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Evaluating the Error Probability in Lightwave
Systems with Chromatic Dispersion, Arbitrary Pulse

Shape and Pre- and Postdetection Filtering
Enrico Forestieri, Member, IEEE

Abstract—A novel approach to analytically evaluate the bit
error probability in optically preamplified direct-detection sys-
tems is presented, which can take into account the effects of pulse
shaping, chirping, filtering at the transmitter and the receiver,
both pre- and postdetection, chromatic dispersion, and ASE noise.
The method is computationally very fast in that the saddle point
integration method for solving the resulting line integral of a
particular moment generating function is adopted. A closed-form
approximation for the bit error probability is also provided, which
is within 0.01 dB from the exact numerical results.

I. INTRODUCTION

T HE PERFORMANCE evaluation in terms of bit error
probability of a direct-detection lightwave communication

systemwithanopticalpreamplifierhasreceivedmuchattentionin
the recent years (see [1]–[11] and references cited therein). Many
of these works use approximations or simplified assumptions,
such as the use of ideal NRZ formats [1]–[3], [5], [7], [11]
and/orad hoccombinations of pre- and postdetection filters,
e.g., short-term integrator and discrete-time integrator [3], [7],
or wide-band ideal filter and short-term integrator [1], [2], [4],
[5], [9]. More general approaches are presented in [6], [8]–[10],
but the method proposed in [6] is of difficult computability
and neglects the intersymbol interference effects, in [8]–[9]
the optical filter must be ideal with wide band, while the
results in [10] hold only for a singly resonant type optical
filter and the derived moment generating function is only
used to find mean and variance of the decision sample whose
statistics are arbitrarily assumed to be Gaussian. If the amplifier
spontaneous noise dominates the receiver shot and thermal
noises, the system performance will be identical to that of
a radio system with square law detection and, to the author
knowledge, the most comprehensive work in this case is that
in [12] where, however, it is required that the input spectral
densities are of rational form and the post-detection filter has a
non negative impulse response. So, to our knowledge, there is no
theory available which accurately takes into account arbitrary
signal pulse shape, chirping, filtering at the transmitter and the
receiver, both pre- and postdetection, and chromatic dispersion.
We present here a novel approach to analytically evaluate the
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bit error probability in preamplified direct detection systems,
which aims at filling some of the remaining gaps and giving
accurate results. This approach employs the moment generating
function of the output and the saddle point integration method
and in this respect is similar to that in [12], but overcomes
its computational difficulties (a set of differential equations
of the Kalman–Bucy type is to be numerically solved) and
limitations by considering a periodic input signal instead that
the completely arbitrary one there considered.

This paper is organized as follows. In Section II the model
used in the analysis is presented. In Section III it is shown how
signal and noise may be expanded to take into account arbitrary
filtering. The bit error probability is evaluated in Section IV
through the saddle point integration method and a closed-form
saddle point approximation is provided. Numerical results are
presented in Section V to show the effectiveness of the proposed
method.

II. SYSTEM MODEL

The system model is shown in Fig. 1. The optical signal gen-
erated by a laser modulator is launched in a singlemode fiber
operated in linear regime. At the receiver end it is amplified by
a flat gain erbium-doped fiber amplifier which adds ampli-
fied spontaneous emission (ASE) noise and then the amplifier
output is optically filtered prior photodetection. The photode-
tection process and the following electronic circuitry will add
shot and thermal noise, respectively. The detected signal is then
low—pass filtered and sampled.

The ASE noise is modeled as additive white Gaussian
noise (AWGN) with one sided power spectral density

in each polarization [1] where
is the spontaneous emission parameter andis the photon
energy. By using high-gain amplifiers the ASE noise dominates
the shot and thermal noises generated in the receiver [1] and
thus they can be neglected. Then, in the absence of fiber
nonlinearities and polarization dispersion, assuming there is
no ASE in the orthogonal polarization, the direct detection
lightwave system has the low-pass equivalent model shown in
Fig. 2. Here is the low-pass equivalent (also referred to as
complex envelope) of the transmitted signal as defined in [13],

is a complex AWGN with twosided power spectral density

for (1)
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Fig. 1. System model.

Fig. 2. Equivalent low-pass system model.

, and are the (low-pass equivalent) transfer
functions of fiber and optical and postdetection filters, respec-
tively.

In the absence of nonlinearities and polarization dispersion,
the equivalent low-pass transfer function of a lossless linear dis-
persive singlemode fiber of lengthcan be written as

where and is the propagation
constant. Taking the Taylor series expansion of , neglecting
the constant and linear terms in(as they do not introduce dis-
tortion) and the dispersion terms of order greater than two, the
fiber can be modeled as a bandpass filter whose transfer function
has flat amplitude response and quadratic group delay inside the
signal bandwidth and is zero outside. This assumption is valid
when the signal bandwidth is narrow with respect to the value
of the optical carrier frequency.

