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Evaluating the Error Probability in Lightwave
Systems with Chromatic Dispersion, Arbitrary Pulse
Shape and Pre- and Postdetection Filtering

Enrico ForestietiMember, IEEE

Abstract—A novel approach to analytically evaluate the bit bit error probability in preamplified direct detection systems,
error probability in optically preamplified direct-detection sys-  \hich aims at filling some of the remaining gaps and giving

tems is presented, which can take into account the effects of pulse ; ;
shaping, chirping, filtering at the transmitter and the receiver, accurate results. This approach employs the moment generating

both pre- and postdetection, chromatic dispersion, and ASE noise. function of the output and the saddle point integration method
The method is computationally very fast in that the saddle point and in this respect is similar to that in [12], but overcomes
integration method for solving the resulting line integral of a its computational difficulties (a set of differential equations
particular moment generating function is adopted. A closed-form ¢ the Kalman—Bucy type is to be numerically solved) and
approximation for the bit error probability is also provided, which L L1 L . .
is within 0.01 dB from the exact numerical results. limitations by considering a periodic input signal instead that
the completely arbitrary one there considered.
This paper is organized as follows. In Section Il the model
used in the analysis is presented. In Section Il it is shown how
HE PERFORMANCE evaluation in terms of bit errorsignal and noise may be expanded to take into account arbitrary
probability of a direct-detection lightwave communicatiodiltering. The bit error probability is evaluated in Section IV
systemwithan optical preamplifier has received much attentiorifirough the saddle point integration method and a closed-form
the recentyears (see [1]-[11] and references cited therein). M&agldle point approximation is provided. Numerical results are
of these works use approximations or simplified assumptior¥€esented in Section V to show the effectiveness of the proposed
such as the use of ideal NRZ formats [1]-[3], [5], [7], [L1method.
and/orad hoccombinations of pre- and postdetection filters,
e.g., short-term integrator and discrete-time integrator [3], [7],
or wide-band ideal filter and short-term integrator [1], [2], [4],
[5], [9]. More general approaches are presented in [6], [8]-[10], The system model is shown in Fig. 1. The optical signal gen-
but the method proposed in [6] is of difficult computabilityefated by a laser modulator is launched in a singlemode fiber
and neglects the intersymbol interference effects, in [8]_[gperated in linear regime. At the receiver end it is amplified by
the optical filter must be ideal with wide band, while the flat gainG erbium-doped fiber amplifier which adds ampli-
results in [10] hold only for a singly resonant type opticafl'ed sp(_)ntan_eous emission (_ASE) noise anq then the amplifier
filter and the derived moment generating function is onl§utPut is optically filtered prior photodetection. The photode-
used to find mean and variance of the decision sample wh ggtion process and. the foIIowmg electronic C|rcu|tr)_/ will _add
statistics are arbitrarily assumed to be Gaussian. If the amplifgtot @nd thermal noise, respectively. The detected signal is then
spontaneous noise dominates the receiver shot and therlf§—Pass filtered and sampled. o _ _
noises, the system performance will be identical to that of | e ASE noise is modeled as additive white Gaussian
a radio system with square law detection and, to the autHs'se (AWGN) with one sided power spectral density

knowledge, the most comprehensive work in this case is tHat® — nsp(G — 1)hu in each polarization [1] where,, > 1

in [12] where, however, it is required that the input spectréjntehre s%onliiir;]eort:is r?_ m;ﬁ'grr:] pl‘i’j;ir:rz]?ktlzr Abggi;?see E)irc])(r)rg?r?ates
densities are of rational form and the post-detection filter ha gy- BY 9 high-g P

31 : : .
o . the shot and thermal noises generated in the receiver [1] and
non negative impulse response. So, to our knowledge, there i o, they can be neglected. Then, in the absence of fiber

theory available which accurately takes into account arbitrar nlinearities and polarization dispersion, assuming there is

signal pulse shape, chirping, filtering at the transmitter and t % ASE in the orthogonal polarization, the direct detection

receiver, both pre- and postdetection, and chrpmatic dispersi twave system has the low-pass equivalent model shown in
We present here a novel approach to analytically evaluate {3g 5 ‘Here;. (1) is the low-pass equivalent (also referred to as

complex envelope) of the transmitted signal as defined in [13],
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Fig. 1. System model.
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Fig. 2. Equivalent low-pass system model.
H;(f), Ho(f)andHg(f) are the (low-pass equivalent) transfer [ll. SIGNAL AND NOISE EXPANSIONS
functions of fiber and optical and postdetection filters, respec-

As regards of the signal(¢), given aV-bit sequencga,, } to

tively. . be transmitted and the elementary puylég, we take it to be the

In the_ absence of nonlinearities an_d polarization d'_Spers'oébriodic repetition, with periodvT’, of the actual PAM signal
the equivalent low-pass transfer function of a lossless linear dis-

T . X No1
persive singlemode fiber of lengfhcan be written agf (f) = .

