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A Versatile Method for Analyzing Paraxial Optical
Propagation in Dielectric Structures

Federica Causa and J. Sarma

Abstract—This paper presents a fast and accurate quasi-ana- expanding the (total) optical field in terms of an appropriate
lytic model for studying optical field propagation inweakly guiding  and convenient basis set. Specifically, the Hermite—Gauss (HG)
dielectric structures. The proposed efficient and versatile compu- functions have been found to be particularly well suited for the
tational scheme is obtained by merging the Hermite—Gauss (HG) . . N .
total field expansion with the numerical collocation method and analy_SIS of_optlca! propagation in dlelectrlf: (open) structgres, as
is particularly suited for longitudinally nonuniform structures. By ~ described in Section II. The actual execution of the HG field ex-
means of a quasilinearization scheme, the same procedure has alsgansion requires computations which are most effectively and
been successfully applied to the analysis of field propagation in efficiently done by the collocation method (CM). The HG and
Kerr-nonlinear media. The latter achievement gives an indication CM are thus combined to obtain the composite computation

of the great potentialities offered by this straightforward method. S .
Several examples are discussed in the paper and in all cases the re_scheme, referred to as the HGCM, which is presented in Sec-

sults computed by the proposed method favorably compare with tion Ill. Finally, in Sections IV and V the HGCM is used to
those from alternative methods. solve several cases of optical field propagation in various di-

Index Terms—Expansion methods, Kerr nonlinearity, longitudi- elect.ric (open) structures and the results compared with those
nally nonuniform structures, optical propagation, orthogonal func-  Obtained from other models. The success of the HGCM to solve
tions. for awide range of cases clearly demonstrates the versatility and

accuracy of this scheme.

I. INTRODUCTION

. L [I. THE FUNCTION EXPANSION METHOD
HERE are only very few cases of optical propagation in

dielectric structures that admit to analytic solutions. The This paper deals with the analysis of optical field propaga-

situation is even more acute if longitudinal nonuniformity ofion in dielectric structures that have a relatively small spatial
nonlinearity is included. On the other hand there is now an iMariation of the refractive index, i.e., in the context of weakly
creasing number of practical situations, particularly pertinent gliding structures, [3], for which it is appropriate to use a qua-
the development of photonic devices and circuits, that requiicalar formulation and linearly polarized fields. The nonde-
the reliable analysis of optical propagation in “awkward” gegenerate case can indeed be analyzed by the HGCM if the elec-
ometries. One such geometry of considerable current interedr@mnagnetic field equations are accordingly modified, [6]. Fur-
the tapered dielectric structure. ther, slab waveguide-like structures are considered so that the

Interest in achieving fast and accurate analyzes of optidld is assumed to be independent of the transveyseoor-
field propagation in longitudinally nonuniform and/or nonlineaglinate, i.e.(9/9y) = 0. For harmonic time dependent fields a
structures has continuously been driving the search for cong@mponent of the electric or magnetic fied{z, ») will, with
nient and efficient computation schemes. The most commorigference to the above conditions, approximately satisfy the re-
used method for the analysis of field propagation is probabfiiced wave equation
the beam propagation method (BPM). However, several other
schemes have been proposed and applied, [1], [2] and refer-
ences therein, ranging from those dominantly numerical [e.g.,
BPM, finite difference (FD), finite element (FE)] to the semi-an-
alytic ones (e.g., variational, perturbation, expansion methodgjere
Methods of the latter category, wherever applicable, are of parko = (2r/X¢)  free-space propagation constant;

{ ” + & +k§5(w,z)}F(aZ,2) =0 1)

92 | 922

ticular interest because they tend to produce convenient and wavelength in vacuum;

computationally simplified procedures. e(x,z) = (relative) dielectric distribution, with
The quasianalytic scheme presented in this paper falls undesn?(z, ») n(x, z) the corresponding refractive index

the category of field expansion methods, [3]-[5], and entails profile.

