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Model of Temperature Dependence for Gain Shape
of Erbium-Doped Fiber Amplifier

Maxim Bolshtyansky, Paul Wysocki, and Nicholas Conti

Abstract—The problem of modeling the temperature depen-
dence of erbium-doped fiber amplifier (EDFAs) is important
for multichannel optical WDM systems. A physical model is
presented in this paper, which could be used to predict the gain
change under temperature variations for such systems. Some
of the input parameters for the model are the erbium energy
sublevel density, excitation coefficients from lower sublevels to
upper sublevels of erbium ions, and electron distribution over
energy levels. It is difficult to measure these parameters. In order
to use the model for gain shape calculations, some simplifications
are demonstrated. These simplifications lead to two numerical
models, which are shown to be consistent with experimental data
with reasonable accuracy, and are based only on two spectral
measurements for different temperatures. Both numerical models
were tested for the signal band and the 980 nm pump band of a
typical erbium-doped fiber.

Index Terms—McCumber’s relation, optical fiber amplification,
optical fiber thermal factors.

I. INTRODUCTION

I N a typical WDM system, most components exhibit some
temperature dependence in loss shape and/or magnitude.

Early systems often had enough margin in performance
that such changes could be tolerated. However, as systems
evolve toward more wavelengths, higher bit rates and greater
distances, such temperature dependencies are no longer ac-
ceptable. Rare-earth ions such as erbium in a silica host are
generally considered to be insensitive to temperature. However,
in a typical erbium-doped fiber amplifier (EDFA), the erbium
provides between 15 and 45 dB of gain. The erbium fiber gain
compensates for the losses of components placed within the
EDFA and also provides the net gain of the amplifier. A 1%
change in the gain coefficient of the EDF with temperature
translates to a 0.3 dB gain difference in a typical EDFA with
30 dB of erbium gain. This change is a significant part of the
available margin in an EDFA required to achieve flatness within
1 dB. Hence, the temperature dependence of the erbium ions
is an important part of the overall temperature dependence of
an EDFA. While several authors have recognized the presence
and significance of this dependence [1]–[4], no general rule for
predicting the temperature dependence of a particular EDFA
has been presented.

Linear extrapolation techniques have been used by several au-
thors [3], [4] to model the temperature dependence of EDFAs.
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While this approach can be used for a small temperature vari-
ation, a better approach is needed in order to achieve a good
accuracy for a wide temperature range. Such an approach based
on the physical model will be developed below.

II. THEORETICAL MODEL

Before going into a description of the energy levels of an er-
bium ion in a glass host, consider first a simple system with
discrete levels. The levels of this system can be degenerate. Let

be the concentration of active ions in the media andbe the
probability of electron to be at level. By definition of proba-
bility

(1)

If a plane wave with frequency and intensity propagates
along the -axis through the medium, its evolution can be de-
scribed by, see, for example, [5]

(2)

where is the gain coefficient defined by

(3)

Here is the stimulated emission cross section,is the sta-
tistical weight of the th level, and the electron transition occurs
between the upper level with and the lower level with

, separated by an energy difference .
If several energy levels are separated by equal distance,

then a summation over all such levels is required

(4)

The initial and terminal energy manifolds that produce gain
in an EDFA consist of seven and eight broadened levels, respec-
tively. Each level can be further divided into vibration sublevels.
In this paper we use a continuous level density approximation to
describe each erbium ion manifold. The shape of the level den-
sity is not expected to be a function of temperature. Hence, the
temperature dependence of an EDF is mainly due to the varia-
tion in the occupation probability density within each manifold.
In particular, the relative occupation of two levels in thermal
equilibrium follows Boltzmann’s law:

(5)

where is the temperature in degrees Kelvin andis Boltz-
mann’s constant. The most general form of the function
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which satisfies condition (5) is

(6)

Here is an arbitrary function of temperature, which will be
defined later by satisfying a normalization condition. Because
each manifold is of finite extent, we can apply the same funda-
mental principal as for (1) that the sum of all occupation prob-
abilities for all states of the manifold must equal one (assuming
the ion is excited to manifold m). Using that rule and defining
the lowest and highest energy levels in the manifold m asand

(7)

where is the energy density of states. This equation should
be satisfied for all temperaturesand is equivalent to equation
(1) for the continuous level density case. Function is
defined by this equation.