T ; d(t) = E ot —iT 5
I8 (DL whered (f) £ B(f +v) andB(f) is the propagation ® 24P (¢ =4T) ©®)

constant. Taking the Taylor series expansiofi@f), neglecting i.e.,

the constant and linear terms fn(as they do not introduce dis- -

tortion) and the dispersion terms of order greater than two, the .

fiber can be modeled as a bandpass filter whose transfer function =(t) = Z d(t = nNT). ©6)

has flat amplitude response and quadratic group delay inside the

signal bandwidth and is zero outside. This assumption is vaWdhen NV is sufficiently large,z(t) in (6) is a pseudorandom

when the signal bandwidth is narrow with respect to the valgégnal which allows for mathematical tractability while re-

of the optical carrier frequency. taining physical properties close to reality. Moreover, an
Then, inside the signal bandwidth, with very good approx@ppropriate choice of the sequengs, }, such as a de Bruijn

mation the equivalent low-pass transfer function of the dispegequence [15], allows us to take easily into account the effects
sive fiber can be taken to be of intersymbol interference. Due to its periodicityt) may be

expanded in Fourier series

n=—oo

Hi(f)= o —Il(1/2) 807 +(1/6) Bw" ] (2) x(t) = Z 20/ 2TEINT @
f=—00
wherew = 27 f for shortness and where
1 0\ =
2 = ___P{— - —j27lm/N e}
B2-2p ®) YCTNT <NT> Zo“ e ®)
27 m=

A2 2 and P(f) is the Fourier transform qf(¢).
A3 = <%) (2AD + D'X%). (4) As regards of noise, observe that when the overall impulse
response of the pre- and postdetection filters at the receiver
In the expressions aboveis the light speedy is the optical has a finite time duration, say equal 1@, then the value of
wavelength corresponding to the carrier frequerByjs the the sampley(t;) is solely determined by the values that the
fiber chromatic dispersion parameteriafusually provided in input waveform of the optical filter takes on in the time interval
ps/(kmnm)] andD’ = dD/dX evaluated at\, too. However, (¢,—Tp, t). Theoretical filters may not have finite duration im-
notice that the parametgf, is non negligible only if 35/35] < pulse responses, but from a practical point of viewesl filters
R, [14] where R, is the bit rate, i.e. ifD’ = 2((xc/AR,) — do have finite impulse responses. So, if we take their practical
1)(D/X). For R, = 10 Gb/s,A = 1550 nm, expressind? in  overall impulse response duration equaltowe could replace
ps/(kmnm) andD’ in ps/(kmnm?) this imply D’ = 7.8-10*D. their input waveform with another one which coincides only in
For a nondispersion shifted fiber typically ~ 17 ps/(kmnm) the time intervalt;, — Ty, ti), leaving the value of the sample
andD’ =~ 0.083 ps/(kmnm?) and thus?, is negligible and the y(tx) unchanged, as said. This means that an exact description
fiber group delay can be considered to be linear. of the input noise waveform in the aforementioned time interval
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is a sufficient statistics. So we may write a Karhunen—Loeéve Despite the seeming complexity, all the quantities involved in
expansion forw(t) in the intervalt, — 7, < t < ¢, only, the evaluation of the samplgt;) in (11) are easily obtainable
and, asw(t) is AWGN, we can choose any orthonormahumerically.

base for the expansion [16], [17], for example the Fourier The noise sampley; is a noncentral quadratic form of
base{pn(t) = (1/y/Tp)e??™mt—tvtTo)/Tolee o the Gaussian random variables, for which it can be easily shown
relevant noise process become§) = > - wn,¢n(t), thatits moment generating function (MGF) is

ty — 1o < t < tg, wherew,, are complex independent and s
identically distributed (i.i.d.) Gaussian random variables (r.v.) 2M+1 €Xp <1 — /35)
with zero mean and in-phase and quadrature components of U, (s)= H 1—31 (16)
varianceNy /2. For convenience we rewrite(t) as i=1 —Pis
oo where
£ = " J2rm(t—ti+T5)/To t—T t <t (9 A |b; 2

w() m;mw & k 0 <1 <1k ( ) azé|)\| (17)

wherew,, are complex i.i.d. Gaussian r.v. with zero mean and Bi éz)w—? (18)

in-phase and quadrature components of variance . .
and its mean and variance are

N,
s No 2M+1 2M+1 2
ot =2 (10) 2, |bil
275 Ty, = Z (i + ) = Z <2)\i‘7 +)\—i (19)
The value ofl, depends upon the optical and postdetection fil- =1 =t
ters and we will see how it can be easily determined. 2 E 3 3 = 203252 4 b |2 20
We now have all the ingredients to evaluate the samig) T = Z:l Fi(Zai + i) = ; do" (Ao £ [l (20)

and thus the bit error probability.
N I P iy Setting the decision threshold g/, the probability of error

at the sampling time;, conditional upon the information se-

IV. BIT ERRORPROBABILITY .
quence{a,}, is

After some laborious calculations, detailed in Appendix A,
Ply(ty = P{ng 3, ap=1
we show that the samplgt, ) at the input of the decision device P(e;|{a,}) = { {yt) <o} {ne <&k o
may be written as Ply(te) > v} = P{nx > &}, an 2(201)
y(t) = di + 74 (11) Where

where &k = Yen — di + v (22)
oL ' and the average probability of errfy can be expressed as

