-mode description, the analogous structures have tleintrast, when modeling discrete stacks [13], the addition of a
lengths in the ratid. : fL : L wheref € [1,2] is a free pa- single layer changes both the overall length and the relative sizes
rameter corresponding to the rakig; (see Fig. 2, Structure B). of each section, which complicates the interpretation of results.
Note that with this form for the gratings, we introduce more flex- 1) Resonance StructureOptimization of our two-defect
ibility into the designs than considered by others, yet retainsgstem is again simplified by considering the combined effects
high degree of symmetry. The coupled-mode results then allefithe independent transmission resonances for each circularly

)
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o
a

encep(q) — ¢_(q) is very small. This is the situation in
Fig. 5, forf = 1.4 andL = 0.0103.

5) As L is increased, we find two general effects:

/2 « the widthw of each peak decreases.

This is the familiar line-narrowing due to the in-
creasing@-factor of the structure, just as with the
single-defect gratings in the previous section. The
situation of Fig. 5 is transformed to more closely
resemble that of Fig. 6.

-T/2 « the separation of the two peaks also decreases.
This corresponds to a reduction of the splitting
in the symmetric and antisymmetric modes, as the
I two defects are pulled further apart, and interact less

4 3 2 -1 0 1 2 3 4 strongly. In the limit of infinite L, the interaction
q vanishes and the two peaks become degenerate.
6) The widthw obtained for a given separatienincreases
with f.
Fig. 6. AsforFig. 5withl = 0.0253. Note the decreased scale for thaxis. This may be observed in Fig. 7(a) and (b) which are
exact analogues of Fig. 3. We concentrate on just the solid
polarized mode. To indicate the typical form of the resonances, line n the upper pangls reprejentrlng the .transm|ss.|on of
in Fig. 5 we show the response according to the coupled-mode one cw::ular polarization. Fof =15 (see Fig. 7(a) with
equations for a system witf = 1.4 and L = 0.0103. Fig. 6 f= 1.'0)' the two peak_s are still relatively well re;qlved.
also shows the response fr= 1.4, but with a larger length As [ increases, the width for the same s_eparahan-_
) ) ) creases, and the peaks become less distinct (see Fig. 7(b)
L = 0.0253. For both figures, the various line styles have the . .
same interpretation as for the upper panel of Fig. 3, i.e., circular for Wh'Ch.f N 1‘88)' Finally, atf = 2, the wo peaks
o . ! ! coalesce into a single broad resonance.
transmissions as solid and dashed lines, and the corresponding
phases as dotted lines. The obvious manifestation of the extra o ) ) )
defect is an additional transmission resonance for each mode.2) Optimization with Two DefectsWe are now in a posi-

Using Figs. 5 and 6, we attempt optimization by analyzin%on to understand the_ new _p055|b|I|t|_es for optimization with
how the resonance structure changes with the lehgthd ratio WO defects. We consider Fig. 6 again, and analyze the com-
. The relevant coupled-mode system can be solved analyticalﬂﬂﬂed action pf the transm|s§|on spectra for both polanzanpns
butin practice the exact solutions are rather unwieldy, and are(h§-» Poth solid and dashed lines). As observed in the previous
more useful than numerical solutions to the coupled-mode eq§&Stion if the length scalé is increased for a fixed value of
tions. However, from basic physics arguments and study of thetn€ splitiingo decreases while the magnetic separaiap
numerical results, we can make the following general concl(fMains fixed. Hence for a certain valuelgfthe rightmost res-
sions about the behavior of the systenyadL vary. Note the Onance ofC, (splld line in Fig. 6) and the leftmost resonance
labeled arrows in Figs. 5 and 6, indicating the splitting of eadf ¢~ (dashed line) can be “dragged through” each other. Thus
peaks, a rough estimate of the peak width and the magnetic W& create an acmde_:ntal degeneracy where the p_ea!<s coincide at
splitting 2cvo. q = 0. At such a_pomt, we expect perfect transmission bu_t a_Iso

