JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 9, SEPTEMBER 2000 1205

Higher Order Error of Discrete Fiber Model
and Asymptotic Bound on Multistaged PMD
Compensation
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Abstract—n this paper, we develop a random-matrix for- Each trunk possesses its own PMD effect and, in a first order ap-
malism that enables analysis of a variety of polarization-mode proximation, can be treated as an elliptical waveplate. Since the
dispersion (PMD) related problems. In particular, we address the PMD vectors of the subsystems undergo random diffusion over
problems of higher order error in a discrete fiber model and limit the Poi 4 sph th tical fiber is Vi lized in the DRW
of multistaged PMD compensation schemes. Our solution to the € 0|.ncar.e sphere, the oplical Tiber 1S visualize |n. €
first problem leads to a simple condition for the validity of the approximation as a cascade of waveplates undergoing random
model, which is often overlooked in PMD simulations. For the walk from their initial orientation. Over length and time, the
second issue, we have found an asymptotic bound on the limit of a patterns of the waveplates show complete randomness, and it
multistaged PMD compensation scheme. The theory is confirmed is a common practice to model an optical fiber simply by a cas-
by numerical simulations, and future work is suggested. - . L .

_ o o cade of elliptical waveplates whose orientation is randomly dis-

Index Terms—Jones matrix, optical fiber communications, po-  tributed over the Poincaré sphere. In fact, this DRW model has
larization-mode dispersion (PMD) compensation. been widely employed in PMD simulations as well as in some
theoretical investigations [11]-[14], and studies have shown that

|. INTRODUCTION in the long-length region the DRW model is an excellent de-

. . scription of real optical fibers [4]. A subtle issue of this DRW
QLtﬁR“ZAtTLON'ZAODE d|spefrfr|]on (I.DMD) hEsten?ergtedmodel worth mentioning is that one needs to use an artificial
In the fast decade as oneé of the primary obstacles 1o Bk'efringence that is inversely proportional to the square root of

trahigh-speed optical transmission systems and attracted WEERh trunk’s length. This is required for the total average PMD
interest in optical communications society. It is now well un:

f afiber t inind dentofh trunks the fiber i
derstood that PMD in ordinary optical fibers originates chieflo a ber o remain incependent o7 oW marny un«s e fet 1S

. o Yivided into. A detailed discussion on this can be found in the
from random fluctuation of small local birefringence. A mathe:

) X I : %ppendix of reference [4].

matically rigorous treatment of the statistical properties of PM The DRW model is basically a simplified version of the more
Is to directly solvg th.e PMD. dynam|c;al equation in the framer'ealistic SDE model, with technical mathematics stripped to
work of StOChaSt'? differential equation (SDE) theory [1]_[5.] inimum. Although there is a general consensus in the field
The_SD_E f[heory IS a powerful mathematical tool to dea_l WItH; adopt this simpler, though less realistic, model for a wide
the |ntr|r_15|_cally sto<_:hast|c phenome_na th".ﬂ naturally arise lt%mge of investigations, the question of its validity and higher
say, statistical physics, quantum optics, noise theory, and fm%'?der error is not frequently asked. Indeed, as we shall see in
cial analysis [6]-[9]. For the particular application to PMD, th §

SDE method is to aive th t realistic d ini ¢ ection Il, the issue of validity of DRW does arise under cer-

m?. Olﬂljs 0 gl(\j/eh etrznosdreatls IC (fazcr]p 'OEIO tan g; ain circumstances. In addition, as illustrated in Section 111, the
nary optical fiér and has e advantage of being able 10 0 qjlri]gherordererror of the DRW model is intimately related to the
in principle at least, higher order statistical moments in a Sy&halysis of a multistaged PMD compensation protocol.

tematic manner. F_urthermore, it can be readily ge.neralized toThe rest of this paper is organized as follows. In Section Il, a
accoun§ for nonur_ntary systems as well [101' A.” this qoes N9k hdom-matrix formalism for calculating higher order error of
come without a price. The theory of stochastic differential equ je DRW model is developed. In particular, we derive in a closed

tions is a rather specialized mathematical subject with Wh"f rm the second-order error which suggests a validity condition

many practitioners in the PMD field are not familiar. or the DRW model. We then proceed to apply this formalism

