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A Versatile Method for Analyzing Paraxial Optical
Propagation in Dielectric Structures

Federica Causa and J. Sarma

Abstract—This paper presents a fast and accurate quasi-ana-
lytic model for studying optical field propagation in weakly guiding
dielectric structures. The proposed efficient and versatile compu-
tational scheme is obtained by merging the Hermite–Gauss (HG)
total field expansion with the numerical collocation method and
is particularly suited for longitudinally nonuniform structures. By
means of a quasilinearization scheme, the same procedure has also
been successfully applied to the analysis of field propagation in
Kerr-nonlinear media. The latter achievement gives an indication
of the great potentialities offered by this straightforward method.
Several examples are discussed in the paper and in all cases the re-
sults computed by the proposed method favorably compare with
those from alternative methods.

Index Terms—Expansion methods, Kerr nonlinearity, longitudi-
nally nonuniform structures, optical propagation, orthogonal func-
tions.

I. INTRODUCTION

T HERE are only very few cases of optical propagation in
dielectric structures that admit to analytic solutions. The

situation is even more acute if longitudinal nonuniformity or
nonlinearity is included. On the other hand there is now an in-
creasing number of practical situations, particularly pertinent to
the development of photonic devices and circuits, that require
the reliable analysis of optical propagation in “awkward” ge-
ometries. One such geometry of considerable current interest is
the tapered dielectric structure.

Interest in achieving fast and accurate analyzes of optical
field propagation in longitudinally nonuniform and/or nonlinear
structures has continuously been driving the search for conve-
nient and efficient computation schemes. The most commonly
used method for the analysis of field propagation is probably
the beam propagation method (BPM). However, several other
schemes have been proposed and applied, [1], [2] and refer-
ences therein, ranging from those dominantly numerical [e.g.,
BPM, finite difference (FD), finite element (FE)] to the semi-an-
alytic ones (e.g., variational, perturbation, expansion methods).
Methods of the latter category, wherever applicable, are of par-
ticular interest because they tend to produce convenient and
computationally simplified procedures.

The quasianalytic scheme presented in this paper falls under
the category of field expansion methods, [3]–[5], and entails
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expanding the (total) optical field in terms of an appropriate
and convenient basis set. Specifically, the Hermite–Gauss (HG)
functions have been found to be particularly well suited for the
analysis of optical propagation in dielectric (open) structures, as
described in Section II. The actual execution of the HG field ex-
pansion requires computations which are most effectively and
efficiently done by the collocation method (CM). The HG and
CM are thus combined to obtain the composite computation
scheme, referred to as the HGCM, which is presented in Sec-
tion III. Finally, in Sections IV and V the HGCM is used to
solve several cases of optical field propagation in various di-
electric (open) structures and the results compared with those
obtained from other models. The success of the HGCM to solve
for a wide range of cases clearly demonstrates the versatility and
accuracy of this scheme.

II. THE FUNCTION EXPANSION METHOD

This paper deals with the analysis of optical field propaga-
tion in dielectric structures that have a relatively small spatial
variation of the refractive index, i.e., in the context of weakly
guiding structures, [3], for which it is appropriate to use a qua-
siscalar formulation and linearly polarized fields. The nonde-
generate case can indeed be analyzed by the HGCM if the elec-
tromagnetic field equations are accordingly modified, [6]. Fur-
ther, slab waveguide-like structures are considered so that the
field is assumed to be independent of the transversecoor-
dinate, i.e., . For harmonic time dependent fields a
component of the electric or magnetic field will, with
reference to the above conditions, approximately satisfy the re-
duced wave equation

(1)

where
free-space propagation constant;
wavelength in vacuum;
(relative) dielectric distribution, with

the corresponding refractive index
profile.

Assuming the optical field to be varying predominantly
along the longitudinal -direction, i.e., considering essentially
paraxial propagation, the lateral field profile is taken to be
changing slowly with , in which case it is convenient to write

(2)
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where is a suitably chosen constant and represents the
slowly varying lateral field profile. For the assumed paraxial
propagation the field satisfies the following inequalities:

(3.a)

and

(3.b)

hence, the scalar wave equation (1) can be reduced to the form,
[7], [8],

(4)

An important category of solutions to (1) that correspond to
open (dielectric) structures and are particularly relevant to pho-
tonic devices and circuits, result from applying the following
lateral boundary condition, [9]

for (5)

Under these conditions the field is square integrable
and, therefore, so is .