a large phase difference because the phases of the coincident
1) As there are two defects in the structure, we observe twesonances have opposite parity. This situation is shown in the
transmission resonances (the cdise 2 is an exception upper panels of Fig. 7, where the length in each case was chosen
we discuss later). There is a phase increase bf the carefully to obtain the accidental degeneracy. The plots show
vicinity of each resonance, so that in traversing both rethe circular polarization response fér= 1.5 [Fig. 7(a)], and
onances the phase is advance@byThe two resonances f = 1.88 [Fig. 7(b)]. In each plot, there is a large phase differ-
are simply symmetric and antisymmetric splittings of thences,. — ¢_ atg = 0, while the transmission coefficients are
single resonance introduced by each defect. both unity. In the lower panels, which show the corresponding
2) For f < 2, we find that the maximum transmission oflinear polarization response, we see that a significant fraction of
each peak is always unity and the response is symmettie transmitted light af = 0 is TM-polarized, and that the sum
aroundg+ = 0. of the TE and TM transmitted light is virtually 100%. Also, as

3) Just as for the single-defect problem, the separ&ign the two circular components are equally transmitted, the ellip-

between the two polarization modes is a constant, fixditity » (dotted line) vanishes fay = 0.

by the magnetooptical strength of the materials. The peakThese plots also illustrate the importance of varying the ratio
width w and separatiow for a single mode, however, f, in that the shape of the phase profiles and¢_ are quite
depend on the parametefsaand L. different for the two cases. Fgr= 1.5 [Fig. 7(a)], the two res-

4) For very shortlengthg, the structures have a low-qualityonances of each single component are well differentiated and

factor@ and the peak widthy > 2« is so broad that the most of the variation i, and¢_ is localized around the peaks.
peaks for each polarization overlap and the phase difféfhe phase differencA¢ = [¢(0) — ¢_(0)] ~ = and we ob-
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Fig. 7. Response of two-defect system for fa 1.5, L = 0.0301 and (b)f = 1.88, L = 0.0226. Other parameters are= 123, ay = 0.47,anda; =
0.626. Upper panels show response for circular polarization components, lower panels for linear polarization. Line styles are the same as in Fig. 3.