If, however, we do not demand as complete a solution as Fthe analysis of a multistaged PMD compensation protocol

SDtEhformtiahslrE.;_an I(t)ﬁgr, tgent|_t IS p955|ble to c!rgun:vent th'iTcﬁ Section Ill. In particular, an asymptotic lower bound on the
mathematical difficully by adopling a ‘coarse graining approxéompensation capacity is found. Section IV contains numerical

imation—the discrete random waveplate model (DRW). In th?ﬁmulations and Section V summarizes and suggests possible

model the fiber is treated as a concatenation of many trunlﬁﬁture work
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exceeds the fiber diffusion length. If we denote the Jones matrixin the following, we shall demonstrate how to calculate the
[15] of the kth segment byI'x(w), with w denoting the optical second-order error. In many situations this is sufficient for as-
frequency, then the Jones matrix of the whole fiber is given bgessing the validity of the DRW model. Furthermore, for suf-
ficiently large N—such as in fiber simulations—the dominant

Tiot(w) = Ty(w) -+ Ta(w) - Ti(w). (1) error is in the second order. It should be noted that, however,

. ] ) ] ] the formalism developed below is completely general and can
In the following analysis we shall restrict our discussion tge carried to higher orders.

the case that no polarization dependent loss/gain (PDL/G) istg second order (2) can be written as
present. Also we shall assume that a polarization-independent

overall phase has been properly separated so that the Jones Th(w) ZPk(w)exp[% AwQMf)}
matrix is inSU(2). That is, the determinant of the Jones matrix @
is always 1. ~ Py (1 + L Aw?M ) . (5)

The essence of the DRW model is to replace each segment
by an elliptical waveplate whose birefringence vector is equal kaserting (5) into (1) and keeping only terms upﬂ()AwQMf))
the PMD vector of that segment. Since a waveplate is strictlynge obtain
first-order PMD element, it fails to account for the higher order Aw? Aw?
effect in the individual segments. The DRW model can hencE;,(w) ~ Py <1 + Mﬁ@) Py <1 + 5 Mf))
be regarded as a first-order approximation for the real fiber.
A more realistic model should necessarily consider the higher LA 2
order PMD effect in each segment, as does the full SDE method ~Pioi(w) + 5007 Y Py

N

which, in fact, takes all orders of effect into account. @ k=1
To put this on a more concrete footing, we note that the Jones X PprM7 Py ---PoPy
matrix of the, saykth segment can be conveniently expanded in L e N
an exponential form [16] =Piot(w) + 5 Aw Z Gy
k=1
T (w) =T (wo) exp [AwMS)} . exp[% AwQMgf)} G =Py -PyMP,_; - PyP;. (6)
X exp[% Aw?’MS’)} (2) Here, G;’s are introduced to simplify the notation. We next

define the error matriD(w) := Tioi(w) — Piot(w). By (6),
whereAw := w — wy is the frequency detuning from the carrieve have:
frequencywg. A brief discussion of this exponential expansion
and several useful identities can be found in the Appendix. For D(w) ~
now it is sufficient to note that matriMé") is a constang x
2 matrix that, roughly speaking, describes #té order PMD . . . .
effect of thekth segment. In a DRW approximation, all product On the othgr hand, since we can write the unitary matrices
terms higher than the first order in (2) are neglected, Bp@.) Tior andPro; in the form
is replaced by the Jones matrix of the corresponding waveplate

M

N
A > Gy 7)
k=1

Tt0t7 Ptot = |:—b* a*
Py.(w) = Ti(wo) exp [AwM,(cl)} . 3) T.p OT,p

where|ar|? + |br|? = 1 = |ap|?* + |bp|?, the error matrix
The Jones matrix of the whole fiber is thus approximated by thatsumes the following form:
of the DRW

ar, p bT,P:|

(8)

Dw) =

[ Aa Ab} ©)