The objective here is to solve (4) by expanding in
terms of a convenient set of (known) basis functions. By this
procedure (4) is reduced to a manageable set of coupled differ-
ential equations for evaluating the expansion coefficients. For
this purpose it is necessary to choose an expansion set which is
complete in the appropriate (square integrable) function space,
[10].

A. Function Expansion Set

Although in principle any complete set of functions may be
used to expand the optical field, , the overall computation
process is more effective and efficient if a judicious choice of the
basis set is made. One such choice is the set of local (dielectric)
waveguide modes—the set is complete for the pertinent func-
tion space. This approach is known as the local mode expansion
(LME) method, [3], [9], and compared to all other methods it
is possibly the closest to a description of the actual, physical
evolution of the field along the structure. However, the LME
is generally difficult to implement because the complete set in-
cludes the radiation modes which form the continuous part of
the eigenvalues spectrum, [3], [9]. To practically use the LME it
is thus essential to discretise the continuous spectrum, a process
which poses considerable difficulties, [11].

An alternative approach is to work with basis sets that are
not only complete in the appropriate function space, but also
discrete, [5], [12], [13]. The solution to (4) is thus written in the
following general form:

(6)

where are the basis functions and the -dependent,
complex expansion coefficients. [Note that the expansion coef-
ficients are constants for modal solutions of longitudinally uni-

form dielectric structures.] In (6) is the number of expansion
terms; for the idealised case , but for practical situa-
tions . The accuracy of the field analysis based on the
total field expansion (6) is thus limited only by the number of
expansion terms.

B. The HG Basis Set

For the present formulation the set of HG functions are con-
sidered to be most suitable for the structures to be analyzed. The
expression for theth order HG function is

(7)

where is a normalization constant; the Hermite
polynomial of order and the constant HG waist parameter,
[3].

One of the advantages of using the HG set in open structures is
that, since each HG function tends to zero for , the total
field (6) naturally satisfies the required boundary conditions (5).
Note also that the HGs are the eigensolutions of the following
second order differential equation, [14]

(8)

with which will be used in the derivation below. In
the present context (8) may be recognized as the characteristic
equation for a slab waveguide with (ideal) parabolic dielectric
distribution. Finally, it is important to mention that the HG func-
tions also form an orthonormal set satisfying the orthogonality
condition

(9)

where is the Kronecker delta.

III. T HE HG COLLOCATION METHOD

To compute the expansion coefficients, , (6), it is neces-
sary to solve the set of coupled differential equations obtained
by substituting the field expansion (6) into the paraxial wave
equation (4) and orthogonalising using (9). Although exact, this
formulation is cumbersome to solve because it entails evaluating
integrals.

An alternative and very efficient computational procedure is
to use the collocation method (CM), [6], [15], [16], which is
here combined with the HG-expansion technique to derive the
quasianalytic HGCM computation scheme. With the CM, the
numerically laborious integrals are discretized by the applica-
tion of the Gaussian quadrature formula (GQF)

(10)

where is any square integrable function;
are the weighting functions

for the Hermite polynomials, [14], and are the sampling
points which are also referred to as collocation points. When
using the GQF with the Hermite polynomials, the most suitable
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collocation points are the zeros of the Hermite polynomial of
order , (10).

The discretization of the lateral-axis that will be used to
solve the problems of interest is thus decided by the use of the
GQF. In addition, by choosing the numberof sampling points,
(10), to be equal to the number of expansion terms, (6), it is
possible to make use of the matrix formalism, thus simplifying
the derivation.

By applying the collocation method to (4) it is implied that the
paraxial wave equation is exactly satisfied at each collocation
point , i.e.

(11)

with and .
Since the solution to (4) is expanded as in (6), (11) actually

represents a set of ordinary first order differential equations
in for the expansion coefficients , which can be com-
pactly written in the following form:

(12)

where is the ma-
trix element, and use has been made of the differential equation
(8). After solving (12) the field solution is determined using (6).

