2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Rayleigh Scattering Reduction Method for Silica-Based Optical Fiber

Kyozo Tsujikawa, Katsusuke Tajima and Masaharu Ohashi Senior Member, IEEE

Page 1528.

Abstract:

The effect of the thermal treatment of silica-based glasses and glass fibers on their Rayleigh scattering is investigated experimentally. The Rayleigh scattering coefficients of bulk glasses are found to be increased 5-10% by heating them to 1800°C because the density fluctuation is in proportion to their fictive temperature. Based on these results, we propose a method for reducing the Rayleigh scattering losses of silica-based optical fibers by drawing them slowly at low temperatures. We used this method to obtain a GeO 2 doped silica core single-mode fiber with a minimum loss of 0.16 dB/km at 1.55 µm. As a result, we confirmed that the reduction in the fictive temperature of silica-based glasses and glass fibers reduces their Rayleigh scattering.

References

  1. T. Izawa, S. Sudo and F. Hanawa, "Continuous fabrication process for high-silica fiber preforms", Trans. IEICE Japan, vol. E62, no. 11, pp.  779-785, 1979.
  2. H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Ito, Y. Asano and S. Tanaka, "Transmission characteristics and reliability of pure-SiO2 -core single-mode fibers", J. Lightwave Technol., vol. LT-4, pp.  1144-1150, Aug.   1986.
  3. M. Tateda, M. Ohashi, K. Tajima and K. Shiraki, "Design of viscosity matched optical fibers", Photon. Technol. Lett., vol. 4, pp.  1023-1025, 1992.
  4. M. Ohashi, M. Tateda, K. Shiraki and K. Tajima, "Imperfection loss reduction in viscosity-matched optical fibers", Photon. Technol. Lett., vol. 5, pp.  812-814, 1993.
  5. K. Tajima, M. Ohashi, K. Shiraki, M. Tateda and S. Shibata, "Low Rayleigh scattering P2O5-F-SiO2 glasses", J. Lightwave. Technol., vol. 10, pp.  1532-1535, 1992.
  6. K. Tsujikawa, M. Ohashi, K. Shiraki and M. Tateda, "Scattering property of F and GeO 2 codoped silica glasses", Electron. Lett., vol. 30, pp.  351-352, 1994.
  7. K. Tsujikawa, M. Ohashi, K. Shiraki and M. Tateda, "Effect of thermal treatment on Rayleigh scattering in silica-based glasses", Electron. Lett., vol. 31, pp.  1940-1941,  1995.
  8. K. Tajima and Y. Miyajima, "Low-loss optical fibers realized by reduction of Rayleigh scattering loss", in Dig. OFC'98, 1998.
  9. S. Sakaguchi and S. Todoroki, "Rayleigh scattering of silica core optical fiber after heat treatment", Appl. Opt., vol. 37, pp.  7708 -7711, 1998.
  10. A. Agarwal, K. M. Davis and M. Tomozawa, "A simple IR spectroscopic method for determining fictive temperature of silica glasses", J. Non-Cryst. Solids , vol. 185, pp.  191-198, 1995.
  11. M. E. Lines, "Scattering losses in optic fiber materials. I. A new parametrization", J. Appl. Phys., vol. 55, pp.  4052-4057, 1984.
  12. D. A. Pinnow, T. C. Rich, F. W. Ostermayer and J. M. Didomerico, "Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials", Appl. Phys. Lett., vol. 10, pp.  527-529, 1973.
  13. I. V. Pevnitskii and V. Kh. Khalilov, "Light scattering in vitreous silica", Sov. J. Glass Phys. Chem., vol. 15, pp.  246-250, 1989.
  14. S. Sakaguchi, S. Todoroki and T. Murata, "Rayleigh scattering in silica glass with heat treatment", J. Non-Cryst. Solids, vol. 220, pp.  178-186, 1997.
  15. S. Sakaguchi and S. Todoroki, "Viscosity of silica core optical fiber", J. Non-Cryst. Solids, vol. 244, pp.  232-237, 1999.
  16. K. Shiraki and M. Ohashi, "Scattering property of fluorine-doped silica glasses", Electron. Lett., vol. 28, pp.  1565-1566, 1992.
  17. K. Tajima, M. Tateda and M. Ohashi, "Viscosity of GeO2 doped silica glass", J. Lightwave. Technol., vol. 12, pp.  411-414, 1994.
  18. Y. L. Peng, A. Agarwal, M. Tomozawa and T. A. Blanchet, "Radial distribution of fictive temperatures in silica optical fibers", J. Non-Cryst. Solids, vol. 2170, pp.  272-277, 1997.