Piot(w) = Pr(w) - Pa(w) - Py (w). @) AV Aa
Equations (1)—(4) are our starting point to calculate the high@pereAa = ar —ap, Ab = by —bp. The DRW error function,
order error of the DRW model. Before we start, some commerigfined by
are in order here. We will study only the cases that the DRW 2 2
model is approximately valid. That is, each segment can, to a fw) = [Aaw)]" + |Ab(w)] (10)
good degree, be well approximated by an elliptical waveplaig.a measure of the error of DRW and can be expressed in terms
Higher order effect in individual segments can, therefore, kg G,
treated as small perturbations. In fact, this condition is already
implicitly inferred by the DRW model itself—for the latter to
work at all, the individual segments have to behave quite similar
to elliptical waveplates. This is by no means saying that we are
only to calculate small corrections to the DRW model. The small To relatef to the usual PMD parameters of the fiber, let us
perturbations in each of th¥ segments may add up to causeeview a few PMD identities here for later convenience. The
significant discrepancy of the DRW model from the real fibePMD effect in an optical fiber is described by the PMD vector,
It is this potentially significantotal error that we are after. Q. Itis, in general, frequency dependent. Its magnitude at some

N

S

k=1

f(w) = det |D(w)| ~ £ Aw* det . (11)
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fixed carrier frequency is called the first-order PMD at that fre- To calculate the second summation in (17), we note that
quency and is denoted k¥ The second-order PMD, denoted by

2, is defined by2,, := |0€/dw|. The mean-square first-order wjp := det |Uji| + det | Uy

and second-order PMD satisfy the following well-known iden-
tity [1]:

= cosf; cos 0,,c (¥i=%%) 4 gin 6; sin 0, P =%3) 4 ¢ c.
=2cos8; cos Oy cos(p; — i)
(Q2) = (9 (12) + 2sin @, sin 6y, cos(Pr — ¢ ). 19)

Also, if the fiber is divided intaV equal segments, and we de;A

) ) s the individual segments are assumed to be uncorrelsted,
note the first-order PMD of one segment and the whole fiber b : e
Q andS2..,, respectively, then theygare related by <)§ — @1 and¢; — ¢ can be regarded as independent uniform

random variables over intervalg, 7 /2], [0, 27) and [0, 27),

5 5 respectively. Therefore;, so defined is also a random variable
<Qtot> = N<Q > (13) with mean

Let us now return to our calculation ¢gfin (11). In the Ap- (ujr) =0 (20)
pendix, it is shown thaMf) is proportional to a unitary matrix,
and the proportionality facto®, is one half the magnitude of and variance
the second-order PMD of theth segment, = Q. /2. It
follows from the definition ofG, in (6) thatG;, can be written Var(u;y) = <U§k> — <U/jk>2

in the form of G, = A, U, for some unitaryU,,. Adopting this
Inew notation V\l;e ha\l;e " Hniianti. Adopting th = 4{cos” §;) (cos™ Ox) {cos* (9; — @)
' + 4(sin? 0;) (sin® 6;,) (cos®(¢; — dr)) = 1.
N (21)
flw) =5 Awdet | MUy (14)
k=1

It then follows that the summank; A, (det |U x| + det [Uy;|)
To carry out the calculation further, it is beneficial to expreég ((117) can t;;;ng?rdeg dr_;\g, a rahndom V"."”(‘j‘b'e V\(’j'th mian Zﬁm
U, explicitly in the following form: and variance\; \;. In addition, they are independent of eac

other. By the central limit theorem of probability, the second

cos OpciPr  sin fpei®r summationin (17) is approximately a Gaussian random variable
Uy = { ] » iy } (15) with mean zero and standard deviation
—sin e % cosBpe i
1/2
wheref;, € [0, /2], 1 € [0, 27) and¢y € [0, 2m). Also, B 9o L oo anl/2
needed are thimterweaved matrices 7= 2% A Ak - [5 NZAS) <)‘k>]
j<k
cosf;e’fi  sin O’ N, 1 o 1o
Uy = ‘ . 16 =—= (@) = 7= (ot (22)
i {— sinf;e'%  cos er_w"} (16) 42 12¢/2N