A j2lty /NT -

A= Y cHr <—> e’ (12) | Nl

NT —

=ar, Py= kz:% Pleg[{an}). (23)

is the signal term[. = nIN BonT’, By being the noise equiv- . . ) i
alent bandwidth offy(f) (i.e., half the noise equivalent band-The average transmitted (and received, for a lossless fiber) en

width of the optical filter), a small number (whose value isergy per bit is

chosen such that to retain all the relevant harmonics) caisl E, :T/Oo S.(f) df
given in (A.8), whiler;, is the noise term which may be written oo
as 1 [ 1 & NI
=5 [ wrae g > |e(3)] e
T = N — Vi (13) B k=—o0
where where S, (f) is the signal power spectrum, and the signal to
noise ratiok;, /N, represents the number of signal photons per
2M 41 b |2 bit at the input of the ideal high-gain optical amplifier.
ny 2 i |z + — (14) We show in Appendix B that the probabilities that appear in
im1 Ai (21) may be evaluated as
A 2M+1 |b71|2 1 wo+joo \I/m(s) c
L= - kN oSSk
Vg 2, (15) P{ng > &} = 57 /u,o—joo P ds
with M = nBonTo, A; are the eigenvalues of tHeM + 1) x 0<up < (25)

—
(2M + 1) Hermitian matrixA4 in (A.20), the complex random max f;

variablesz; = zp; + jzg; are zero mean Gaussian with inde- 1if there is ASE in the orthogonal polarization, to the noise samgplén

pendent In_phase and quadrature Components Of Va”ﬁ?nae (14) should be added the additional teEfi/Il+l Ai|27{|2 where theZ;’S are
independent r.v. distributed as thes. So in this case the MGF would be as in

in (10),0; are the components of the complex vedsagiven in (16) but replacing the terril — ;) with (1 — 3;s)? in the denominator of
(A.26). the main fraction only.
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Ping < &} = 1 /”Oﬂoo v, (s) =56k s where By and Bry are the noise equivalent bandwidths of
' ' 275 g —joo s the optical lowpass equivalefdy( /) and postdetectiofl r(f)
1 filters, respectively, ang is a dimensionless parameter which
- m <up <0 (26)  must be determined. In practice we repeatedly evaluate the bit

error probability for increasing values pfuntil the result stabi-

wheres;t and 3 stands for the positive and negatijdgs in  lizes. This procedure may seem rough and time consuming, but
(18), respectively. If al3;s are positive then the range in (26) ist turns out to be instead very simple and effective.
to be interpreted asoco < ug < 0. Notice that as the MGF is  All the results shown here were obtained by specifying the
analytic in its regularity domain, from a theoretical point of vieveequencea,, } as a 2-bit de Bruijn sequence [15]. In this se-
a particular choice af in the above ranges does not matter, btuence all 5-bit patterns occur exactly once in a single period
if the line integrals in (25) and (26) are to be evaluated numeand thus it is possible to accurately account for intersymbol in-
ically, it can make a world of difference. As the line integral oferference due to two bits on either side of the desired bit (or the
an analytic complex function does not depend on the path pifeceding four bits) and this is more than adequate in our case.
we could choose the path in such a way that along it the func-As a first example, let us consider a standard NRZ PAM
tion real part achieves a sharp maximum while the imaginasjgnal, a nondispersive fiber, a matched optical filter and no
part remains constant (to avoid rapid oscillations in the intpost-detection filter (or, equivalently, a post-detection filter with
grand) then the major contribution to the integral would conte very large bandwidth). In this case it is known [20] that the
from the path section in the neighborhoods of the function regact error probability is given by
part maximum. The real and imaginary part of an analytic com- _eIN
plex function cannot have maxima or minima but they can have b= % [6 M r1-Q (2 VEb/No, v 2£/N0)} (29)
saddle points which can be exploited in the numerical evalua- A oo (a?in? .
tion of (25) and (26). In Appendix B we show the details of thi hereQ{a, ) = Jy~ e .( " )/210(@) dx is the Marcum
well known [18], [19] method of numerical integration through 'f“.”c“of‘ [19], Lo () being the m.od|f|ed Bgssel function of
a saddle point along the path of steepest descent applied tot f'r_St k'_n(_j and order zero, arglis the optimum threshold
present case. given implicitly by