IV. PROPAGATION IN PASSIVE, LINEAR MEDIA

Three quite different examples of application of the HGCM to
solve for propagation in inhomogeneous, but linear dielectrics
are presented in this section to demonstrate the scope of the
method. Note that the HGCM has previously been shown to be
effective in computing Gaussian Beam propagation in a homo-
geneous medium, [6]. The latter is an important test because
the excellent agreement between the HGCM and the analyt-
ical solution, [6], confirms that the HG function set used in
the computation can be effectively applied to analyze radiating
(diffracting) fields, an aspect which is particularly important for
representing radiation at waveguide discontinuities and in lon-
gitudinally nonuniform structures.

A. Waveguide Junctions

The step discontinuity between two slab dielectric waveg-
uides, WG1 and WG2, of different widths, Fig. 1, may be
viewed as an abruptly nonuniform structure. The net input field,
specified as one particular discrete (bound) mode of WG1,
is propagated across the junction into WG2. Because of the
discontinuity it is expected that only a part of the input field will
couple to the guided modes of WG2 while the rest is radiated
into the surrounding (homogeneous) cladding medium.

The HGCM is used to solve for the propagating field distri-
bution in such a structure and the results are then compared with
those from an approximate plane wave spectrum method which

Fig. 1. Schematic of a waveguide step-transition.

Fig. 2. Intensity profile of an optical field after propagating a distance of 50
�m from the waveguide step-transition:n = 3:32; n = 3:3; � = 1:55�m,
2b = 6 �m,2b = 2 �m. Solid line: HGCM (M = 99;w = 1 �m); dashed
line: FSRM.

is basically a simplified version of the free space radiation mode
(FSRM) method, [17]. In general the optical field is expanded
in terms of the complete set of discrete and continuum modes of
WG2. For the FSRM, however, the continuum spectrum is cal-
culated approximately with the assumption of a homogeneous
medium (of refractive index ), i.e., in the limit of the core
width of WG2 tending to zero. The value for has been chosen
to be that of the modal refractive index of WG2.

Results are presented for the specific example of the input
field, , corresponding to the fundamental mode of WG1,
assuming that WG2 supports only one bound mode. The fields
calculated by the HGCM and FSRM for this example are pre-
sented in Fig. 2 for a propagation distance of 50m into WG2.
The required CPU times are 68 and 30 s for the HGCM and the
FSRM, respectively (an HP712 machine with a 66 MHz RISC
processor has been use to compute all the results presented in
this paper). The difference between the two computing times
can be explained by the fact that the first method is a (total field)
propagation scheme, whereas the latter essentially involves just
a Fourier transform. The two results are in good agreement, thus
again supporting the claim that both guided and radiated fields
can be quite accurately analyzed by the HGCM.
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Fig. 3. Schematic of a coupled waveguide structure.

B. Coupled Waveguides

The computation of propagation in coupled waveguides,
Fig. 3, is considered as yet another test for the HGCM. The
structure is clearly not longitudinally nonuniform but in this
case multimodal propagation in the composite waveguide, in
effect, produces the longitudinally varying lateral field profile.
The HGCM computed results are compared against analytic
solutions obtained from the use of only the bound modes of a
five-layer slab waveguide, [3], defined by (13) at the bottom of
the page.

The results presented in Fig. 4 have been computed for an
input field specified as the fundamental mode of the (isolated)
waveguide on the right hand side of Fig. 3. The propagation
length, , used in the example has been arbitrarily chosen to
be half the coupling length. The agreement between the re-
sults computed by the two quite different methods is remarkably
good, indicating that, for this case, the discrete modes are dom-
inant while the radiation mode spectrum, implicitly included in
the HGCM, contributes negligibly to the lateral field profile.

It may be useful to observe that the CPU time required by
the HGCM depends on the number of expansion terms used
in (6), on the propagation step, , and, although very mod-
erately, on the HG width parameter which also determines
the extent of the computational window. It is to be expected
that the computing time increases with (approximately as

), Fig. 5, because of the matrix formulation of the HGCM.
On the other hand, the HGCM solutions seem to be almost in-
sensitive to changes in and , as illustrated by Fig. 6,

Fig. 4. Field intensity profile calculated with the HGCM (dots,
M = 99; w = 2�m) and compared with the analytic solution (solid line) for a
coupled waveguide structure:n = 3:28448; n = 3:28241; � = 1:55�m,
2b = 2b = 3 �m,d = 3 �m andL = 1220 �m. The dashed line represents
the input field atz = 0.