Assuming the optical field to be varying predominantly
along the longitudinak-direction, i.e., considering essentially
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wherep is a suitably chosen constant afid:, =) represents the form dielectric structures.] In (8)/ is the number of expansion
slowly varying lateral field profile. For the assumed paraxiderms; for the idealised casd = oo, but for practical situa-
propagation the field satisfies the following inequalities: tions M < oo. The accuracy of the field analysis based on the
total field expansion (6) is thus limited only by the number of

2
0" f(z,2) <p 9f(z,2) (3.a) expansion terms.
072 Oz
and B. The HG Basis Set
2 2
‘a f(”;’ | « ‘8 f(”;’ ?) (3.b)  For the present formulation the set of HG functions are con-
9z Iz sidered to be most suitable for the structures to be analyzed. The

hence, the scalar wave equation (1) can be reduced to the foRression for théth order HG function is

[71, [8], e 22
Loy 2@2) | 9a.2) i) =t (F)on(-5z) O
Oz Ox? . L .
n {kés(a:,z) B pQ} F@,2) =0 @) whereC}, is a normalization constanH(z/wg) the Hermite

polynomial of ordert andw, the constant HG waist parameter,

An important category of solutions to (1) that correspond {8]- _ ) )
open (dielectric) structures and are particularly relevant to pho-One of the advantages of using the HG setin open structures is

tonic devices and circuits, result from applying the foIIowing‘ata since each HG function tends to zeroligr— oo, the total
lateral boundary condition, [9] ield (6) naturally satisfies the required boundary conditions (5).

Note also that the HGs are the eigensolutions of the following

|F(z,2)] — 0 for|z| — oo. (5) second order differential equation, [14]
Under these conditions the fielH(z, z) is square integrable () 2 _
and, therefore, so i§(z, 2). gz Tk +1—aNe(2) =0 (8)

The objective here is to solve (4) by expandifigr, z) in withk =1,2,...,whichwill be used in the derivation below. In

terms of a convenient set of (known) basis functions. By t,h{ﬁe present context (8) may be recognized as the characteristic
prop?dure (4)is rfeducetii toa marznageable set of C?f_“?'ed diffiiation for a slab waveguide with (ideal) parabolic dielectric
ential equations for evaluating the expansion coefficients. Ry tion. Finally, it is important to mention that the HG func-

this purpose it is necessary to choose an expansion set WhicfiSs a1so form an orthonormal set satisfying the orthogonality
complete in the appropriate (square integrable) function SPaGEndition

[10].

o0
A. Function Expansion Set / P () g () do = by 9)

Although in principle any complete set of functions may b
used to expand the optical fielfi¢z, =), the overall computation
process is more effective and efficient if a judicious choice of the
basis setis made. One such choice is the set of local (dielectric)
waveguide modes—the set is complete for the pertinent func-To compute the expansion coefficienig(z), (6), itis neces-
tion space. This approach is known as the local mode expans#gfy t0 solve the set of coupled differential equations obtained
(LME) method, [3], [9], and compared to all other methods BY substituting the field expansion (6) into the paraxial wave
is possibly the closest to a description of the actual, physicuation (4) and orthogonalising using (9). Although exact, this
evolution of the field along the structure. However, the LMEormulation is cumbersome to solve because it entails evaluating
is generally difficult to implement because the complete set itiptegrals.
cludes the radiation modes which form the continuous part of An alternative and very efficient computational procedure is
the eigenvalues spectrum, [3], [9]. To practically use the LME%@ use the collocation method (CM), [6], [15], [16], which is
is thus essential to discretise the continuous spectrum, a prod&fe combined with the HG-expansion technique to derive the
which poses considerable difficulties, [11]. guasianalytic HGCM computation scheme. With the CM, the

An alternative approach is to work with basis sets that afeimerically laborious integrals are discretized by the applica-
not only complete in the appropriate function space, but al§en of the Gaussian quadrature formula (GQF)
discrete, [5], [12], [13]. The solution to (4) is thus written in the

ﬁ/hereékq is the Kronecker delta.