It can bg shgwn that the integrand in (25) and _(26) has two T (2\/2£—Eb/No) — 2Eu/No (30)
saddle pointa,; < 0 andug > 0 on the reals-axis which,
once determined, can be used to obtain the closed-fmth For very high values off} /Ny, using for Io(x) the crude
dlepoint approximatiotfor the bit error probability. By writing approximation Ip(z) =~ %, we get( =~ F,/2 and
(16) as¥,,, (s) = exp[®,, (s)] and expanding@,, (s) inpower B, =~ (1/2)e #/%o) This last expression, however, is
series abouﬂﬁf retaining terms up ta?, (25) and (26) can be only asymptotically exact and for small to medium values of
reduced to Gaussian integrals, which are evaluated to give #he//No, Overestimates the bit error probability for a factor of

saddlepoint approximation [19] about two, so we will use (29) with the value §bbtained by
numerically solving (30). Lettingy = (E,/No)as, we found
> €Xp [‘Pnk (Uoi)] that the optimum threshold is very well fitted by
2n @ (up) ¢ ~ L B, exp[1.156 exp(—0.145 — 0.00154)]
3/2 o
_ [\Ijnk (u(:)t)] /2 —uZe, 27) for2 < v < 20. (31)

2o, o+ L In Figs. 3 and 4 the exact error probability is shown together
\/27r [(“0) v, (“0 ) +¥n, (“0 )} with the results obtained by applying the present analysis to
this case withy and 7, respectively, as parameters and with
wherel! stands for the second derivativelf, anduj oruy the threshold optimized for ead, /N,. The exact value of the
must be used for the or < sign, respectively. We found that theerror probability is obtained fqz = 1 and valueg: > 1 all give
saddle point approximation, which is the first term of an asymghe same curve which is practically coincident with the exact
totic expansion of (25) and (26), is very accurate and overessine. Notice that the asymptotic true value of the error proba-
mates the true error probability for a factor corresponding to les#ity is reached for: = 1 corresponding td, = T, the exact
than 0.01 dB or¥, /Ny at error probabilities lower than 18.  duration of the matched filter impulse response.
As a second example, the results obtained for non dispersive
V. RESULTS fiber with Gaussian optical end postdetection filters are shown

; . in,Figs. 5 and 6 with, andn as parameters. The optical and
In order to better appreciate the potential of the propos@r%i)St detection filter 3 dB bandwidths are such tha’ — 8

method, we show in the following some numerical results o} : . .
some typical cases. and BgT = 0.7, respectively By is twice the 3 dB band-

Our method requires the determinatiorZfin (9), as previ- width of Hy(f)]. In this and all other figures the performance

ously pointed out. As a filter impulse response time duration %JI‘VGS shown are obtained with the threshold optimized for each
related to its bandwidth, we také as »/No. The curves withi as a parameter were obtained first

by choosing fom a suitable value as explained in Appendix A,
T — 1 1 o8 theny was fixed and; varied for checking. As can be seen, for
0= H Bon + Brnx (28) fixedn, the performance curves tend monotonically to a limiting
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Fig.3. Performance curves for increasing value of pararpefdondispersive  Fig. 6. Performance curves for increasing value of parameteéondispersive
fiber and matched optical filter. fiber, Gaussian optical and postdetection filters with 3-dB bandwidths such that
BoT = 8 andBrT = 0.7, respectively.

logyo( )
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Fig. 4. Performance curves for increasing value of parametdondispersive  rig 7. Performance curves for increasing value of parampetdondispersive
fiber and matched optical filter. fiber, Gaussian optical filter wittB,7 = 8 and RC-type postdetection filter
with BRT = 0.7.

logyo( F3)

18 N 1 ! 1 1 A
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Fig.5. Performance curves for increasing value of pararpetfdondispersive
fiber, Gaussian optical and postdetection filters with 3-dB bandwidths such tl

ljt%g. 8. Performance curves for increasing value of parametéondispersive
BT =8 andBxT = 0.7, respectively. !

er, Gaussian optical filter wittB, 7" = 8 and RC-type postdetection filter
with BT = 0.7.

curve which is already reached for= 0.6. We observed that Postdetection filters whose impulse response change sign ex-
this is a common behavior of all kinds of postdetection filtersibit another kind of behavior as, for increasing valuegahe

with impulse responses which do not change sign, i.e., filtecarves go initially in a direction, then after an inversion of direc-
for which the matrixA in (A.20) is positive definite. This, for tion they tend monotonically to the limiting curve. This is ex-
example, is also the case for a RC-type (one pole) post-detplained by the fact that considering an increasing duration of the
tion filter, to which Figs. 7 and 8 refers. In this case the limitingmpulse response we arrive at a point when the negative portion
curve is already reached far= 0.8. of the impulse response comes into play. Figs. 9 and 10 show the
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Fig.9. Performance curves forincreasing value of paramefdondispersive Fig. 11. Performance curves for a dispersive fibgy. = 10 Gb/s,D =

fiber, Gaussian optical filter witlB,7 = 8 and second-order Butterworth 17 ps/nmkm, A = 1550 nm, Gaussian optical and postdetection filters with

postdetection filter withBz7 = 0.7. BT = 8 andBxT = 0.7, respectively. Curves are obtained wjth= 0.6
andn = 2.