Suppose that there are two identical manifoldand , that
is for some energy range, and is the
distance between those manifolds. Then condition (7) can be
satisfied if

(8)

(9)

and

(10)

Of course, the erbium ion level density is different for dif-
ferent manifolds and, as a result, (10) is not valid; but, we still
would like to use (8) and (9) for definitions of and . This
is especially valuable in the case that the level densities for the
upper and lower manifolds are not very different, and functions

and are similar.
Equation (4) can be transformed for a continuous erbium ion

spectrum by changing the summation into an integration over,
substituting for and substituting
for :

(11)

When only the upper manifold is occupied, the equation yields

(12)

For occupied low manifold, (11) gives

(13)

Here and stand for distributions for upper and lower mani-
fold occupied, respectively. Substitution of (8) and (9) into (12)
and (13) gives expression for absorption and emission coeffi-
cients and

(14)

(15)

This set of equations is the basis of our numerical model and
will be discussed later. Knowledge of the temperature depen-
dence of and is very important for calculation of amplifier
performance, because the gain of an erbium-doped fiber can be
expressed via these parameters [6]

(16)

where is the background loss of the fiber and is the
local inversion of the erbium ions (fraction of ions in the first
excited state).

Comparison of (14) and (15) gives

(17)

This expression can be rewritten as

(18)

(19)

Because of logarithmic dependence in (19), could be
considered constant for moderate change in temperature. More-
over for similar manifold structure is close to . Equa-
tion (18) is known in the literature as McCumber’s relation
[7]–[9], though it was derived here using a different method and
assumptions. This relation has been checked experimentally in
the range from 40 C up to 80C. The experimental measure-
ments were unable to find any temperature dependence of
on .

It should be mentioned here that the derivations above were
done under the assumption that all Er ions are identical, that is
that they have identical energy level density and stimu-
lated emission cross section. In reality this is not completely
true, because each Er ion can have a slightly different neighbor-
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hood and thus all equations should be averaged over different
ions. However experimental results show that this is a small cor-
rection and one can still use McCumber’s relation (18). As we
will show later, the numerical model based on (15) also gives
good accuracy.

III. N UMERICAL MODELS

In this section we will primary discuss how to use equation
(14) for “real life” calculations. The general procedure is to first
calculate for a given temperature using (14), then to find
using McCumber’s relation (18), and finally to obtain gain
using (16) for a known inversion and background loss. However,
functions that are needed for absorption calculation include,
the cross section, and the level density. These are very hard
or impossible to measure or calculate. Hence big simplifications
are needed in order to use the formula.

A first simplification is in the calculation of . We suggest
assuming that in the normalization condition (7) the level den-
sity is constant for and zero otherwise. We use
here notation instead of to show that we deal with the
lower manifold. Because the results of the computation should
not depend on the location of the energy reference level, one can
put . Taking the limit of one can find that

(20)

where is some constant. A second suggestion is to substitute
integration in (14) by a finite summation. Moreover, because
of the relatively short temperature range of interest (about 100
C) we would like to keep only two terms in that sum! Thus the

whole expression can be replaced by a very simple sum

(21)

where and are some functions of wavelength, but
not of temperature . They are related somehow to cross section

and level density , but this relation is not important now
because we define those functions from actual measurements.

Given two different spectra and at two different
temperatures and , one can derive the following system of
equations from (21):

(22)

where . Thus, and can be easily calcu-
lated

(23)

and then they can be used in (21) for spectrum evaluation for
various temperatures. In addition to and , which are
already found, (21) contains two parametersand , which
should be defined. Intuitively, one should takeand above

and below the temperature region of interest. We made a numer-
ical optimization of these parameters in order to best-fit exper-
imental dependencies. The optimumand are to be found
90K and 650K.

It is interesting to note that for the long wavelength part of the
spectrum, the second (high temperature) term in (21) dominates.
This means that we can neglect the first term for this region. In
fact, we can even suggest dropping the preexponential multiplier
to get a different kind of approximation

(24)

where and are some functions to be defined
from two spectra at different temperatures. The fact that we used
the function instead of just the constant helps to
improve the precision for a wider wavelength range and com-
pensates for neglecting the first term in equation (21) and for
dropping the 1/ preexponential multiplier. A similar formula
can be used for a approximation

(25)

The fitting parameters and are both tem-
perature independent and can be interpreted as the absorption
and gain at infinite temperature when all energy levels of each
manifold are equally occupied. The parameters and
are expected to capture the thermal occupation probability of
the initial energy level for the transition at a given wavelength.
Moreover, if McCumber’s relation (18) holds and does not
depend on temperature, then

(26)

(27)

Even though the simplified model described by (24) is not as
good as the model described by (21) for the short wavelength
range, it has its own advantages. First of all, it is simpler, and
it does not need two additional parametersand . Second,
it is easier to use this model for different erbium doped fibers,
when only one spectrum is known for a certain temperature.
Namely, for different fiber, one can correct in such a
way that (24) gives correct spectrum at that temperature for the
same as for our initial fiber. In this way spectra at other
temperatures can be estimated. Spectral dependencies ofcan
be estimated by a similar technique.