Fig. 5. CPU time as a function of the numberM of expansion terms used in
the HGCM solution of the coupled slab waveguides (w = 2 �m).

(13)
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Fig. 6. Coupled slab waveguides: the HGCM computed solution as a function
of the parametersM;�z andw ; continuous line:M = 99;�z = 112 �m,
w = 2 �m; crosses:M = 99;�z = 1 �m,w = 2 �m; dashed line:M =

99;�z = 20 �m,w = 3 �m; dots:M = 31;�z = 20 �m,w = 3 �m.

where the coupled waveguide problem has been solved by the
HGCM using different values of the above mentioned parame-
ters, which gives an indication of the convergence and stability
of the method.

C. Dielectric Tapers

Tapered geometry structures have been extensively used for
metal waveguide horn antennas at microwave frequencies, [18],
while tapered dielectric elements have been applied to design
efficient optical mode converters, [19]. Relatively recently,
tapered geometries have been used for the development of
high-power semiconductor optical sources, [20]–[22]. Indeed,
the parabolic taper geometry, Fig. 7, in particular, has been
found to be very attractive for a number of guided wave passive,
[23], and active, [24], optical devices. Evidence presented here
demonstrates convincingly that the HGCM can be efficiently
used to solve for propagation in tapered dielectric structures.

As an example the HGCM is used to solve for propagation in
a parabolic taper waveguide, Fig. 7, having a core of half width

and refractive index surrounded by a
medium of refractive index . In using the HGCM the
lateral discretization derives from the application of the colloca-
tion method as described in Section III. For the longitudinal dis-
cretization an appropriate propagation step needs to be chosen
according to the tapered structure of interest. Importantly note
that the combination of the two discretization schemes may pro-
duce significant numerical errors because the representation of
the longitudinally varying width, , of the core layer depends
critically on the spacing of the collocation points. To minimize
computational errors it has been found to be most convenient
to represent the abrupt lateral refractive index step by a con-
tinuously varying Super-Gaussian (SG) profile, Appendix A.

Fig. 7. Schematic of a parabolic taper.

Fig. 8. Field intensity profile at the wider end of a parabolic taper (2b =

3 �m,2b = 20 �m,L = 500 �m,n = 3:33; n = 3:32; � = 0:86 �m):
solid line: HGCM (M = 99;w = 1:2 �m) with SG refractive index
distribution; dotted line: HGCM (M = 99;w = 1:2 �m) with ST refractive
index distribution; dashed line: BME. The input field is specified as the
fundamental local mode atz = 0.

This important modification has remarkably improved the per-
formance of the HGCM when applied to longitudinally nonuni-
form geometries.

The results from the HGCM are here compared with those ob-
tained from the approximate version of the LME which makes
use of only the (local) bound modes, referred to here as the
bound mode expansion (BME), [25]. In fact, the BME is ad-
equately accurate especially for parabolic dielectric structures
since, following the excitation of the local fundamental mode,
the field propagates by coupling predominantly to the local fun-
damental mode all along the length, [19].

With reference to Fig. 7, the input field is specified as the
fundamental local mode at the narrow end of the parabolic
taper. The results from the two different methods are plotted in
Fig. 8. Note that there are two sets of HGCM computed results
in Fig. 8—one is obtained using the step refractive index while
the other uses the SG representation. The agreement between
the HGCM-SG and the BME is particularly good and this
underlines the importance of using a continuous (SG) represen-
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Fig. 9. Schematic of a slab waveguide with nonlinear substrate:2b is the
guiding layer width.

tation of the refractive index profile in further improving the
accuracy of the HGCM computed results. For this example the
CPU times required by the two methods are comparable being
244 s for the HGCM and 208 s for the BME.