Intuitively, the first column ofU ;, is the first column olU;, and  in the case of sufficiently largé/. It is evident from (18) and
the second column dif ;;. is the second column df;. Then (22) that the two sums in (17) have comparable contributions to

by the theory of linear algebra the second-order correction. However, it is also clear that the
second sum is a randomly fluctuation. In a time average (or
N N N an ensemble average) only the first sum survives. According to
det| > MUk =D D" AApdet [Ugl (14), (17), and (18), we obtain the averaged error function:
k=1 j=1 k=1
al AwH(OF,,)?
= Z )\i det |[Upr| + Z A Ak (f(w)) =~ 48N (23)
k=1 1<j<k<N
% (det |U x| + det [Ug)). (17) ar_1d its frequency average over the entire transmission band-
width
Noting thatdet |Uy| = det|Uy| = 1, the first summation Awd(Q2 )2
on the right-hand side (RHS) of (17) is simply,_, A2 = (f) = 240N (24)
S, Q2 /4. ForlargeN, we can replac@? , by its average

{n (24) Awy is thehalf frequency bandwidth, and we have as-
sumed that the carrier frequengylies at the center of the band.
Equation (24) is one of our key results in this paper. Recalling
N Q2 32 the definition of f in (10) we reach the following important
Z A2 det, [Upy| = {2or) ] (18) conclusionthe root-mean-square (rms) error of the DRW model
— 12N decays ad/v/N, with a linear coefficient depending solely on a

value (22 ,) = (QZ) which is independent of the segmen
index k. By virtue of (12) and (13), it follows:
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dimensionless system-dependent constast 24w, (Q2,)1/2  the performance of the PMD compensator. In realistic MPC de-

it or, mathematically vices, PMD compensation is achieved by real-time optimiza-
) tion control of the waveplates in the compensator to maximize

(|Aal? + |AD?)Y2 ~ R (25) @ pre-selected merit function. Even Without. considering exper-

16V 15N imental errors, different choices of the merit function and con-

The question of how accuratelv the DRW model reprod ng' procedure will in general yield differer® values for the
guest W . y produ ame MPC model. We say that the performance figural-is

a real fiber can now be answered. For a faithful appro 'mat'oﬁ, ) ’ .
the RHIS of (25) mvtjlst be sr¥1vall' thiul approximat gorithm-dependen®A quantity that is closely related 1@ and

depends only on the intrinsic structure of the MPC model is
K2 the compensation capacit§., which is defined by the upper
m <L (26)  |imit of @ over all possible control procedures and merit func-
tion choices. The compensation capacily is analogous to
Under this condition, the DRW model is a faithful representatiqne channel capacity in information theory [19]. In information
for a realistic fiber. We note in paSSing that in PMD Simulation@]eory, the transmission rate over a noisy channel depends on
using DRW, itis always a good practice to check if (26) is satishe specific choice of coding and decoding procedure, but the
fied. We remark that the validity of the DRW model can almoshaximum achievable rate is set by the channel capacity, which
always be ensured in the sense of (26) by suitably choosingiésends only on the properties of the channel itself.

large V if the modeled fiber is long enough. It would be of great interest to explicitly calculate. for a
given MPC protocol (such as ours discussed above). Unfortu-
lll. ASYMPTOTIC BOUND ON MULTISTAGED PMD nately we have not found an analytical result by the time of this
COMPENSATION writing. Nevertheless, we have calculated a lower boun@en

Multistaged PMD compensation (MPC) schemes ha@hd. in the limit of largeV, it may serve as a good estimate.

recently attracted attention as a potential candidate for effectiveSlJppose the compensator contamadjustable waveplates.