tain a rotation close te-90° in the lower panel. By contrast, for increases, the resonances sharpen (see item 5) in Section 111-B1)
f = 1.88 [Fig. 7(b)], the transmission peaks for a single cirto resemble the situation in Fig. 6 and the transmissign-a0
cular component are strongly overlapping. The phase variatithrerefore falls. The transmission briefly rises to unitylat=
is more evenly distributed across the width of the whole res89.6.:m as the peaks of opposite polarization pass through each
nance and so the phase differerk¢(0) is smaller. The lower other [the situation in Figs. 7(a)], and finally drops permanently
plot indicates the Faraday rotation obtained at 0 is —45° once the splittings < aq and the peaks are unable to interact at
(equal output of TE and TM light). all. A similar form is seen for the transmission with= 1.88
Thus by selecting’ and L correctly we can produce an ac-{Fig. 8(b)] but with a much less pronounced dip in the trans-
cidental degeneracy between the two circular polarizations tmaission around. = 25 um. This is in accord with the relative
generates both rotation of the desired angle, and close to perdpes of the resonances in Figs. 7. The sharper resonance peaks
transmission. For the Bi-YIG/GGG parameters, the structuresiaen forf = 1.5 [Fig. 7(a)] as compared t¢§ = 1.88 [Fig.
the two figures have total physical lengths of 316 and 33.0 7(b)] lead to the more dramatic changes in the transmission as
M, respectively. For comparison, the same rotations would &dunction of length. In general, the tuning tolerances in length
obtained in a uniform slab of Bi-YIG with lengths of 53im are tighter for smaller values gf
and 295:m, a factor of 10 or more larger. The ability to create Turning to the rotation (dashed line) in Fig. 8, in both cases it
nonreciprocal, high transmission rotations of 4%a short dis- increases monotonically with length as the resonance peaks be-
tance is of great importance for constructing isolators and herm®me more defined and the phase profiles more step-like (com-
the example of Fig. 7(b) is of particular note. pare the phase profiles in Figs. 5 and 6). It is also apparent that
3) Length DependenceTo illustrate the length dependencehe rotation which occurs at optimum transmission may be con-
of these structures, Figs. 8(a) and (b) show the propertiestralled by choosingf—we obtaind» ~ 87° for f = 1.5 and
band cente; = 0 as a function of the total device lengthér =~ 45° for f = 1.88. In general, larger rotations are opti-
Liot = (3+ f)L. We take the same two values ps in Fig. 7, mized for smaller values of.
plotting the total transmissiol® = |Ac(zp)|?> + |Am(zs)? The dot-dash lines visible near the bottom of each part of
(solid lines), rotatio®r (dashed), and ellipticity (dot-dashed) Fig. 8 show the ellipticity aty = 0. If we had takeny; = 0,
obtained from solution of the coupled-mode equations. The véeth circular components would be equally transmitteg-at0
tical dotted lines indicate the lengths at which the accidental dmd, consequently, the ellipticity would be identically zero. To
generacy is obtained, and thus correspond tojthe 0 values best represent the Bi-YIG/GGG system, our results are shown
in Figs. 7. (The discrete points markedand x are obtained for oy = 0.626, which as discussed in Section 11-B3 leads to
from thin-film matrix calculations and are discussed later.) Waightly different reflection coefficients for the two circular com-
discuss the transmission (solid line) first, concentrating on Figonents and creates a nonzero ellipticity. In both cases in Fig. 8,
8(a). ForL;,; < 5 um, the total transmission is high, as thahe ellipticity is very small until the system passes the point of
transmission resonances 0. andC_ are broad and overlap- maximum transmission.
ping (see item 4) in Section IlI-B1 and Fig. 5). However, the 4) Discrete SystemsTo this point, we have assumed that
phase profiles are very similar, so the rotation is smallIAs we can choose lengthé and ratios f completely freely.
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Fig. 8. Output as a function of system length for fay= 1.5 and (b)f = 1.88; other parameters as in Fig. 7.

For high index-contrast thin-film stacks, however, the lengtiions in which the GGG index has been reduced by 0.0025 and
change upon adding a single layer is significant and 005, respectively. Changes of this order could be created by
general we can only obtain discrete values lofand f. stoichiometric adjustments. By allowing these small index vari-
These values may not coincide precisely with the optimations, we can “fill in” some of the gaps observed in Fig. 8;
values suggested by the continuous coupled-mode pictufehe addition of a single layer causes one realization to jump
This problem is illustrated by the- and x symbols in Fig. from one side of the transmission peak to the other, a stack with a
8, which show the results of matrix method calculations falightly different GGG index may exhibit close-to-perfect trans-
YIG/GGG stacks. The stack structures were of the formission with a similar rotation. The dense clustering of points
(NM)/(MN)*(NM)?, where the repetition numberg in Fig. 9 shows that by varying we can indeed obtain virtually
and k£ were selected to match the desired valuesfoand any desired rotation with high transmission over very short dis-
L as closely as possible. The stack results cluster arouadces.

the continuous results, but due to the discreteness, thergve have also performed calculations for the higher index-
are significant gaps between adjacent points. This issgéntrast YIG/SiQ system with the aim of optimizing trans-

is a particular problem near the transmission resonancggission for a rotation of 45—the most interesting rotation
Examining the narrow peak of the transmission curve gy the purpose of constructing isolators. The small number
Fig. 8(a), we see that the addition of a single layer causgfayers in these systems makes it difficult to achieve trans-
the discrete transmission to jump from one side of the pegfissions as favorable as with YIG/GGG. For a structure
to the other, W|th a maximum of onl§” = 0.89. As in the NM)°(MN)Y(NM)° we obtain a rotation ofy = 44.8
previous section, these tolerance problems are tighter fih transmissior” = 98.4%. where\/ denotes a YIG layer,
lower values off. If materials with larger index jumps were nd N a SiO; layer with refractive index 1.495. The total