V. NONLINEAR DIELECTRIC MEDIA

Another class of problems that has been solved by the HGCM
is that of optical propagation in nonlinear media. In particular,
consider a Kerr-type nonlinearity where the dielectric distribu-
tion, , is defined as, [26]

(14)

where
(linear) built-in dielectric distribution;
nonlinearity coefficient;
propagating field in the structure.

With the dielectric distribution as specified in (14), the
paraxial wave equation (4) becomes nonlinear. To enable the
use of the HG expansion (4) is quasilinearised by means of
the iteration scheme used for the computation. Thus, (14) is
written as

(15)

indicating that in the th iteration the dielectric distribu-
tion, , is related to the (known) field distribution,

, corresponding to the previous iteration. The field
distribution for the first iteration is typically specified in terms
of the eigenmodes of the built-in linear structure, . At
each iteration loop, , the HGCM is used to solve the now
linear paraxial wave equation

(16)

(a)

(b)

Fig. 10. Amplitude of a field propagating in a three-layer slab waveguide with
nonlinear substrate, calculated with the HGCM (M = 99; w = 0:8 �m) for
two different input powers per unit length: (a)P = 600 W/m, (b)P = 800
W/m; 2b = 2 �m, " = (1:57) ; " = (1:55) ; � = 1 �m,� = 6:3771 �

10 m /V , longitudinal step= 0:05 �m.

until convergence on the field profile is achieved.
Consider the case of paraxial propagation along a three-layer

slab waveguide with a nonlinear substrate, Fig. 9, [26]–[29]. The
built-in linear dielectric distribution is

(17)

where are constants, is the width of the core layer
and the nonlinearity coefficient is

(18)

with a constant parameter.
All relevant parameters, given in the caption of Fig. 10, are

taken from [26] to allow for a useful comparison between the
method proposed in that reference and the HGCM. Results ob-
tained with the HGCM for propagation in this nonlinear wave-
guide are presented in Fig. 10 and are found to be in good agree-
ment with those in [26]. The CPU time required by the HGCM
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strongly depends on the input power since large input powers
imply reiterations to satisfy self-consistency. In this case the
CPU time was 4800 s for 800 mW/m and 3624 s for 600 mW/m
input power.

Hence, by quasilinearising the problem, the HGCM has been
satisfactorily applied to solve also for nonlinear waveguide
problems. Although the approximation made with the quasi-lin-
earization needs to be carefully considered, particularly when
the nonlinear terms become dominant, the advantages of a
modest computational effort together with a straightforward
implementation make the HGCM-iteration technique very
attractive.

VI. CONCLUSION

The Hermite–Gauss collocation method (HGCM) has been
extensively applied to a variety of field propagation problems
which are encountered in typical present-day photonic device
structures. Results computed by the HGCM have been shown
to be in excellent agreement with those from other methods of
solution.

In particular, under the approximation of a quasilinearization
of the problem, the HGCM has been shown to be applicable
for the computation of paraxial propagation also in explicitly
nonlinear dielectric waveguides. This success provides further
confidence in the use of the HGCM-iteration scheme to analyze
active optical (semiconductor) devices, such as amplifiers and
lasers, where the implicit nonlinearities are due to the interaction
between the optical field and the charge carriers. Indeed, the ver-
satility of the HGCM-iteration procedure for solving nonlinear
differential equations has been further substantiated by solving
the carrier diffusion equation that is typically encountered in the
analysis of semiconductor optical devices [30].

APPENDIX A
SUPER-GAUSSIAN REFRACTIVE INDEX DISTRIBUTION

The use of a continuously varying refractive index distribu-
tion greatly improves the results obtained by the HGCM. Specif-
ically, the structure to be analyzed can be conveniently described
by a super-Gaussian (SG) refractive index profile of the type

(B1)

where is the SG exponential and the longitudinally
varying width of the guiding layer. For example, for a linear
taper

(B2)

while for a parabolic taper

(B3)

where is the tapering parameter and .
The continuous SG refractive index distribution (B1) is very

sharp for so that it quite satisfactorily represents a step-
index distribution.

REFERENCES

[1] S. M. Saad, “Review of numerical methods for the analysis of arbitrarily-
shaped microwave and optical dielectric waveguides,”IEEE Trans. Mi-
crowave Theory Technol., vol. MTT-33, pp. 894–899, Oct. 1985.

