2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Properties of the Slab Modes in Photonic Crystal Optical Waveguides

Ali Adibi, Yong Xu, Reginald K. Lee, Amnon Yariv, Life Fellow, IEEE and Axel Scherer

Page 1554.

Abstract:

We show that by placing a slab of semiconductor material between two photonic bandgap (PBG) mirrors, waveguide modes at frequencies out of the PBG can be obtained. These modes are similar to the modes of a conventional dielectric slab waveguide. Using these modes, we can obtain very good coupling between a PBG waveguide and a dielectric slab waveguide with similar slab properties. We discuss the properties of these slab modes and outline the guideline for the optimization of the PBG waveguides based on these properties.

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid state physics and electronics", Phys. Rev. Lett., vol. 58, pp.  2059-2062,  1987.
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices", Phys. Rev. Lett., vol. 58, pp.  2486-2489, 1987.
  3. P. Yeh and A. Yariv, "Bragg reflection waveguides", Opt. Commun. , vol. 19, pp.  427-430, 1976.
  4. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides", Phys. Rev. Lett., vol. 77, pp.  3787-3790,  1996.
  5. S. Lin, E. Chow, V. Hietala, P. R. Villeneuve and J. D. Joannopoulos, "Experimental demonstration of guiding and bending electromagnetic waves in a photonic crystal", Science, vol. 282, pp.  274-276, 1998.
  6. T. Baba, N. Fukaya and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends", Electron. Lett., vol. 35, pp.  654-655,  1999.
  7. M. Tokushima, H. Kosaka, A. Tomita and H. Yamada, "Lightwave propagation through a 120 degrees sharply bent single-line-defect photonic crystal waveguide", Appl. Phys. Lett., vol. 76, pp.  952-954, 2000.
  8. N. Stefanou and A. Modinos, "Impurity bands in photonic insulators", Phys. Rev. B, vol. 57, pp.  12 127-12133, 1998.
  9. A. Yariv, Y. Xu, R. K. Lee and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis", Opt. Lett., vol. 24, pp.  711-713, 1999.
  10. M. D. B. Charlton, G. J. Parker and M. E. Zoorob, "Recent developments in the design and fabrication of visible photonic band gap waveguide devices", J. Mater. Sci.-Mater. El., vol. 10, pp.  429-440, 1999.
  11. I. El-Kady, M. M. Sigalas, R. Biswas and K. M. Ho, "Dielectric waveguides in two-dimensional photonic bandgap materials", J. Lightwave Technol., vol. 17, pp.  2042-2049, 1999.
  12. A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal", Appl. Phys. Lett., vol. 75, pp.  3739-3741,  1999.
  13. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss and R. M. D. L. Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides", Phys. Rev. B, vol. 60, pp.  R16255-R16258, 1999.
  14. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud and C. Jouanin, "Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate", Appl. Phys. Lett., vol. 76, pp.  532-534, 2000.
  15. S. Kuchinsky, D. C. Allan, N. F. Borrelli and J. C. Cotteverte, "3D localization in a channel waveguide in a photonic crystal with 2D periodicity", Opt. Commun., vol. 175, pp.  147-152, 2000.
  16. A. Adibi, Y. Xu, R. K. Lee, A. Yariv and A. Scherer, "Guiding mechanism in dielectic-core crystal optical waveguides", Phys. Rev. B, 2000.
  17. P. S. J. Russell, "Recent progree in photonic crystal fibers", in OFC 2000, 2000.
  18. J. C. Knight, J. Broeng, T. A. Birks and P. S. J. Russel, "Photonic band cap guidance in optical fibers", Science, vol. 282, pp.  1476-1478, 1998.
  19. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-307, 1966.
  20. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp.  185-200, 1994.
  21. D. E. Merewether, R. Fisher and F. W. Smith, "On implementing a numeric Huygen's source scheme in a finite difference program to illuminate scattering bodies", IEEE Trans. Nucl. Sci., vol. NS-27, p.  1829, 1980.
  22. C. T. Chan, Q. L. Yu and K. M. Ho, "Order-N spectral method for electromagnetic-waves", Phys. Rev. B, vol. 51, pp.  16 635-16642, 1995.
  23. Y. Xu, J. S. Vuckovic, R. K. Lee, O. J. Painter, A. Scherer and A. Yariv, "Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity", J. Opt. Soc. Amer. B, vol. 16, pp.  465-474, 1999.
  24. Y. Xu, R. K. Lee and A. Yariv, "Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide", J. Opt. Soc. Amer. B, vol. 17, pp.  387-400, 2000.
  25. A. Yariv, Optical Electronics in Modern Communications, New York: Oxford Univ. Press, 1996.
  26. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, NJ: Princeton Univ. Press, 1995.