r Py= 10712

6 Ry, =10Gb/s
E;/Np penalty

Eye closure penalty = ==+«

logy(F3)

18 L 1 1 1 1 "\ 1k
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Ey /Ny (dB) 0
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. . . Distance (km)
Fig. 10. Performance curves for increasing value of parameter

Nondispersive fiber, Gaussian optical filter wihyT' = 8 and second-order _. . _ -
Butterworth postdetection filter witl 7 = 0.7. Fig. 12. E,/No penalty atP’, = 10~"*. Parameters are as in Fig. 11.

results obtained with a second-order Butterworth filter for whicthhe penalty curves, which can be drawn easily at any given
the limiting curve is reached for = 1.1 and is not the leftmost P,. For the same set of parameters of Fig. 11, we show in
curve in Fig. 9 but the second from right (the solid one). Simildig. 12 the E;, /Ny penalty atP, = 107'% for a 10-Gb/s
results were observed with a sixth order Butterworth filter faystem. The popular eye closure penalty [21]-[25] curve is
which the limiting curve was reached for = 1.8. As a gen- superimposed for comparison. The eye closure penalty is
eral rule of thumb we observed that, when the bandwidth of thefined asA P, .. = 10log,,(a/b), wherea is the eye opening
optical filter is large and the postdetection filter has not a taat the post-detection filter output with no fibek (= 0 km)
sharp cutoff, a value gf = 2 is more than adequate, otherwisén place, and is the eye opening with the fiber in place. It is
a value ofy, = 4 is sufficient in almost all practical cases. evident that the eye closure penalty criterion fails completely
The results in Fig. 11 are relative to a dispersive fiber witim predicting the true penalty, as for example fbr = 40
D = 17 ps/nmkm, A = 1550 nm, 2, = 10 Gb/s, Gaussian op- km it predicts 0.5-dB penalty while the true penalty is about
tical and postdetection filters with 3-dB bandwidtBgZ = 8 2.5 dB. The reason for this failure may be explained in the
and BT = 0.7, and show the probability of error for afollowing way. The motivation behind the eye closure penalty
back-to-back configuration and aftér = 58 km. The circles criterion is that given the eye openiig — v, whereV; is
represent the probability of error evaluated by the saddle pothe lowest level corresponding to a “1” arig the highest
approximation (27) while the dotted curves (whose valudsvel corresponding to a “0,” assuming the noise is Gaussian
should be read on the right) represent the optimum thresholdth standard deviations; and o3 when transmitting a “1”
As anticipated, the saddle point approximation is practicaltyr a “0,” respectively, and setting the threshold so that the
coincident with the true error probability and gives the corregirobability of error is equal for both “1” and “0” [26], we
value for the optimum threshold, too. As can be seen from thave thatP, < (1/2)erfc((Vi — Vo)/(v2(01 + 00))). So it
same figure, the fiber chromatic dispersion dictates the useméy seem that effectively the eye opening can give the exact
a higher threshold. penalty. But, even approximating the noise as Gaussian, one
The usefulness of a fast accurate method for evaluatisgould consider that;, and oy also depend on the value of
the error probability in the general case is underlined By andVj, and then ifi; gets decremented bV, > 0 and
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-4 T T ' ' ' ' performance is always within 0.4 dB (given the same postdetec-
,,,,,,,,, 2nd and 6th order Butterworth | tionfilter, since different couples can give differences of about
O[T RC type (Fabry-Perot) —=:- >0ptical 1 dB). But more care should be taken in selecting the optical

Gaussian = === /filters

b TR Ideal | filter when the postdetection one has a sharp cutoff, since a bad
"""" choice can result in a penalty of more than 2 dB, as can be seen
N - from Fig. 14 in which the postdetection filter is a sixth-order

o L =58km ' ‘ Butterworth one. In this latter case it is important that the op-
poslj_g:gp;lter 4 tical filter has a smooth cutoff or a phase as linear as possible, as
evidenced by the fact that a sixth-order Butterworth type optical
T filter incurs in about 1.5 dB penalty with respect to an ideal one.
All curvesin Figs. 13 and 14 required about a minute of running
16 T = o > o 55 time on a relatively fast processor and we point out that there is
Ey/No (dB) no other theory available in the literature from which they can
Fig. 13. Perf for a dispersive fiber and | optical bg derived.
v e ISP T 70 s pieal s regards of numerical results, we point out that our pri-
optical and post-detection filters with 3-dB bandwidths suchihaf = 1and Mary intention in this section is to demonstrate the potential of

BxT = 0.5, respectively. Curves are obtained with the following parametetsur method which may easily provide results for any practical
(optical filter/postdetection filter)u = 0.8 andy = 3 for Gaussian/Bessel

_12 -

-14 F

Gaussian/second-order Butterworth and Gaussian/R€; 0.9 andy = 4 ' situation.

for second-order Butterworth/RGy = 1.9 andn = 2 for sixth-order

Butterworth/RC;u = 24 andy = 1 for Ideal/RC;ux = 1 andn = 4 for VI. CONCLUSION
RC/RC.