[2] K. S. Chiang, “Review of numerical and approximate methods for the
modal analysis of general dielectric waveguides,”Optic. Quantum Elec-
tron., vol. 26, pp. S113–S134, Nov. 1994.

[3] D. Marcuse,Light Transmission Optics. New York: Van Nostrand
Reinhold, 1982.

[4] C. H. Henry and Y. Shami, “Analysis of mode propagation in optical
waveguide devices by Fourier expansion,”IEEE J. Quantum Electron.,
vol. 27, pp. 523–530, 1991.

[5] A. Sharma and S. Banerjee, “Method for propagation of total fields or
beams through optical waveguides,”Opt. Lett., vol. 14, pp. 96–98, Jan.
1989.

[6] F. Causa, J. Sarma, and M. Milani, “Hermite-Gauss functions in the anal-
ysis of a category of optical devices,”Nuovo Cimento della Societa’ Ital-
iana di Fisica D, vol. 20, no. 3, pp. 289–320, Mar. 1998.

[7] A. E. Siegman,Lasers: University Science Books, 1986.
[8] H. A. Haus,Waves and Fields in Optoelectronics. Englewood Cliffs,

NJ: Prentice-Hall, 1984.
[9] T. Rozzi and M. Mongiardo,Open Dielectric Waveguides: IEE Electro-

magnetic Wave Series, 1997.
[10] E. Butkov, Mathematical Physics. Reading, MA: Addison-Wesley,

1973.
[11] P. Gerard, P. Benech, H. Ding, and R. Rimet, “A simple method for

the determination of orthogonal radiation modes in planar multilayer
structures,”Opt. Commun., vol. 108, pp. 235–238, June 1994.

[12] R. L. Gallawa, I. C. Goyal, Y. Tu, and A. K. Ghatak, “Optical wave-
guide modes: An approximate solution using Galerkin’s method with
Hermite-Gauss basis functions,”IEEE J. Quantum Electron., vol. 27,
pp. 518–522, 1991.

[13] O. Georg, “Use of the orthogonal system of Laguerre-Gaussian func-
tions in the theory of circularly symmetric optical waveguides,”Appl.
Opt., vol. 21, pp. 141–146, Jan. 1982.

[14] Handbook of Mathematical Functions, Dover, New York, 1965.
[15] B. A. Finlayson,The Method of Weighted Residuals and Variational

Principles (with Applications in Fluid Mechanics, Heat and Mass
Transfer). New York: Academic, 1972.

[16] A. Sharma, “Collocation method for wave propagation through optical
waveguiding structures,” inProgress in Electromagnetics Research,
Electromagnetic Waves PIER 11, J. A. Kong, Ed. New York: EMW,
1995.

[17] M. Reed, P. Sewell, T. M. Benson, and P. C. Kendall, “Efficient propaga-
tion algorithm for 3D optical waveguides,”Inst. Elect. Eng. Proc.—Op-
toelectron., vol. 145, no. 1, pp. 53–58, Feb. 1998.

[18] R. E. Collin and F. J. Zucker,Antenna Theory. New York: McGraw
Hill, 1969.

[19] A. F. Milton and W. K. Burns, “Mode coupling in optical waveguide
horns,” IEEE J. Quantum Electron., vol. QE-13, pp. 828–835, Oct.
1977.

[20] J. N. Walpole, “Semiconductor amplifiers and lasers with tapered
gain regions,”Optic. Quantum Electron., vol. 28, pp. 623–645, June
1996.

[21] S. Obrien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang,
R. Waarts, and D. Scifres, “Operating characteristics of a high-power
monolithically integrated flared amplifier master oscillator power-
amplifier,” IEEE J. Quantum Electron., vol. 29, pp. 2052–2057, 1993.

[22] K. A. Williams, J. Sarma, I. H. White, R. V. Penty, I. Middlemast, T.
Ryan, F. R. Laughton, and J. S. Roberts, “Q-switched bow-tie lasers for
high-energy picosecond pulse generation,”Electron. Lett., vol. 30, pp.
320–321, Feb. 1994.

