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Comments on “Optical Amplifier Noise Figure
Reduction for Optical Single-Sideband Signals”

Mark A. Summerfield, Member, IEEE

Abstract—In a recent paper1 it was demonstrated that a noise
figure below the so-called “quantum limit” is possible using single-
sideband (SSB) modulation. In this comment we discuss the inter-
pretation of this result and its implications for optical communica-
tions systems.

Index Terms—Optical amplifiers, optical communication,
optical fiber amplifiers, optical noise.

GRIFFIN et al. have demonstrated that a theoretical noise
figure of (0 dB) is possible for an EDFA by

using an optical single- sideband (SSB) modulation format for
the signal. This result is in apparent violation of the commonly
accepted “quantum limit” of (3 dB). Furthermore, as
we show in this comment, it is misleading in that it does not
imply that the amplification process is noiseless, as would be
expected by analogy with the definition of noise figure com-
monly used in electrical systems [1]. There has already been
some debate regarding the definition of noise figure commonly
used for optical amplifiers [2]–[4], and this recent result is likely
to encourage further discussion. The purpose of this comment
is to provide some clarification of the interpretation and appli-
cation of the result. In particular, we review earlier theoretical
analyses which show that a minimum noise figure of 0 dB for
an SSB signal does not violate any fundamental principles; we
show that the 0-dB noise figure does not imply noiseless am-
plification, but does imply benefit in terms of link budget and
transmission power; and we discuss the implications of this for
optical transmission system design. We conclude by suggesting
that no change is necessary to the conventional definition of op-
tical noise figure, but rather that care should be taken when ap-
plying the noise figure to the evaluation of the signal-to-noise
ratio (SNR) of spectrally efficient modulation formats such as
SSB.

Following Heffner [5], we restrict our discussion to the case
of linear optical amplifiers, by which we mean devices which
are phase-preserving linear multipliers of photon number. It is
commonly believed that the noise figure of a linear amplifier has
a minimum value, typically referred to as the “quantum limit,”
of . The term implies that this is a fundamental result,
and indeed it was argued in [2] that at large gain the simul-
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taneous measurement of in-phase and quadrature components
of the electric field necessitates a doubling of the Heisenberg
uncertainty, as shown in [6]. However, the “quantum limit” is
not fundamental, and in fact it is shown in [5, eq. (30)] that,
in the limit of high gain, the uncertainty in the received photon
number and phase at the amplifier output can in principle ap-
proach the minimum value possible at the amplifier input. Fur-
thermore, an example given in [7, p. 101] illustrates that it is
possible to achieve in a highly inverted, short length
of Er-doped fiber (i.e., in the low-gain regime). This example
alone is sufficient to show that the “quantum limit” is not a
fundamental result, but the consequence of a specific analysis
viewed in the high-gain limit.

The conventional derivation of the noise figure proceeds as
described by Griffinet al. (see footnote 1) and in more detail
in [9, pp. 78–100]. Assuming an intensity-modulated signal,
the standard procedure is to consider a CW light source inci-
dent on an ideal photodetector and to determine the statistical
fluctuations in photoelectrons observed over an integration pe-
riod of seconds, corresponding to an electrical bandwidth of

. Prior to amplification the origin of these fluctu-
ations is shot noise, whereas after amplification the dominant
noise source is signal-spontaneous beat noise. The SNR is de-
fined to be the ratio of the mean photocurrent squared (i.e., the
electrical signal power) to the mean-squared fluctuations in the
photocurrent, and the noise figure is the ratio of the input SNR to
the output SNR. In all previous analyses of which we are aware
(e.g., [2], [7]–[9]), it has been assumed that the intensity-modu-
lated signal has an optical spectrum which is symmetrical about
the optical carrier frequency (i.e., consists of two sidebands)
and that consequently the minimum optical filter bandwidth fol-
lowing the amplifier to eliminate excess amplified spontaneous
emission (ASE) noise is . This assumption that the
ASE noise power spectrum falling on the detector has a spectral
width of at least centered on the carrier frequency results
in the well-known expression with a high-gain limit of .
Furthermore, in the case of double sideband (DSB) signals, the
result is unchanged if the optical filter bandwidth is reduced to
reject the ASE noise in one-half of the optical spectrum, be-
cause although there is a consequent reduction of 3 dB in the
signal-spontaneous beat noise, the detected signal power is also
reduced by 3 dB so that there is no change in received SNR.
Hereafter, we refer to the noise figure derived using this estab-
lished procedure as theconventional (optical amplifier) noise
figure.

The key point to be drawn from the above review is that there
is no fundamental physical limit invoked by the “quantum limit”
of the conventional optical noise figure. It is a simple conse-
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(a)

(b)

Fig. 1. Applications of the cascading formulas for the conventional optical noise figure. (a) A high-gain amplifier constructed from a cascade of individual lower
gain amplifiers. (b) A “TypeA” transparent transmission link constructed fromk identical amplifiers of gainG and noise figureF connected by fiber spans with
transmissionT = 1=G = exp(��L).

quence of the particular configuration chosen for the analysis
under which the noise figure is defined. The fundamental phys-
ical limit lies, in fact, at which can be achieved in the
high-gain limit if the amplifier is properly matched to the re-
ceiver and a suitable modulation scheme is used [5]. However,
the conventional definition has proven useful because in most
circumstances of practical interest it obeys cascading formulas
similar to those of the standard electrical noise figure [4], [7].
In addition, it is a useful parameter for describing the quality of
an optical amplifier in a signal-independent manner. However,
the results presented by Griffinet al. (see footnote 1) highlight
the fact that there exist situations in which the direct applica-
tion of the conventional optical noise figure produces appar-
ently anomalous results. In their example of SSB modulation,
application of the conventional noise figure produces an output
SNR which may be up to 3 dB below the actual SNR observed
at the receiver. This illustrates the fact that application of the
noise figure in systems employing novel and/or spectrally effi-
cient modulation schemes (and, indeed, nonintensity-modulated
schemes in general) should be approached with extreme caution.