I1l. THE HG COLLOCATION METHOD

H . &0 2 L
following general form: / g(z)e™ dszhjg(xj) (10)
M - j=t
f(x’z):kz_l“’“(z)%(x) ©)  where g(+) is any square integrable functiomy; =

(2P=1P\/r/P*[Hp_1(z;)]?) are the weighting functions
wherepy(z) are the basis functions angl(z) thez-dependent, for the Hermite polynomials, [14], and; are theP sampling
complex expansion coefficients. [Note that the expansion copbints which are also referred to as collocation points. When
ficients are constants for modal solutions of longitudinally uniising the GQF with the Hermite polynomials, the most suitable
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collocation points are the zeros of the Hermite polynomial of

order P, (10). Gl §/\ W S
The discretization of the lateral-axis that will be used to N\

solve the problems of interest is thus decided by the use of tF
GQF. In addition, by choosing the numbienf sampling points, n %b
(10), to be equal to the numb#af of expansion terms, (6), itis  2b 1 n, A =D >
possible to make use of the matrix formalism, thus simplifying v Z
the derivation.

By applying the collocation method to (4) itis implied that the \%\\
paraxial wave equation is exactly satisfied at each collocatio N
pointx;, i.e.

8f(a:, z) 82f(a:, z) Fig. 1. Schematic of a waveguide step-transition.

oz + Ox?

T=T; T=T;

+ (kgs(a:j,z) — p2) flzj,2)=0 (11) 10

with f(z;,2) = S0l an(2)en(z;) andj = 1,2,..., M.

Since the solution to (4) is expanded as in (6), (11) actually
represents a set éff ordinary first order differential equations 07
in z for the expansion coefficients;(z), which can be com-
pactly written in the following form:

—2ip

dag(z
—2ipak—(7) — (2k + 14 pHax(z) 04
z
M 0.3
+ Z Byg(zj,2)a,(z) =0 (12) s
=1

Intensity (a. u.)
o
&
llJIIH\I|IIIIIIIII|II|I|I||I|llI]l[Il||VIHHIlI;I|IYIIIII|IIIIIIIIIIHI!IlIIIlIIIIIIIIIIIIIIIIIII

whereBy, (z;,2) = ¢k (z;)(kge(x;, 2) + 273 ), (2;) is the ma-
trix element, and use has been made of the differential equation 80T
(8). After solving (12) the field solution is determined using (6). ’

IV. PROPAGATION IN PASSIVE, LINEAR MEDIA Fig. 2. Intensity profile of an optical field after propagating a distance of 50

. . . . m from the waveguide step-transition; = 3.32, n, = 3.3, A\ = 1.55 um,
Three quite dlffe_rent_ex_amples of application (_)f the HGCM tfjbl = 6 um, 2b, = 2 um. Solid line: HGCM 1 = 99, w, = 1 sm); dashed
solve for propagation in inhomogeneous, but linear dielectritse: FSRM.

are presented in this section to demonstrate the scope of the

method. Note that the HGCM has previously been shown to Reyasically a simplified version of the free space radiation mode
effective in computing Gaussian Beam propagation in a homgsrM) method, [17]. In general the optical field is expanded
geneous medium, [6]. The latter is an important test becayggerms of the complete set of discrete and continuum modes of
the excellent agreement between the HGCM and the analffG2. For the FSRM, however, the continuum spectrum is cal-
ical solution, [6], confirms that the HG function set used ig|ated approximately with the assumption of a homogeneous
the computation can be effectively applied to analyze radiatipgedium (of refractive index..), i.e., in the limit of the core
(diffracting) fields, an aspect which is particularly important foidth of WG2 tending to zero. The value for has been chosen
representing radiation at waveguide discontinuities and in 1ogy pe that of the modal refractive index of WG2.
gitudinally nonuniform structures. Results are presented for the specific example of the input
field, Fo(x), corresponding to the fundamental mode of WG1,
assuming that WG2 supports only one bound mode. The fields
The step discontinuity between two slab dielectric wavegalculated by the HGCM and FSRM for this example are pre-
uides, WG1 and WG2, of different widths, Fig. 1, may bsented in Fig. 2 for a propagation distance ofi&0 into WG2.
viewed as an abruptly nonuniform structure. The net input fiel@he required CPU times are 68 and 30 s for the HGCM and the
specified as one particular discrete (bound) mode of WGESRM, respectively (an HP712 machine with a 66 MHz RISC
is propagated across the junction into WG2. Because of thmcessor has been use to compute all the results presented in
discontinuity it is expected that only a part of the input field wilthis paper). The difference between the two computing times
couple to the guided modes of WG2 while the rest is radiatedn be explained by the fact that the first method is a (total field)
into the surrounding (homogeneous) cladding medium. propagation scheme, whereas the latter essentially involves just
The HGCM is used to solve for the propagating field distria Fourier transform. The two results are in good agreement, thus
bution in such a structure and the results are then compared véitfain supporting the claim that both guided and radiated fields
those from an approximate plane wave spectrum method whidn be quite accurately analyzed by the HGCM.