[23] C. Dragone, “Optimum design of a planar array of tapered waveguides,”
J. Opt. Soc. Amer. A, vol. 7, pp. 2081–2093, Nov. 1990.

[24] N. S. Brooks, J. Sarma, and I. Middlemast, “A new design for ta-
pered-geometry high-power semiconductor optical sources,” inProc.
LEOS’96, Nov. 1996, Paper WZ5.

[25] I. Middlemast, J. Sarma, and P. S. Spencer, “Characteristics of tapered
rib-waveguides for high-power semiconductor optical sources,”Inst.
Elect. Eng. Proc.—Optoelectron., vol. 144, pp. 8–13, July 1997.

[26] T. Rozzi and L. Zappelli, “Modal analysis of nonlinear propagation in
dielectric slab waveguide,”J. Lightwave Technol., vol. 14, pp. 229–235,
Feb. 1996.

[27] P. M. Lambkin and K. A. Shore, “Asymmetric semiconductor waveguide
with defocusing nonlinearity,”IEEE J. Quantum Electron., vol. 24, pp.
2046–2051, Oct. 1988.



1452 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 10, OCTOBER 2000

[28] P. R. Berger, P. K. Bhattacharya, and S. Gupta, “A waveguide directional
coupler with a nonlinear coupling medium,”IEEE J. Quantum Electron.,
vol. 27, pp. 788–795, Mar. 1991.

[29] T. Yasui, M. Koshiba, and Y. Tsuji, “A wide-angle finite element beam
propagation method with perfectly matched layers for nonlinear optical
waveguides,”J. Lightwave Technol., vol. 17, no. 10, pp. 1909–1915, Oct.
1999.

[30] F. Causa, J. Sarma, and R. Balasubramanyam, “A new method for com-
puting nonlinear carrier diffusion in semiconductor optical devices,”
IEEE Trans. Electron Devices, vol. 46, pp. 1135–1139, June 1999.

Federica Causareceived the degree in Physics from the Department of Physics,
University of Milan, Italy, in 1993.

After a postgraduate course in optics, supported by the A.I.L.U.N. associ-
ation, Nuoro, Italy, she moved to the United Kingdom with a scholarship for
postgraduate studies. She received the Ph.D. degree from the Department of
Electronic and Electrical Engineering of the University of Bath, U.K., in 1998,
where she is currently a Lecturer. Her research interests include the modeling
of optical field propagation in dielectric structures in the context of semicon-
ductor active optical devices. She is also involved in the design, development,
and characterization of semiconductor optical devices.

J. Sarmareceived the Bachelor’s degree in electronics and communication en-
gineering from Jadavpur University, Calcutta, India, and the M.S. degree in elec-
trical engineering from the Illinois Institute of Technology, Chicago, IL. There-
after, he completed various graduate level courses at the University of Chicago
(Physics), and at the Polytechnic Institute of Brooklyn (Electrophysics). He re-
ceived the Ph.D. degree in electronic engineering from the University of Leeds,
U.K.. for his work on Negative Differential Mobility (NDM, Gunn) devices.

He spent a further academic year as a Teaching/Research Assistant and com-
pleted a set of graduate courses (Electrical Engineering and Physics) at Co-
lumbia University (NY) while being a member of the research group of the In-
terdepartmental Plasma Physics Laboratory. He was then a National Research
Council of Canada Postdoctoral Research Fellow at the Communications Re-
search Centre, Ottawa, ON, Canada, working on NDM traveling wave ampli-
fiers. Later, he returned to the United Kingdom as a Research Associate in
the Electronic Engineering Department of the University of Sheffield (U.K.)
working on numerical (TLM) solutions of electromagnetic field problems asso-
ciated with high energy particle accelerators, and also on the analysis of Trav-
elling Wave FETs. His research activities continued as a Research Associate in
the Department of Electronic Engineering of the University of Liverpool (U.K.)
with the work focused on (semiconductor) Optoelectronic devices. He subse-
quently moved to the Department of Electronic Engineering, University of Bath
(U.K.), where he is presently a Reader. His research activities recently have been
in the area of taper geometry high power optical sources and on VCSELs, with
his research interests broadly being in the area of guided wave optoelectronic
devices.