PMD suppression in future ultrafast long-distance optical traré_ccordingly, Wz‘di\/id_e trpe ﬁbe,}‘intd,}f‘ segdmer?tsJand write iFS
mission systems [17], [18]. The main merit of MPC exists iﬂ?nes matrix a dt.ot _DRV]\\/ o q 2I. ! arl ;)e 02?5 rr}1)atr|x
its great capability of mitigating severe PMD effect which ma' 'S ;orrt_asp(lnlnpl\ng_ m(l)( ehEB*"’*' N .h 2 .h 1|’ h
cripple the usual first-order and second-order compensati% in Section Il \gain we ma e the assu_mptjon_t at_t e lengt
methods. In our model of MPC, the compensator is compos% acr_l segment is much larger than th_e fiber's diffusion Iength.
of a large number of adjustable birefringent elements. He ince n our modgl we are ffee to adjust the wavep_lates orl-
after, we will refer to them simply as waveplates, althougﬂntat'on on theentire Pomcarg spherg, as well as'thelr magni-
in reality they may take a variety of physical forms that bea“"de' th_? ci)ggerlsaft)?r ;a}n, |anTr|nC|pI§_, be conflgu'red _tr(:]gen-
no resemblance to ordinary waveplates. The axes and glePio; = Py, = Py P, --- Py to arbitrary precision. The
magnitudes of birefringence of these waveplates can both %%rf(_)rman_ce figure, associated with this particular realiza-
adaptively controlled by feedback mechanisms in order that t @n is obviously a lower bound fa@.: Q. > Qo. On the other

PMD of the combined system—the fiber and the compensa nd, sincd®,; — T for large N, this particular realization
together—is minimized.

Is close to any optimal realization in the asymptotic limit of large
As in the previous section, &, (w) be the Jones matrix of N aanO may be used in place @.. for rough estimates in

the optical fiber link. Ideally we would like to build a compen-the design of such MPC devices, as we shall show by the end of

sator that eliminates the PMD completely. The Jones matrix %1[15 section. In the following, we will explicitly calcula®o in

such an ideal compensator is necessafly (), up to a con- a second-order treatment.

stant unitary rotation which can be eliminated by a proper choice

of basis. In our MPC model, however, the compensator contal

only a finite number of waveplates, so its Jones matrix is a fun%rJOI the compensator togethe

tion of a finite number of parameters, such as the orientational () _pt (@) - Tron ()
angles of the waveplates on the Poincaré sphere. By function tot tot

Taking the Jones matrix of the compensator tofhg, we
write the Jones matrix of the combined system—the fiber
r—as

theory, a function of finite number of parameters cannot repro- " Aw? I 7 7 2
duceyanarbitrary continuous functionp[in our cas& i (w)]. P =l ; PP My Py Py
Therefore, no perfect PMD compensator that employs only a fi- N
nite number of waveplates exists. =1+ 1A Z H,,

Since no perfect compensation exists, any compensation =

scheme will inevitably leave some residue PMD. Tgefor- \where

mance figureof a PMD compensator is defined as H, 5=PI o PL,le)Pk_l Py (28)
/2
_ [
o= i &7

1The validity of this statement is subject to the choice of MPC models. In our
. 2 2 . rotocol, the waveplates can be freely rotated over the entire Poincaré sphere.
with (27,) and(€2;,) stand, respectively, for the mean-squar,e siatement does not apply to models that utilize linear waveplates. We shall

original and residue PMD. The higher thevalue is, the better restrict our discussion to the former.
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Here, we have invoked (6) from Section Il and introdudégd Hj,,, = o, A\x Uy, for some unitarylUy,,,,. Then second term
to simplify the notation. The residue PMD after compensatiom (30) is reduced to
Q.es, then satisfies

N N k—
Qges( ) det Z H;& = det Z Z Hkrn krn
5 det |R'(w)] k=1 k=1 m=1
N /ok—1
= det |Aw Z H;, . Z H,|. (29) => ) des ‘(Hkm —H},)|+1is.
k=1 m=1
N k=l
A simple derivation of (29) is given at the end of the Appendix. - Z Z 2, o d t‘ (Ugn — Uk Y41l
The determinant that appears in (29) can be expanded into a bl el "
sum of determinants similar to that in (17), with the only dif- (35)

ference that there are now three distinct groups of terms: those

which correlate amon#, s, those which correlate amol| s, In the second step above, we have used the same technique as
and those which correlateoth H;s andH,.s. By definition of applied in Section II, by treatingH,. — H}, )'s as uncorre-

H; in (28) and the basic assumption of the DRW model, it isited matrices, to decompose the determinant of the matrix sum
rational to treafH,; as completely uncorrelated H; By an into a positive term and a randomly fluctuating term.

argument similar to what leads to (22) in the previous section,Next, we writeUy,,, explicitly as

the contribution of the third group can be regarded as a random

fluctuation. Writing this out explicitly, we have €08 €' Prm Sin Opp " Fhm

N

QIQ‘PQ AwQ ]\T
# = det |Aw Z H; | +det | — Z Hj| +r.ft.
k=1 k=1
(30)
where “r.f.t.” represents “randomly fluctuating term”—it is a

term that vanishes under time or ensemble averaging.