A novel approach for the analytical evaluation of the bit error
i : . . probability of a preamplified direct detection system has been
6th order Butterworth post-det. filter presented. It can take into account arbitrary pulse shapes and fil-
41  tering and therefore permits to analyze the effects of chromatic
L =58km dispersion, chirping and pre- and postdetection filter combina-
] tions. The saddle point integration method allows for a fast and
reliable evaluation of the bit error probability. For example, all
S~ ] the performance curves shown were obtained with a program
. that automatically searches for the optimum threshold with three
figures accuracy in a time variable from about 1-2 min on a
SPARC processor. The computational burden is essentially a
6th order Butterworth — - slowly increasing function of{ in (A.5) and also depends on
16 . . ) . ) 3 the fact that the integrals in (25) and (26) can be performed along
18 19 20 2£17,,/N0 (dB?)Z 3 2 %5 the steepest descent path or should be done along a straight line
through the saddle point. Much faster times can be achieved
Fig. 14. Performance curves for a dispersive fiber, several optical fitdyhe€n using the saddle point approximation with practically no
types and sixth-order Butterworth postdetection filtdh, = 10 Gb/s, loss of accuracy. It has been shown that the eye closure penalty

D = 17 ps/Inmkm, A = 1550 nm, optical and postdetection filters with . . ; i ; ; :
3-dB bandwidths such tha, T = 1 and BT = 0.5, respectively. Curves criterion is too optimistic in that it predicts substantially lower

are obtained with the following parameters (only optical filter is specifiedP€nalties than the real ones.
©n = 1.6 andy = 3 for Gaussiang = 1.9 andpy = 4 for RC; . = 2 and
n = 3 for second-order Butterworth;, = 10 andn = 1 for Ideal;;x = 2 and
1 = 2 for fourth- and sixth-order Butterworth.

Gaussian ===« ‘\‘
RC type (Fabry-Perot) ==~ “\\
2nd order Butterworth e Optical 3, ™.,
—14 I Ideal and 4th order Butterworth — /e

APPENDIX A

In this Appendix we give an expression for the samglg,)

Vy incremented byAV;, > AV; this results in a penalty larger at the input of the decision device of Fig. 2. _
than that expected by the eye closure criterion. Moreover, theBY retaining only the nonnegligible harmonics, the quadratic
Gaussian approximation is very questionable when the siggtector input signal component is

level is low as in this case the noisenoise term may not be L '
negligible with respect to the signal noise one. s(t) = Z 57 2T/NT (A1)
As a concluding example, the effect of different filter types t=—1,

is shown in Figs. 13 and 14 which refer to a dispersive fibgjnere

of length . = 58 km and where several different optical fil-

ters with the same narrow 3-dB bandwidth (such tBat” = L =nNBonT (A.2)

1) were used together with several post-detection filters with

BgrT = 0.5. These figures are representative of the dependence Y, Y,

of the performance on the shape of the pre- and postdetection s¢ =x¢Hy <ﬁ> Hy <ﬁ> (A.3)
filters when both bandwidths are small with respect to the bit

rate. It turns out that if using a postdetection filter with a smootnd =, are as in (8). The value of to be used in (A.2) de-
cutoff, the choice of the optical filter is not very important as thpends on the optical filter shape and may be chosen such that
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ZIZI>L |s¢|? < eE,, with e small enough, or may be found bywheren is a column vector whosgM + 1 components are

successive trials. We found that a valueseé 10~* < 107° is i— M—1 .
more than safe in any practical situation. ni = wi—p—1Ho <T) i=1,2,---,2M + 1.
As regards the quadratic detector input noise we can write it (A.11)
as w; being as in (9)Q is a(2M + 1) x (2M + 1) matrix whose
M elements are
_ jQWnl(tftk-f—To)To g 4
n(t)= ) nme qiszR<L J) ij=1,2 -, 2M+1 (A12)
m=—M TO
forty —To <t < tx (A-4) " and, for the Hermitian symmetry @ z(f), they are such that
gi; = ¢; (i.e. Q is Hermitian),v is a column vector whose
where J
2M + 1 components are
M =nDBonTo (A.5) EL: % < / i— M- 1) jomtt, /NT
m Uy = SZR—_—@ﬂ—k‘
N :wrnHO <T0> (A6) {=—L NT TO
i=1,2,---,2M +1 (A.13)
andw,, are as in (9). Then the quadratic detector output signal, , .. .
in the time intervak;, — Ty < t < t, may be written as and finally c is the constant
2L
l » ;
2L , L M c= Y cHg <—> /2l /NT (A.14)
|s(t) +n(t)|* = Z cped T NT Z Z seny, Py NT
t=—20 t=—lm=-M Notice thatn is a complex Gaussian random vector with zero
- €xp {j27r [ﬂ _mt—tt TO)} } mean and diagonal covariance matrix
NT Ty w T 21 2
L M E{n*n’} = 20°diag{|h;|*} (A.15)
+ Z Z S¢Mm whereo? is as in (10)diag{c; } is by definition a diagonal ma-
(=—Lm=—M trix whose diagonal elementg arec;; = ¢;,i =1, 2, ---, and
. &t m(t—tp+1o) A i—M—1
- exp {—J27T [ﬁ T h; = Hy <T> . (A.16)
M M .. . .
n Z Z nen’, As the statistics of the filtered noise do not depend on the op-

tical filter phase response but only on its amplitude response, by
convenience we can define the matfxas follows
t—t+ 10