The suggestion that a noise figure of is theoretically
possible is misleading because in order to obtain this result it
is necessary to implicitly redefine the optical noise figure. As
discussed above, the conventional definition is based on the
assumption that the signal is intensity-modulated and therefore
consists of an optical carrier and two symmetric sidebands.
Performing the calculation for an SSB signal thus implicitly
alters the definition, since the optical spectrum is no longer that
of an intensity-modulated signal. Similarly, anomalous results
could be obtained for other nonintensity-modulated signals,
such as FM, PM, or AM signals with full or partial suppression
of the optical carrier. The other reason why the unity minimum
noise figure is misleading is that, by analogy with the electrical

domain, the commonly understood implication of unity noise
figure is that the amplifier adds no noise. This is clearly not
the case for the optical amplifier—a “floor” of ASE noise
power accompanies the signal at the output of the amplifier,
regardless of the bandwidth or modulation format. Indeed, it
is a fundamental result that a totally noiseless linear optical
amplifier would violate Heisenberg’s Uncertainty Principle [5].

We now discuss the practical interpretation and application
of the result of Griffinet al. (see footnote 1). To illustrate our
discussion, we consider the two specific examples illustrated
in Fig. 1. The first is the case of a high-gain amplifier con-
structed from a cascade of amplifiers, with individual gain

and noise figure , shown in
Fig. 1(a). In the high-signal power regime, it is well known
that the usual “microwave cascade” formula applies [4], [7, pp.
112–113], and thus the gain and noise figure of the cas-
cade are given by

(1)

(2)

Equation (2) is derived simply by accumulating the ASE noise
through the amplifier cascade, and thus for an optimally-filtered
SSB signal the output SNR will be given by

SNR SNR (3)

where SNR is the shot-noise-limited input SNR. We note that
the correct result for SSB modulation is thus obtained by first
determining the overall conventional noise figure according to
(2), andthendividing by two (subtracting 3 dB), and that di-
viding the noise figure of each amplifier by two first, andthen
applying (2) will give the wrong result.
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Our second example, illustrated in Fig. 1(b), is the case of
a “Type A” cascade of identical amplifiers and transmission
spans [7, p. 115] configured as a transparent link such that the
gain of each amplifier exactly compensates the transmission

of each span. If each amplifier has conventional high-signal
noise figure , then in the high-signal approximation, the
overall noise figure of the link is [4]

(4)

If we apply the result of Griffinet al. to each individual am-
plifier, then for fully inverted amplifiers, we would obtain an
overall noise figure for the link of , independent of .
This result is implausible, as there is no net gain and each ampli-
fier adds an equal quantity of ASE noise in the signal bandwidth,
and thus the SNR must degrade in each span. The correct result
for SSB signals is obtained, as before, by

SNR SNR SNR (5)

where is the conventional noise figure of each amplifier.
Equation (5) shows that there are real advantages to be gained
by using SSB modulation, as suggested by Griffinet al.
(see footnote 1). The simplest way of generating an SSB
signal is to filter out one sideband after conventional intensity
modulation. While this does not improve the link budget for
single-span transmission (since the 3-dB improvement in
receiver sensitivity is spent in the 3-dB loss in signal power
incurred in filtering out one sideband), it allows the signal to be
launched into the transmission span with 3 dB lower power for
the same received SNR as compared with conventional DSB
modulation. In systems for which nonlinear propagation effects
within and between channels may be significant, this presents
a considerable advantage. Alternatively, if more sophisticated
techniques for SSB generation can be implemented which do
not intrinsically discard signal power (e.g., optimized versions
of those described in [10], [11]), the link budget may be
increased by up to 3 dB. Furthermore, other advantages of SSB
transmission have been identified, such as improved immunity
to chromatic dispersion in millimeter-wave distribution sys-
tems (see footnote 1) [11] and the ability to compensate for
fiber dispersion in the signal after detection, in the electrical
domain [10]. Clearly, SSB modulation also reduces the optical
spectrum required by the signal, potentially allowing a greater
number of more closely spaced channels for improved spectral
efficiency in WDM systems.

In conclusion, we have argued that the recent result of Griffin
et al.(see footnote 1), while of great interest to the optical com-
munications community, does not necessitate any re-evaluation
of the definition of noise figure for optical amplifiers, nor does
it invalidate the widely accepted result that in the high-gain limit
the conventional noise figure has a minimum value of .

We hope that this comment will help to clarify the assumptions
behind the conventional definition of optical noise figure and to
illustrate the particular care which must be taken when applying
and interpreting the noise figure in systems using modulation
schemes other than standard intensity modulation. In particular,
we have argued that there are real benefits to be gained by using
modulation schemes, such as SSB, which make more efficient
use of optical bandwidth.
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