Next, we note that the first term in (30) is exactly similar tQ
what we have encountered in (11) in Section II. A completer

parallel calculation yields

S -

k=1

Aw?(QF,)*

A
det [Aw ON

+ r.f.t. (31)

We now focus on the second term in (30). First, we define a new

matrix

oP,,
R I Ly

X Prn—l e PQP;L7 m < k. (32)
It can be shown (see the Appendix) tHet”" = — M
Therefore
oP} 2
H'il;rn - _PIP; T < aw ) Pjn—l—l Pz IM( )
X Pk—l "'P2P1. (33)
It follows from (32) and (33) that:
k—1
H, = ) (Hy, —Hf,). (34)
m=1

As shown in the Appendix, botM$ and M,(f) are
unitary matrices scaled by positive factarg, and Az, with
am = /2 and Ay = (Q «/2). By the definition of
H;,, and noting thatP,,/0w = PmMg,ll), we can write

Ukrn, it |: (36)

— 8N Opme " PEm oS By e PEm

and

= 4¢08? O, SN Prm + 45in% Opy.

(37)
By treatingf. and¢km as uniform random variables, we can
egarddet |(Upm — km)| as a random variable with mean
4 €082 O, SIN? P +45in? 01,,) = 3. Hence, for largeV
the double sum in the last line of (35) can be approximated by

det ‘(Uk"l - U'Lrn)

det ‘(Uk"l - Uj];rn,)

k=1 m=1
/ k— 2 2
Z Z < = “' i det ‘(Uk"l - U,Lrn) >
k=1 m=1
_ 1 2 2 ~ <Q§0t>3
= 5 VIV = DI () -3 = =0 (38)

Here, we have used the fact that for# m, (2,92 ;) =
(Q2,) (92, ), and the familiar relations given by (12) and (13).
From (31) (35), and (38), (30) reduces to

Qfes( ) A(")2<Qt20t>2 +Aw4<ggot>3 +

3N SN r.f.t.

(39)

After taking the time (or ensemble) average as well as the
frequency average over the transmission bandwidth on both
sides of (39) and remembering the definition of the performance
figure (27), we finally obtain

KQ ok 1 —(1/2)
Q=|(o+os)+
640 / N

wherex := 2Aw (2., )1/? as previously defined.

After obtaining a lower bound fa®.., it is natural to look for
an upper bound as well. Unfortunately, we have not found one
yet and it remains a problem to be solved.

(40)
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Fig. 1. Higher order error of the DRW model for a single-mode optical fiber. Numerical calculations (triangles and circles) versus theoretitah (P&
(solid lines).

A more convenient measure of the residue PMD is the PM&hd Menyuk [4] closely. The numerical model assumes constant
reduction ratiop, defined as the inverse of the performancstrength of local linear birefringence and randomly varying ori-

figure [refer to (27)], and itsninimumattainable value isp. = entation of local birefringence axes over length that can be rep-
Q. ', has an upper bound resented by an Ornstein—Uhlenbeck process [4]
.2 4\ /2 do de do 2
Po ::i: h—-}-h— L (412) <d_>:0 <d_ F>:E5(3_3/) (43)
Qo 36 640 VN z z 0z