- exp {j%(ﬁ - m)T} - (A7) H 2 diag{|h:[} (A.17)
e!;}nd by using the transformation

b=—Mm=—M

c¢ being the autocorrelation of the coefficients of the Fouri

series expansion of the signdk) in (A.1) n=Hw (A.18)
min(L,0+1.) (where the equal sign is to be interpreted in the sense that both
co = Z SeSh_y. (A.8) sides are statistically equivalent) we may write
k=max(—L,0—T) nT* Qn = WT*HT* QHW = WT*AW (Alg)

After filtering by Hr(f) and sampling, the sampigt;) may with
be written as

o A=H"™QH (A.20)
y(te) = > cHg <%) ed 2t /NT still Hermitian [27]. Since the matriX accounts for the noise
(=—2L noise contribution after the postdetection filter and at the output
Lo M Y, m\ . . of the quadratic detector the noigenoise term is positive, then
+ Z Z seny, Hr <ﬁ - ?> eIt INT if the postdetection filter impulse response is always positive
t=—Lm=—M 0 such is the noisex noise contribution and thenA is positive
.M . _ definite [27], otherwise it may not. In either case, beibgler-
+ Z Z senmHp <% - %) TR INE mitian, the eigenvalues of are real (all positive if4 is positive
t=—Lm=-M definite) and its eigenvectors orthogonal even if the eigenvalues
MM . {—m are not all distinct [27]. IfHo(f) is null at some discrete fre-
+ Z Z NNy R <TO> (A.9) guencies, then it may happen thats singular, but this is not a

t=—Mm=-M problem as it is always possible to find a sequence of increasing

or, in compact matrix notation, as values ofy in (28) for which this does not occur [#(f) is
an ideal lowpass filter, then by the choige= 1 this never hap-
y(t) =n"* Qn+n"*v + v n + ¢ (A.10) pens]. S can be diagonalized by the unitary mattixormed
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by its normalized eigenvectors arranged in the same order offhe probability density functiop,,, () of n;, in (14) may be

their corresponding eigenvalugs evaluated from its MG, (s) in (16) as
A=UAU™ (A.21) - 1 /uo+joo 5
D7) =5—= W, (s)e™" ds
where * 215 Jug—joo
1
A =diag{\;}. (A.22) B max | 3] | <o s max ;" (B.1)
Then we can write Denoting byu(x) the unit step function and using (B.1), we have
0T On = wUAUT*w = 727* Az (A.23) for the left-hand tail probability
. 198
with Plnp < &} = / D, (T)dT
z=UT"w=U""H 'n (A.24) oy
— [ bt - s
and —o0
1 ug+joo
w TV _ o 2 = — v, (s
E{z'z"} = 20°] (A.25) 277 oo i +(5)
which means that the components are independent complex . </°° W€y — T)e=>" d’/’) ds
Gaussian r.v. with zero mean and same variance. By defining oo
ug+joo
the vector _ L 0t g, (s) ——
b2 T gy (A.26) 2 Jun—jeo 8
. . 1 ———— <up <0 (B.2)
and summing and subtracting to (A.10) the tésAT A~ 1b, the max | 3] |

sampley(t;,) may be written as o .
where the restriction on the, range is necessary for the conver-

y(te) =2"*Az+2""b+b""z4+c+b A" —b"™A'b  gence of the inner integral in the second last equation in (B.2).

=(z+A D) *A(z+ A D) +c—DbT*A D In similar manner, the right-hand tail probability may be evalu-
2M+1 b |2 2L ated as
IZ)\iZH-)\—Z +ZCéHR oo
i=1 g (= 2L Pl{ny > &} = / Py () dT
N peimr O il =
(r)e P v (A27) — [ ot - @) dr
The above expression represents the final results of our calcu- _ uotsee U, (s)
lations showing thay(¢:) is composed by a signal term (the 205 Jug—joo "
middle one) and two noise terms (the first and last ones). oo
As a quick check for our results, let us consider the fiber as </ u(r — & )e™ " dT) ds
nondispersive, i.e Hs(f) = 1, Hg(f) as a short-term inte- _C’,ZOHOO
grator over the bit tim&, Hy(f) as an ideal filter of bandwidth - L we—sfk ds
Boy = M/T with M > 1 so that the duration of its im- 279 Jug—joo 8
pulse response is negligible with respecfitpand a one-shot 0 < up < (B.3)
transmission, i.ex(t) is a NRZ pulse which is described by (7) max 3 '