IV. FITTING RESULTS

In order to compare the technique with experimental data, we
used a typical high aluminum (12 M% Al) silica-based EDF.
The absorption and emission spectra were measured via cutback
method at temperatures , 0, 20, 40, 60, 80C for both
signal band (1450–1650 nm) and pump band (900–1050 nm).
The spectra at 40 C and at 80 C were used as input spectra
for (23). The experimental and fitting spectra of absorption for
the signal band are shown in Fig. 1. Only spectra at40, 0,
40, and 80 C are shown for better clarity. The experimental
curves are solid and fit curves are dotted. The fit is so good that
it is practically not possible to see the difference between the
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Fig. 1. Measured absorption spectrums (solid lines) and fitting spectrums
(dotted lines) at temperatures�40, 0, 40, and 80C.

fit and the measured data. Fig. 2 shows part of the spectrums of
the Fig. 1 under greater magnification. In this figure all seven
spectra are shown. You can see that fit is really good, and it is
within experimental measurement error. The spectrum fit at40
and 80 C is perfect because these spectrums were used in (23).

Fig. 3 shows the functions and used for the fit-
ting of Fig. 1. Simple physical interpretation is possible for
those functions. Since (21) is a substitution for (14),can be
treated as the absorption provided by the low temperature por-
tion of the electron distribution within the erbium ground-state
manifold, and can represent the high temperature portion.
Both and are found to be positive functions, and
their behavior is reasonable for low-temperature and high-tem-
perature excited electrons.

As we have mentioned before, the simplified approximation
(24) works well for the long wavelength region of the spectrum
but is not as precise as (21) for wavelengths shorter than 1540
nm. To demonstrate this we show in Fig. 4 the same region as
for Fig. 2, with the fit using the simplified approximation (21).
Again the approximation guaranteed that the spectra at40 and
at 80 C were exactly fit. The use of different fitting functions
for and can improve the accuracy of the simpli-
fied approach if we are interesting only in a40–60 C temper-
ature range. Fig. 4(b) shows the simplified fit when the20 C
and 40 C spectra were used for and calculation
instead of 40 C and 80C pair. You can see much better fit
now.

Fig. 5 shows the measured gain coefficient for the same fiber
over several temperatures. For simplicity of display only the end
temperatures are labeled in Fig. 5. Again, only spectra at40, 0,
40, and 80 C are shown for better clarity. The gain coefficients
of Fig. 5 represent the gain measured for a short section of EDF
pumped by over 300 mW at 980 nm, as interpreted from the re-
sultant ASE spectra measured. As such, they show the existence
of signal-band ESA above 1600 nm and also include losses pro-
duced by fiber scattering and uninverted erbium ions. The sim-
plified fit is reasonably good over this temperature range. The
greatest errors occur at the short and long wavelengths in the

Fig. 2. Part of absorption spectrums (solid lines) and fitting spectrums
(dotted lines) from the Fig. 1 under grater magnifications. New measured and
fitting spectrums at temperature�20, 20, and 60 C are added. Numbers near
spectrums shows temperatures of the fiber at which spectrums were taken.

Fig. 3. FunctionsF andF used for fitting procedure.

gain parameter plots. The small value of gain in these wave-
length ranges makes measurements difficult over temperature.
At short wavelengths, complete inversion is critical for a good
measurement and may not have been achieved in these measure-
ments. At long wavelengths, the presence of signal band ESA is
a complication.

The exponential fitting parameters used are shown in Fig. 6.
The dashed line is the exponential coefficient for the
absorption while the dotted line is the exponential coefficient

for the gain. We would like to stress that these coeffi-
cients were obtained from independent experimental measure-
ments of emission and absorption spectra at different temper-
atures, and were used in fitting procedure in Figs. 4(b) and 5.
The solid line in Fig. 6 shows the exponential coefficient ,
which was calculated using formula (27). The good overlap of
the solid and dotted lines shows the validity of McCumber re-
lation (18) and the absence of temperature dependence ofin
(18) and (19). In fact, the greatest in accuracy is believed to be
in the gain measurements that generated the dotted curve. The
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(a)

(b)

Fig. 4. Two examples of simplified fit. Solid lines are measured absorption
spectrums, dotted lines are fitting spectrums. (a) Absorption spectrums
measured at�40 and 80 C were used for fitting parameters calculation;
(b) Absorption spectrums measured at�20 and 40C were used for fitting
parameters calculation.

fact that this curve is not smooth points to measurement error
and not to an error in the theory.