A. Waveguide Junctions
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Fig. 3. Schematic of a coupled waveguide structure.

. Fig. 4. Field intensity profile calculated with the HGCM (dots,
B. Coupled Waveguides M = 99, wy = 2 um) and compared with the analytic solution (solid line) for a

The computation of propagation in coupled Waveguide%boi‘ﬂegb"gi’e’fzgﬁ;tfgtzﬁiaid?zziﬂ‘f;%’(f;rﬁ 228241 Iﬁggzr’le?éms
Fig. 3, is considered as yet another test for the HGCM. The input field atz = 0.

structure is clearly not longitudinally nonuniform but in this

case multimodal propagation in the composite waveguide, in
effect, produces the longitudinally varying lateral field profile 250
The HGCM computed results are compared against analy
solutions obtained from the use of only the bound modes o
five-layer slab waveguide, [3], defined by (13) at the bottom ¢
the page.

The results presented in Fig. 4 have been computed for
input field specified as the fundamental mode of the (isolate
waveguide on the right hand side of Fig. 3. The propagati 150
length, L, used in the example has been arbitrarily chosen
be half the coupling length. The agreement between the
sults computed by the two quite different methods is remarkal
good, indicating that, for this case, the discrete modes are dc
inant while the radiation mode spectrum, implicitly included i
the HGCM, contributes negligibly to the lateral field profile.

It may be useful to observe that the CPU time required t 50
the HGCM depends on the numhief of expansion terms used
in (6), on the propagation stegyz, and, although very mod-

200

cpu time (s)

100

llllllllIIIIIIIIIII|IIIII||lI|IIllIIlIlIIlIIIII||

erately’ on the HG Wldth pal’amet% WhICh also determlnes 0 THHHII'IIIIIlIIlIHHlllH]IllllIIH|HIIIHlI!lIIIII(||I!HlIlIHIHIHIIII]lHlIlIHlIIIIHIH
the extent of the_z cor_nput_atlonal W|nd_ow. It is to_be expecte o 10 20 30 40 50 6 70 80 90 100
that the computing time increases witf (approximately as M (number of expansion term)

M?), Fig. 5, because of the matrix formulation of the HGCM.
On the other hand, th_e HGCM squtlon§ seem to be al_mOSt E?@. 5. CPU time as a function of the numhef of expansion terms used in
sensitive to changes i, Az andwy, as illustrated by Fig. 6, the HGCM solution of the coupled slab waveguides & 2 zm).

P (13)
2
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Fig. 6. Coupled slab waveguides: the HGCM computed solution as a functi § E
of the parameters{, Az andw,; continuous lineM = 99, Az = 112 um, 5 044
wg = 2 pm; crossesM = 99, Az = 1 um, wy = 2 um; dashed lineM = E
99, Az =20 pm,we = 3 pm; dots:M = 31, Az = 20 um, woe = 3 pm. 0.3 3
. 02 3
where the coupled waveguide problem has been solved by E
HGCM using different values of the above mentioned param 01 3
ters, which gives an indication of the convergence and stabil E ;
of the method. 0.0 :IIll'll!l/lllillllIlIIllIlIIIIlllll'l!ll
20 -15 -10 5 0 5 10 15 20
C. Dielectric Tapers X (um)