with N = 1 only in an interval equal td, = 7. Then@, H, o ) i
A, A andU become the identity matrig, i.e., \; = 1 for all As the line integral of an analytic function does not depend on

i andb = v, the constant: in (A.14) becomes: = ¢, and the integration path, we rewrite (B.2) and (B.3) as

bT*A~lb = vI*v = ¢y, so the last two terms in (A.27) cancel 1 T, (5)
each other and the sample becomes Pl <&p = — 37 kT'@*Sf’“ ds (B.4)
C_
2M+1 1 O} (S) ¢
) = 2 + ;]2 A.28 Pln; > &} = —/ ST ek (s (B.5)
y(te) ;| | (A.28) | el M
which confirms the result of [5], valid only for this simplified where the integration contour§; are conveniently chosen
case. to closely approximate the paths of steepest descent passing
through the saddle pointsa—L of the integrands on the real
APPENDIX B s-axis. Rewriting the integrands of (B.4) and (B.5) as
In this Appendix we detail the numerical evaluation of (25) W, ()

and (26) by the saddle point method. 5 e = P ) (B.6)
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with

©,,, (s5) = log ¥y, () — log(s) — s&
2M+1 |:

;S

1-— /318

—log(1l— g;s)| —log(s) — sé
(B.7)

the saddle points, andug are the roots of

, 2L o; + /31(1 — /318) 1
@, (s) = ; W—;—SkIO (B.8)
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The sum is stopped whef{nAv) becomes negligible while the
initial step size is taken as [19]
1

Ay = T (B.17)
and successively halved until the result stabilizes in the desired
number of digits. By using the trapezoidal rule, when halving
the step size, one can simply add to the previously accumulated
trapezoidal sum the values of the integrand at the intermediate
sampling points before multiplication by the final step sive.
The advantage of this quadrature formula for infinite integrals

where &/, (s) is the derivative ofb,, (s). The saddle points of analytic functions is that the number of reliable significant
are to be found numerically using, for example, the Newtonfgyures approximately doubles when the step size is halved [28],
method. Starting withs = s (real), the saddle points are thg2929]. All the results in this work were evaluated with four

limit of the succession

@7, (sn)
Sp4l = Sp — Cbﬁi(sn) (B.9)
where
2M+1 9
1" . 2042‘/31‘ + ﬁz (1 — /328) i
@, (s) = ;:1 (A= Bs) +5 (810

As explained in [19], a convenient starting valygis that de-
rived by approximating; as a Gaussianr.v. with meayp, (19)
and variances;, (20)

= Ty, £ . — N, )2+ 402

2
20,

where thet sign is to be used far} and the— sign foru, . If so
turns out to be outside the allowable rangél / max |3 |) <
50 < 1/max 3;F, one simply takes, = +(0.99/ max |5|).
The iteration (B.9) can be stopped whep,, — s,,| falls below
a prescribed value.

reliable significant digits which needed the evaluation of a total
of 30-50 samples for each symbol in the sequefcg even
for probabilities down 1016,

When¢, in (22) is near,, in (19) and when the saddle point
isud > 0, the path of steepest descent may be different from
the parabola (B.12) in that it initially goes as (B.12) predicts
with an initial curvature: < 0, then the curvature changes sign
and the path approaches another parabola with positive curva-
ture but with its axis parallel instead that coincident with the
reals-axis. In this case, integrating along the path (B.12) would
cause the integral (B.15) to diverge. So, whein (B.13) turns
out negative it should be set to zero in order to perform the in-
tegral in (B.15) along a straight vertical path. In a case such as
this, it may be also numerically convenient to rewrite (B.7) as

2MAL g 02
®(s)= > [1@—/;3 —log(1 — Bis) — s

—log(s) + (1, — &k)s. (B.18)

The paths of steepest descént are well approximated by When the postdetection filter has an impulse response which

parabolas of the form

s:uoi—i—%m/?—i—jv, s=u+ju (B.12)
where [19]
! +
P AR (“02 (B.13)
2M+1 2 3
6o 35 + 2[3; (1 - [318) 2
o = C t - —. (B.14
" (s) §:j 0 e = @14

The integrals (B.4) and (B.5) are then written as
P{nyZ&}
4l / - Re {eq)”k (uy +(1/2)m0"+jv) (1 jm})} dv
e (B.15)
and are evaluated by the trapezoidal rule

Av

1
PlniZé} ~ -

510+ ; f(nAv)] (B.16)

J(v) = ¥e {(;I’nk (5 (/D 5w (] — jm})} :

changes sign, i.e., when the matrixin (A.20) is not definite
positive, then the saddle point may be too near the closest sin-
gularity on its right for the trapezoidal sum to have the chance
of converging before the parabola approximating the steepest
descent path crosses the boundaries of the regularity domain.
This can be detected by the fact that the integrand diverges and
when this happens the integration must be stopped and per-
formed again along a straight vertical path through the saddle
point by settings in (B.13) to zero.
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