Fig. 7 shows fitting parameter plots and .
Again, according to (26), which is a result of McCumber re-
lation (18), the plots are overlapping with very good accuracy.
These plots both represent the summation of all transitions (ei-
ther upward or downward) when all sublevels of the manifold
involved are equally occupied. Hence, this plot shows the rela-
tive strengths of the transitions participating at each wavelength
when the temperature dependence of the level occupation is re-
moved.

Both the original model of (21) and the simplified model of
(25) show much better precision in comparison with the linear
fit suggested in [3], [4]. For example, at 1550 nm the model error
for 20 C spectra was 0.25% for the original model, 0.34% for
the simplified model, and 1.7% for a linear fit. Again, the same
pair of spectra (at 40 and 80 C) were used in order to calculate

Fig. 5. Measured emission spectrums (solid lines) and simplified fitting
spectrums (dotted lines) at temperatures�40, 0, 40, and 80C.

Fig. 6. Fit function� (�)=k, dashed line; and two versions of fit function
� (�)=k, solid and dotted lines.

Fig. 7. Fit functions�(�; 1), dotted line, andg (�; 1), solid line.

fitting parameters for all models. As one can see, the error of the
linear fit is an order of magnitude higher than the error of other
models described here. This difference is expected to be even
more dramatic for wider temperature ranges. As it was men-
tioned before, a simplified model gives excellent accuracy for
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Fig. 8. Measured absorption spectrums (solid lines) and fitting spectrums
(dotted lines) for erbium pump band at temperatures�40, 0, 40, and 80C.

Fig. 9. FunctionsF andF used for fitting procedure for erbium pump band.

wavelengths larger than 1540 nm, and only the original model
of (21) can be used in order to achieve the best precision for the
other wavelengths.

To complete the picture of the temperature dependence of an
EDF, the temperature dependence of the ground-state absorp-
tion near 980 nm has been measured. The data measured by a
standard cutback technique for the fiber treated here is shown
in Fig. 8 (solid lines). The 980 nm pump band parameters are
noisier than those measured in the 1550 nm band because a
much weaker white light source was used for the 980 nm mea-
surements. The errors seen below 950 nm are present because
the fiber cutoff wavelength is just below 950 nm, which lead to
excitation of nonfundamental modes in the fiber. In most of the
wavelength range typically used for EDFA pumping, the pump
absorption drops as the temperature is increased. Operation at
high temperatures is therefore expected to produce a penalty in
noise figure for many EDFA designs.

The dotted lines in Fig. 8 represent the fit using (21). The fit
is excellent for this data. As in case of the signal band, the mea-
sured absorption spectra at40 C and 80 C were input pa-

Fig. 10. Part of the measured absorption spectrums (solid lines) and
simplified fitting spectrums (dotted lines) for erbium pump band at
temperatures�40 ; �20, 0, 20, 40, 60, and 80C.

Fig. 11. Predicted gain shape dependence of an EDFA on temperature. EDFA
is ideally filtered to 25 dB flat gain from 1528–1563 nm atT = 20C. EDFA
operates in constant average gain mode (pump adjusts to keep average gain
across spectrum constant).

rameters for equation (23). Obtained functions and
are shown in Fig. 9. A simplified fit in the form of equation (24)
also works well here, although as in the signal band, the long
wavelength band is fit better than the short wavelength band.
Fig. 10 illustrates this statement by showing part of the fitting
curves under greater magnification. Still, the fit is pretty good.

The same logic that was applied above to generate the fitting
form of either (21) or (24) should also apply to other rare-earth
ions. The authors have checked this by measuring and fitting the
absorption of Ytterbium in the 800–1200 nm range. The fit, not
shown here, is excellent across the entire band. The gain param-
eter of Yb was not fit because it is much more difficult to mea-
sure precisely than the erbium gain coefficient. It is possible that
in other rare-earths, the fit might not be as good. This might es-
pecially be true of more inhomogeneously broadened ions such
as Neodymium. In this case, equation (24) might apply for sub-
sets of ions but not across all ions, and more terms might be
needed in (21). This is an interested area of further research.
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Fig. 12. @g=@T for fixed g = 3 dB/m at different wavelengths. The wavelength numbers are shown near correspondent plots.