used in order to reduce the stack length, this problem woy gth of the structure i, = 15.3;m. These values assume
become even more acute. ap external medium with a refractive index of 1.78, equal to

shE\ISé ?hsehO\Zevzkh?r\iavntshrlr?isF)sricc))ale(r:olriTi?yagz (;gfar;its;e?d;ng e mean index of the stack so as to reduce Fresnel reflections.
P Ifaﬁm external medium is taken as air we obtéin = 44.9

a function of f for the coupled-wave picture corresponding to ~ : o .
YIG/GGG parameters. At every value ¢f the lengthZ has andT” = 92.4%, assuming the refractive index of the silica

been chosen to optimize the transmission. [The slight dropltef'yer IS adjuste_d slightly to 1.498. These values.re.present
transmission to around 0.99 for small valuesjofs another & considerable improvement over the 75% transmissions

consequence of the nonzese (see final paragraph of Section®Ptained in [11]. o .
11I-B2). Nonetheless, the coupled-mode theory curves predictFinally, in Fig. 9, we have also indicated the bandwidth
that a wide range of rotations can be obtained with very hig‘h’/ of the resonances (dotted line) where the bandwidth is
transmission. Consider now the discrete points which indica@gPitrarily defined to be the range over which the rotation
thin-film stack realizations close to the continuous paramete¥@ries by less than°l We have also checked that over this
The open symbols denote the transmission which largely d@ndwidth, the ellipticity is always well below = 0.01. As
ceeds 0.99. The closed symbols indicate the rotatign=at0. €xpected for highly resonant structures, the bandwidth is rela-
To increase the number of discrete rotations available, we hdixely narrow, especially for high rotations, but should be suf-
allowed the refractive index of the GGG layers to take on thrdisient for single-channel operation. It would clearly be im-
different values. The circles denote stacks with the normal valpessible to use a single device for many wavelength-division
n = 1.926, whereas the squares and diamonds denote realirasltiplexing (WDM) channels.
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Fig. 9. Optimum transmission (solid) and rotation (dashed) according to the coupled-wave model for YIG/GGG parameters. Open and closed sgmdads corr
to transmission and rotation for individual stack realizations. Transmission bandwidth is shown as the dotted line.

C. Discussion and Conclusion present paper, our calculations show that a shorter two-defect
structure can always be found that produces the same rotation

In demonstrating the existence of an optimum lenjtfor A h >
eachyf, we have explained the improvement in performance pr\gﬂth a larger bandwidth of operation and a transmission at least

dicted for two-defect systems in [11] as a particular case whés 9reat- o
f = 2 (see start of Section 1I-B). In that work it was found tha N Summary, we have found that the addition of a second de-

high transmission only occurred if a certain number of layef§ct dramatically improves upon the results of a single defect.
7 was used. This number of layejss now clearly seen to be With the extra defect, we can arrange for an accidental degen-

equivalent to the length that optimizes the overlap of the trans£racy between transmission peaks for the different circular po-

mission peaks for each circular polarization with a large phat@izations. The degeneracy provides high transmission while
difference. In fact, the case= 2 is not an ideal choice for op- the opposite parity of the overlapping peaks produces the high

timization. Forf = 2, numerical solutions show that the two'©tation. By separately tuning the lengthand spacing of the

peaks in the transmission spectrum coalesce into a single brggffcts (through the ratig), we break the tradeoff between
peak with perfect transmission only at the center pajats- 0. transmission and rotation, so that the system may be optimized

This is natural when it is realized that a structure wfth= 2 for a large range of angles. Such designs should increase the

can be considered as a concatenation of two identical gratiffj@cticality of free-propagation integrated isolators by signif-
each with central phase shifts. Each individual grating is pdrantly reducing diffraction losses. In a subsequent paper, we
fectly transmitting a; = 0, and so there must also be a peak Ayill consider similar questions for enhanced Kerr rotation.

q = 0 for the whole structure. Due to the magnetic splitting,
these peaks can never perfectly coincide and so 100% trans-
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