2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Journal of Lightwave Technology
Volume 18 Number 10, October 2000
Table of Contents for this issue
Complete paper in PDF format
Millimeter-Wave Broad-Band
Fiber-Wireless System Incorporating Baseband Data Transmission over Fiber
and Remote LO Delivery
Christina Lim, Member, IEEE Ampalavanapillai Nirmalathas, Member, IEEE Dalma Novak, Member, IEEE Rod Waterhouse, Member, IEEE and Gideon Yoffe
Page 1355.
Abstract:
We present the first demonstration of a millimeter-wave (mm-wave)
broadband fiber-wireless system which incorporates baseband data transmission
in both the downstream (622 Mb/s) and upstream (155 Mb/s) directions. The
local oscillator (LO) required at the remote antenna base station for up-and downconversion to/from the mm-wave radio frequency (RF) is delivered remotely
via a modulation scheme that is tolerant to the effects of fiber chromatic
dispersion on the detected LO carrier power. The technique employs a single
dual-electrode modulator located at the central office (CO) and the data and
an RF signal at a frequency equal to half the LO frequency, are applied simultaneously
to the device. The modulation scheme was optimized as a function of the modulator
operating conditions. Simultaneous bidirectional radio transmission in the
mm-wave fiber-wireless network was implemented using specially designed mm-wave
diplexers located at the base station (BS) and customer unit, and a single
Ka-band printed antenna array at the BS operating simultaneously in transmit
and receive mode. Error-free data transmission was demonstrated for both down-(34.8 GHz) and uplinks (37.5 GHz) after 20 km of single-mode optical fiber
and a bit error rate (BER) of 10-6 was
achieved after the inclusion of a 2-m radio link.
References
-
R. Heidemann and G. Veith, "mm-wave photonics technologies for Gbit/s-wireless-local-loop", in Proc. OECC'98, Chiba, Japan, 1998, pp. 310-311.
-
D. Novak, G. H. Smith, C. Lim, A. Nirmalathas, H. F. Liu and R. B. Waterhouse, "Fiber-fed millimeter-wave wireless systems", in Proc. OECC'98, Chiba, Japan, 1998, pp. 306-307.
-
U. Gliese, "Coherent fiber-optic links for transmission and signal processing in microwave and millimeter-wave systems", in Proc. Int. Top. Meeting Micro. Photon. (MWP'98), Princeton, NJ, 1998, pp. 211-214.
-
H. Ogawa, D. Polifko and S. Banba, "Millimeter-wave fiber optics systems for personal radio communication", IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2285-2292, 1992.
-
G. H. Smith, D. Novak and C. Lim, "A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM", IEEE Photon. Technol. Lett., vol. 10, pp. 1650-1652, 1998.
-
C. Lim, D. Novak and G. H. Smith, "Implementation of an upstream path in a millimeter-wave fiber-wireless system", in Proc. Opt. Fiber Commun. Conf. (OFC'98), San Jose, CA, 1998, pp. 16- 17.
-
L. Noël, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook and D. Nesset, "Novel techniques for high-capacity 60 GHz fiber-radio transmission systems", IEEE Trans.
Microwave Theory Tech., vol. 45, pp. 1416-1423, 1997.
-
G. H. Smith, D. Novak and Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators", IEEE Trans.
Microwave Theory Tech., vol. 45, pp. 1410-1415, 1997.
-
Z. Ahmed, D. Novak and H. F. Liu, "SCM millimeter-wave (37 GHz) optical transport system for distribution of video and data signals", in Proc. OFC'97, Dallas, TX, 1997.
-
J. Park and K. Y. Lau, "Millimeter-wave (39 GHz) fiber-wireless transmission of broadband multichannel compressed digital video", Electron. Lett., vol. 32, pp. 474-476, 1995.
-
D. Wake, C. R. Lima and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser",
IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2270
-2276, 1995.
-
Z. Ahmed, D. Novak, R. B. Waterhouse and H. F. Liu, "Optically-fed millimeter-wave (37 GHz) transmission system incorporating a hybrid mode-locked semiconductor lase", Electron. Lett., vol. 32, pp. 1790-1792, 1996.
-
G. H. Smith, D. Novak, C. Lim and K. Wu, "Full-duplex broadband millimeter-wave optical transport system for fiber-wireless access", Electron. Lett., vol. 33, pp. 1159-1160,
1997.
-
D. Gray, "Optimal cell deployment for LMDS systems at 28 GHz", in Proc. Wireless Broadband Conf., Washington, DC, 1996.
-
D. Gray, "Examining the use of LMDS to enable interactive services", in Proc. 2nd. Multimedia over Radio Congress, UK, 1996.
-
G. H. Smith and D. Novak, "Broadband millimeter-wave fiber-radio network incorporating remote up/downconversion", in Proc. IEEE MTT Symp., Baltimore, MD, 1998, pp. 1509-1512.
-
D. Mathoorasing, D. Tanguy, J. F. Cadiou, P. Legaud, E. Penard, S. Bouchoule and C. Kazmierski, "Multicarrier distribution of multiple digital compressed tv channels using a harmonic laser source at 38 GHz", in Proc. MWP'98, , NJ, 1998, pp. 13-16.
-
T. Kuri, K. Kitayama and Y. Ogawa, "A novel fiber-optic millimeter-wave uplink incorporating 60 GHz-band photonic downconversion with remotely fed optical pilot tone using an electroabsoption modulator", in Proc. MWP'98, Princeton, NJ, 1998, pp. 17-20.
-
H. Schmuck, "Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion", Electron. Lett., vol. 31, pp. 1848-1849,
1995.
-
U. Gliese, S. Nørskov and T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links", IEEE Trans.
Microwave Theory Tech., vol. 44, pp. 1716-1724, 1996.
-
J. Park, W. V. Sorin and K. Y. Lau, "Elimination of fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission", Electron. Lett., vol. 33, pp. 512-513, 1997.
-
D. J. Blumenthal, J. Laskar, R. Gaudino, S. Han, M. D. Shell and M. D. Vaughn, "Fiber-optic links supporting baseband data and subcarrier-multiplexed control channels and the impact of MMIC photonic/microwave interfaces", IEEE Trans. Micro. Thy. & Tech., vol. 45, pp.
1443-1452, 1997.
-
C. M. Gee, G. D. Thurmond, H. Blauvelt and H. W. Yen, "Minimizing dc drift LiNbO3 waveguide devices", Appl. Phys. Lett., vol. 47, pp. 211-213,
1985.
-
S. Aisawa, H. Miyao, N. Takachio and S. Kuwano, "DC drift compensation of LiNbO3 intensity modulator using low frequency perturbation", IEICE Trans. Commun., vol. E81-B, pp. 107-109, 1998.
-
S. D. Targonski, R. B. Waterhouse and D. M. Pozar, "Design of wideband aperture-stacked patch microstrip antennas", IEEE Trans. Antennas Propagat., vol. 46, pp. 1246-1251,
1998.