V. THE USE OF THEMODELS

The excellent fit observed to the form of (21) or (24) sim-
plifies computer modeling of temperature dependent gain in an
EDFA. A single room temperature measurement of the gain and
absorption coefficients of an EDF, combined with the fitting co-
efficients, is all that is required. From this data, accurate gain and
absorption coefficients can be derived at any temperature. As ex-
plained above, these coefficients are expected to capture the vast
majority of the temperature dependence of an EDFA. A simple
model can then easily compute EDFA performance at any tem-
perature. Of course, the coefficients shown above are expected
to accurately represent the dependence of EDF spectra only for
fibers of similar compositions. However, the authors have only
observed minor differences for a variety of silica-based, alu-
minum-codoped EDFs with a wide range of germanium and
aluminum levels. This might be expected since the spectrum it-
self is only slowly dependent on the absolute level of aluminum
present. Confirmation of this generalization will be the focus
of future work. Even if the data shown here does not gener-
alize to another host, the method certainly does. Hence, at worst
case, capturing the temperature dependence of an EDFA in a dif-
ferent host only requires the measurement of parameters at two
temperatures. In the simplest case, McCumber’s relation can be
used to compute the gain coefficient from the absorption coef-
ficient so that only absorption at two temperatures needs to be
measured to predict EDFA performance at all temperatures.

In reality, the temperature dependence of the spectrum of an
EDFA can often be explored without even running a complete
computer model. In particular, many EDFAs operate in such a
manner that pump power is varied to set the gain to the desired
level. In this case, the fact that average inversion is tempera-
ture dependent is irrelevant to the spectrum produced. The pump
power must be adequate to achieve the desired gain at all tem-
peratures. Then the spectrum can be computed using (16) and
the known temperature dependencies. The average inversion can
be determined such that the required gain is achieved at each
temperature. The only effect neglected by this approach is spec-
tral hole-burning (SHB). However, assuming that an EDFA is

filtered to flatness at the design temperature, SHB is accounted
for in the filter. Since the SHB is a relatively small effect, most
of the temperature dependence should be captured in a homo-
geneous treatment.

An example of this sort of approach is illustrated in Fig. 11. In
this case, an ideal filter was assumed at 20C to perfectly flatten
a 25 dB EDFA between 1528 nm and 1563 nm. The EDFA was
assumed to maintain the same constant output power (same av-
erage gain) by controlling pump power for all temperatures. The
result ofFig.11 is independent ofEDFA design except for the rel-
atively small effect of SHB. Fig. 11 clearly shows that an EDFA
cannot be expected to maintain flatness over a broad spectrum
over a wide temperature range. The error is greatest on the edge
of the spectrum and is not linear. Reducing the temperature by a
certainnumberofdegreeshasagreatereffect thanraisingthetem-
perature.This isexpectedfromtheBoltzmann-likeformobserved
for the emission and absorption coefficients since this form has a
smaller derivative the higher the temperature.

The knowledge of the analytical dependence of the gain
in (16) can be used to find optimum parame-

ters for an amplifier. For example, if the amplifier is being
designed to maintain gain at a certain wavelength for various
temperatures, then one can find optimum wavelength, at which
gain is fixed, in such a way that the temperature variation of
the gain spectrum is minimal. This can be done by finding
derivative for fixed at certain wavelength (3 dB/m for
our example), where temperature dependence ofis taking
in the form of (21) and is found via McCumber relation
(18). The resulting equation is too complex to provide here, but
some results are shown in Fig. 12. The numbers near the plots
indicate the wavelength at which gain has been fixed. One can
easily judge at what wavelength the gain should be fixed in
order to achieve minimum gain variation within the required
wavelength range.

VI. CONCLUSION

We have developed a simple theory to describe the tempera-
ture dependence of emission and absorption coefficients for er-
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bium-doped fibers. McCumber’s relation has been rederived in
the view of temperature dependence. The main assumption of
the theory is that the temperature changes are due to the depen-
dence of electron distribution over erbium sub levels on fiber
temperature. Further simplifications are done to build two nu-
merical models. The actual measurements show that both sug-
gested approximations (21) and (24) work with good accuracy
for both signal and pump bands. Each approximation has its
own advantages either in precision or in ease of use. In con-
junction with McCumber’s relation, the approaches described
greatly simplify the computer modeling of EDFAs over temper-
ature while providing unique insight into the physical processes
involved.
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