Equation (41) is useful for assessing some design issues. W§€red is the azimuthal angle of the local birefringence axis
example, in order to achieve a prespecified PMD reduction ratfbthe linear plane of the Poincaré sphere arid the autocor-

mated, by setting. ~ po, to be birefringence strength is not restric_tive, since a more elat_)orate
model, which allows for random variation of the strength yields
N K2 kPN 1 42 essentially the same results [4].
"~ \ 36 + 640 ) p2 (42) The simulations are performed on two sets of fibers with the

following different transmission characteristics:
The above estimate oW, is expressed solely as a function of

ps andx. For transmission links with moderate PMD effect-¢ Setl Set 2
1), N, is bounded above qua_d.rancallyl«mln situations subject An 50%10~6 1.0 x 10~7
to severe PMD effeci{ > 1), itis only bounded quadruply. The _
increasing difficulty in equalization as PMD is getting larger can h 20m 50m
be appreciated from this observation. L 900 km 1000 km
20w /27 9.55 GHz 229 GHz

IV. NUMERICAL RESULTS
) ) ) o K 6.0 4.8.
Numerical simulations are performed to check the validity of

various assumptions made in our theoretical calculation in thiere An is the strength of the local birefringence, ahdhe
previous two sections. In particular, we compare the theoretid¢atal length of the fiber. Note that intermediatevalues are
predictions of (25) and (41) with numerical calculations. Farhosen so that the quadratic and quadruple terms in (41) have
this purpose, numerical results calculated from the stochast@mmparable magnitudes. In both models the step length of cal-
model [1], [3], [4] are used as standard values with which thaulation is 1 m, far less than the autocorrelation lerigth en-
theoretical predictions are compared. Here we shall follow Waiire numerical accuracy.
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Fig. 2. Upper boung, on the average PMD reduction ratio in our MPC protocol. Numerical calculations (circles and triangles) versus theoretical prediction
(41) (solid lines).

In each realization of the fiber, the Jones matrix of the cor- 1) finding anupperbound for@.;
responding DRW model, wittv ranging from 10 to 1000, is  2) or, better yet, calculatin@. explicitly;
compared to the “actual” Jones matrix given by the stochastic 3) a parallel analysis for other MPC models, such as those
model. The errors are plotted in Fig. 1, with circles for set-1and  implementing only linear waveplates.

triangles for set-2. Theoretical prediction of the second-orderThe answers to these (and other) questions are likely to en-

error given by (25) is plotted as solid lines. The agreement v@fance our theoretical understanding of multistaged PMD com-
ifies the assumption that the second-order error is dominantpinsation considerably.

also suggests that the random-matrix approach in our calcula-
tion is valid.

Also calculated are numerical valuesf. In each fiber re- APPENDIX
alization,P_; is calculated and so is the corresponding residue

PMD (©2,.), from which numerical values gf, are obtained. In this section, we will prove a few useful results that are

These are plotted in Fig. 2, with circles for set-1 and triangl@!oted in previous sections of this paper. Most of them are re-
for set-2. Theoretical plots of (41) are the solid curves. In bolt€d to the exponential expansion form of the Jones matrix.
cases of Figs. 1 and 2, the numerical data are averaged over odePr alossless/gainless linear system, its transmission charac-

independent realizations. The agreement in both cases is griiiStics can be described by a2 unitary matrix—the Jones
fying. matrix [15], which can be expanded in an infinite product of ma-

trix exponentials [16]
V. CONCLUSION

In this paper, we develop a random-matrix formalism that can T(w) =Toexp [AwM(l)} exp [% AwQM(Q)}

be used to study a variety of PMD-related problems. In Sec- )

tion Il we calculate the second-order error of the DRW model X exp [l Aw?’M(?’)} o (44)

that has direct implication for PMD simulations using DRW. 3!

In Section Ill the same formalism is used to calculate a lower

bound on the compensation capacity of an MPC protocol. WhereT is the Jones matrix at the carrier freqgengy Aw =

both cases, the results depend only on system paramétnsl  w —wy the frequency detuning, add*)’s some2 x 2 complex

. The theoretical results are verified by numerical simulationsatrices to be determined. In the following we shall impose
Regarding the compensation capacity of an MPC protoctihe addition condition thadet T = 1. It can be shown that

there are many open problems that awaits resolution. We Wi (*)’s are traceless and skew-Hermitian. It follows that the two

list a few: eigenvalues oM are purely imaginary and can be written as
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+i);, for some nonnegativg;. In other words, there is someNote that we adopt a slightly different convention hefieaking

unitary transformatior);, such that the frequency derivative of (52) gives
‘ Ak 0 ) g g g .
M —qf [ N lai=nalinae @9 gms= (506l olel+ ele (5519 = el ol