Tapered geometry structures have been extensively used tor
metal waveguide horn antennas at microwave frequencies, [18§, 8. Field intensity profile at the wider end of a parabolic tap#; (=
while tapered dielectric elements have been applied to desgﬁé‘vla’é_ ﬁezgll\;lm(\f =_5%%/@,ni= 3.33,m5 = 3.32, X0 = 0.86 pm):

. . - : I = ,wg = 1.2 um) with SG refractive index
efficient optical mode converters, [19]. Relatively recentlXiistribution; dotted line: HGCMX{ = 99, wq = 1.2 pm) with ST refractive
tapered geometries have been used for the developmenin@éx distribution; dashed line: BME. The input field is specified as the
high-power semiconductor optical sources, [20]-[22]. Indeeyndamental local mode at = 0.
the parabolic taper geometry, Fig. 7, in particular, has been
found to be very attractive for a number of guided wave passivEhis important modification has remarkably improved the per-
[23], and active, [24], optical devices. Evidence presented hdogmance of the HGCM when applied to longitudinally nonuni-
demonstrates convincingly that the HGCM can be efficientiprm geometries.
used to solve for propagation in tapered dielectric structures. The results from the HGCM are here compared with those ob-

As an example the HGCM is used to solve for propagation tained from the approximate version of the LME which makes
a parabolic taper waveguide, Fig. 7, having a core of half widtise of only the (local) bound modes, referred to here as the
b(z) = /b3 +t- = and refractive index; surrounded by a bound mode expansion (BME), [25]. In fact, the BME is ad-
medium of refractive index, < n;. In using the HGCM the equately accurate especially for parabolic dielectric structures
lateral discretization derives from the application of the collocaince, following the excitation of the local fundamental mode,
tion method as described in Section Ill. For the longitudinal dighe field propagates by coupling predominantly to the local fun-
cretization an appropriate propagation step needs to be chodamental mode all along the length, [19].
according to the tapered structure of interest. Importantly noteWith reference to Fig. 7, the input field is specified as the
that the combination of the two discretization schemes may pfandamental local mode at the narrow end of the parabolic
duce significant numerical errors because the representationagfer. The results from the two different methods are plotted in
the longitudinally varying widthi(2), of the core layer dependsFig. 8. Note that there are two sets of HGCM computed results
critically on the spacing of the collocation points. To minimizén Fig. 8—one is obtained using the step refractive index while
computational errors it has been found to be most conveni¢né other uses the SG representation. The agreement between
to represent the abrupt lateral refractive index step by a cahe HGCM-SG and the BME is particularly good and this
tinuously varying Super-Gaussian (SG) profile, Appendix Ainderlines the importance of using a continuous (SG) represen-



1450 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 10, OCTOBER 2000

P = 600 Wim
]
4 90
I ”
I °
60
32 81 50 z (um)
40
30
20
1 1 1 1 1 10
10 5 0 -5 -10
Z X (um}
(@
<X +b P = 860 Wim
Fig. 9. Schematic of a slab waveguide with nonlinear substgdtas the 100
guiding layer width. g0
- 80
tation of the refractive index profile in further improving the S 70
accuracy of the HGCM computed results. For this example th B z" 2 )
CPU times required by the two methods are comparable bein i 43
244 s for the HGCM and 208 s for the BME. 0
5 20
V. NONLINEAR DIELECTRIC MEDIA . ) ‘ . g 10
Another class of problems that has been solved by the HGCN . ' s 0 - -0
is that of optical propagation in nonlinear media. In particular, x (um)
consider a Kerr-type nonlinearity where the dielectric distribu- (b)
tion, e(z, #), is defined as, [26] Fig. 10. Amplitude of a field propagating in a three-layer slab waveguide with
nonlinear substrate, calculated with the HGCM (= 99, wy, = 0.8 um) for
2) = e F 2|2 14) two different input powers per unit length: (& = 600 W/m, (b) P = 800
E(-T7 7) Elln(-T) + Ii(-T)| (.’L’, 7)| ( ) W/m; 2b = 2 pm, gy = (1.57)2,25 = (1.55)2, Mg = 1 M, K = 6.3771 -
10~1* m?/v2, longitudinal step= 0.05 um.
where
enn(z) (linear) built-in dielectric distribution; . ) o .
K(x) nonlinearity coefficient: until convergence on the fleld_ profile is ac_hleved.
F(z,z) propagating field in the structure. Consider the case of paraxial propagation along a three-layer