(53)

whereos is the third of the Pauli matrices, which are defined b#here[4, B] = AB — BA is the commutator ofi and B. In
arriving at (53) we have made use of (49) and (51), and skew-

[0 1} [0 —zl [1 0} Hermiticity of H. By the well-known commutation relation of
1 — ) 2 — ) 3 — .
1 0 0

Pauli matrices

1 0 -1
J | = 2i¢; e m 54
Sinceios is unitary it follows thafVI*) is proportional to a uni- 75, o] = 2i€jamo (54)
tary, with proportionality coefficienk.. The first severaM s (53) reduces to
are calculated in [16]:
Jds
2 2 =9 . 55
MO — TET/ e {¢l2a x o]|¢) axs (55)
wo
2 Comparing (55) with the definition of PMD vector [21], [22]
(2) _ it _ e8] P g ,
M T wo (M ) ' (46) (9s/0w) = Q x s, we identifya = £2/2 and obtain the useful
identity
This exponential expansion form (EEF) offers an alternative )
definition of PMD: thekth order PMD is defined bg),. It T/t — _190' (56)
also generalizes the concept of principal states of polarization 2

(PSP’s) to higher orders: the PSP’s of tttt order PMD are |1 follows that (49) can be rewritten as
the eigenvectors dvI¥). In what follows, we demonstrate the

relation between the EEF and the conventional formulation of g B iQ 7
PMD. In particular, we shall establish the identities %|‘p> D) o o). (57)
2 = [, 2X; = || (47) By taking the frequency derivative of the above equation we
’ obtain

whereQ2 is the PMD vector anfl,, its first order derivative with
frequency.

Employing the Dirac notation in quantum mechanics, we ex-
press the transverse optical field vector|ay = (E,, Ey)*
where the superscript™ means matrix transpose. By defini-
tion of the Jones matrix

82

. . 2
sele) = —3Sole) + (-300) 1) 59)

Comparing (49) with (57), (50) with (58) at = wo, and
making use of (46), we identify:

1
) = T(@)|wo)- (48) TMYT) =~ - Q0 (>9)
wo
Fixing the input field|¢o), we have ToMOT — — %Qwa (60)
a wo
—|¢) =T (w = T'T%|p), 49
Ow i (@)leo) i2 (49) Taking the determinant on both sides of (59) and (60), and
52 . - using
WV@ =T"(w)|po) = T"T[¢). (50)
det|ro| = —r2, det ‘M(’“)‘ — 22 (61)
It is easy to show that the matriR' T is traceless and skew- _
Hermitian, therefore there exists a unique real vestuch that We obtain
H=TT =—ia-o (51) 20 = Qs 20 =y, - (62)
whereo = 18; + o9és +03é3 = o,¢;. Here we have  Sinces? and(2, are random quantities whose time average is

also adopted Einstein’s summation convention that repea@tivalent to the frequency average [11], we can relax the con-

(dummy) !ndlces are implicitly summed over 1, 2_’ anc_i 3. 2The conventionally defined Stokes vectst, differs from our definition by
The Poincaré sphere representation of the optical field vectogyclic permutation of basis; = s, s, = s, s; = s. Consequently
in a fiber, the Stokes vectat is related tq<p> by [11], [20] the PMD vector in the following analysis also differs from the conventionally
defined PMD vectof2° by a change of basi€2; = 3, Q, = Qf, Q5 =
Q9. This transformation of basis obvious produces no physical difference in the
s = {p|o|y). (52) results.
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dition w = wq in (62) when dealing with their average values. [10]
In this sense, we write

(11]

20 = |9, 2\ = Q.. (63)

(12]

These identities are used repeatedly in the main text of thiﬁ3]

paper.
Finally, we note that the useful identity (56) also offers a
simple proof of the following relation: [14

12 — det |T|. [15]

3 (64)

(16]

By taking the determinant on both sides of (56), (64) is a direct
corollary of the first identity in (61). This result is used in (29) [17]
of the main text.
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