With the dielectric distribution as specified in (14), theélabwaveguide withanonlinear substrate, Fig. 9, [26]-{29]. The
paraxial wave equation (4) becomes nonlinear. To enable ffdlt-in linear dielectric distribution is

use of the HG expansion (4) is quasilinearised by means of g1 |z <b
the iteration scheme used for the computation. Thus, (14) is €1in (@) {52 I 17
written as

wheree; > £, are constant<b is the width of the core layer
(15) and the nonlinearity coefficient is

£y (, 7) = enn(x) + K(x) |F(,,,._1)(a:, %) g
indicating that in thewth iteration the dielectric distribu- w(z) = {l‘io z<—=b (18)
tion, e¢,y(x, 2), is related to the (known) field distribution, 0 x>-b

F,—1)(z, #), corresponding to the previous iteration. The field .

distribution for the first iteration is typically specified in termsWIth i @ constant paramete_r. . . .
All relevant parameters, given in the caption of Fig. 10, are

of the eigenmodes of the built-in linear structueg, (z). At )
each iteration loopy, the HGCM is used to solve the noWtaken from [26] to .aIIow for a useful comparison between the
linear paraxial wave equation m_ethod proposed in that reference _and_ the_HGCI\/_I. Results ob-
tained with the HGCM for propagation in this nonlinear wave-
) a2f(,v) y ) guide are presented in Fig. 10 and are found to be in good agree-
—fipo -t t {kgewy(@,2) —=p*} froy =0 (16)  ment with those in [26]. The CPU time required by the HGCM
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strongly depends on the input power since large input powers
imply reiterations to satisfy self-consistency. In this case the
CPU time was 4800 s for 800 mW/m and 3624 s for 600 mw/m 1]
input power.

Hence, by quasilinearising the problem, the HGCM has been2]
satisfactorily applied to solve also for nonlinear waveguide
problems. Although the approximation made with the quasi-lin- 3
earization needs to be carefully considered, particularly when
the nonlinear terms become dominant, the advantages of !
modest computational effort together with a straightforward
implementation make the HGCM-iteration technique very [5]
attractive.

(6]
VI. CONCLUSION

The Hermite—Gauss collocation method (HGCM) has beenl7]
extensively applied to a variety of field propagation problems [
which are encountered in typical present-day photonic deviceg
structures. Results computed by the HGCM have been shown
to be in excellent agreement with those from other methods dto!
solution. [11]

In particular, under the approximation of a quasilinearization
of the problem, the HGCM has been shown to be applicablg, ,
for the computation of paraxial propagation also in explicitly
nonlinear dielectric waveguides. This success provides further
confidence in the use of the HGCM-iteration scheme to analyz
active optical (semiconductor) devices, such as amplifiers and
lasers, where the implicit nonlinearities are due to the interaction
between the optical field and the charge carriers. Indeed, the v -g]
satility of the HGCM-iteration procedure for solving nonlinear
differential equations has been further substantiated by solvin
the carrier diffusion equation that is typically encountered in th
analysis of semiconductor optical devices [30].

APPENDIX A i
SUPERGAUSSIAN REFRACTIVE INDEX DISTRIBUTION

The use of a continuously varying refractive index distribu—[
tion greatly improves the results obtained by the HGCM. Specifi19]
ically, the structure to be analyzed can be conveniently described
by a super-Gaussian (SG) refractive index profile of the type [20]

T

n(z,2) = na + (ny — ng)exp{—% <@)} B1) 1]

where s is the SG exponential ant(z) the longitudinally
varying width of the guiding layer. For example, for a linear
taper

[22]

b(z) = by +1- 2 B2 =
(24]
while for a parabolic taper
(25]
b(z) = /b3 +t- 2 (B3)
[26]

wheret is the tapering parameter abgl= b(z = 0).

The continuous SG refractive index distribution (B1) is very
sharp fors > 10 so that it quite satisfactorily represents a step-
index distribution.

[27]
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