Then, inside the signal bandwidth, with very good approxi-
mation the equivalent low-pass transfer function of the disper-
sive fiber can be taken to be

(2)

where for shortness and

(3)

(4)

In the expressions aboveis the light speed, is the optical
wavelength corresponding to the carrier frequency,is the
fiber chromatic dispersion parameter at[usually provided in
ps/(kmnm)] and evaluated at , too. However,
notice that the parameter is non negligible only if

[14] where is the bit rate, i.e. if
. For Gb/s, nm, expressing in

ps/(kmnm) and in ps/(kmnm ) this imply .
For a nondispersion shifted fiber typically ps/(kmnm)
and ps/(kmnm ) and thus is negligible and the
fiber group delay can be considered to be linear.

III. SIGNAL AND NOISE EXPANSIONS

As regards of the signal , given a -bit sequence to
be transmitted and the elementary pulse, we take it to be the
periodic repetition, with period , of the actual PAM signal

(5)

i.e.,

(6)

When is sufficiently large, in (6) is a pseudorandom
signal which allows for mathematical tractability while re-
taining physical properties close to reality. Moreover, an
appropriate choice of the sequence , such as a de Bruijn
sequence [15], allows us to take easily into account the effects
of intersymbol interference. Due to its periodicity, may be
expanded in Fourier series

(7)

where

(8)

and is the Fourier transform of .
As regards of noise, observe that when the overall impulse

response of the pre- and postdetection filters at the receiver
has a finite time duration, say equal to, then the value of
the sample is solely determined by the values that the
input waveform of the optical filter takes on in the time interval

. Theoretical filters may not have finite duration im-
pulse responses, but from a practical point of view allreal filters
do have finite impulse responses. So, if we take their practical
overall impulse response duration equal towe could replace
their input waveform with another one which coincides only in
the time interval , leaving the value of the sample

unchanged, as said. This means that an exact description
of the input noise waveform in the aforementioned time interval
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is a sufficient statistics. So we may write a Karhunen–Loève
expansion for in the interval only,
and, as is AWGN, we can choose any orthonormal
base for the expansion [16], [17], for example the Fourier
base . So the
relevant noise process becomes ,

, where are complex independent and
identically distributed (i.i.d.) Gaussian random variables (r.v.)
with zero mean and in-phase and quadrature components of
variance . For convenience we rewrite as

(9)

where are complex i.i.d. Gaussian r.v. with zero mean and
in-phase and quadrature components of variance

(10)

The value of depends upon the optical and postdetection fil-
ters and we will see how it can be easily determined.

We now have all the ingredients to evaluate the sample
and thus the bit error probability.

IV. BIT ERRORPROBABILITY

After some laborious calculations, detailed in Appendix A,
we show that the sample at the input of the decision device
may be written as

(11)

where

(12)

is the signal term, , being the noise equiv-
alent bandwidth of (i.e., half the noise equivalent band-
width of the optical filter), a small number (whose value is
chosen such that to retain all the relevant harmonics), andis
given in (A.8), while is the noise term which may be written
as

(13)

where

(14)

(15)

with , are the eigenvalues of the
Hermitian matrix in (A.20), the complex random

variables are zero mean Gaussian with inde-
pendent in-phase and quadrature components of varianceas
in (10), are the components of the complex vectorgiven in
(A.26).

Despite the seeming complexity, all the quantities involved in
the evaluation of the sample in (11) are easily obtainable
numerically.

The noise sample is a noncentral quadratic form of
Gaussian random variables, for which it can be easily shown
that its moment generating function (MGF) is1

(16)

where

(17)

(18)

and its mean and variance are

(19)

(20)

Setting the decision threshold to , the probability of error
at the sampling time , conditional upon the information se-
quence , is

(21)
where

(22)

and the average probability of error can be expressed as

(23)

The average transmitted (and received, for a lossless fiber) en-
ergy per bit is

(24)

where is the signal power spectrum, and the signal to
noise ratio represents the number of signal photons per
bit at the input of the ideal high-gain optical amplifier.

We show in Appendix B that the probabilities that appear in
(21) may be evaluated as

(25)

1If there is ASE in the orthogonal polarization, to the noise samplen in
(14) should be added the additional term � jz j where thez ’s are
independent r.v. distributed as thez s. So in this case the MGF would be as in
(16) but replacing the term(1 � � s) with (1 � � s) in the denominator of
the main fraction only.
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(26)

where and stands for the positive and negatives in
(18), respectively. If all s are positive then the range in (26) is
to be interpreted as . Notice that as the MGF is
analytic in its regularity domain, from a theoretical point of view
a particular choice of in the above ranges does not matter, but
if the line integrals in (25) and (26) are to be evaluated numer-
ically, it can make a world of difference. As the line integral of
an analytic complex function does not depend on the path, if
we could choose the path in such a way that along it the func-
tion real part achieves a sharp maximum while the imaginary
part remains constant (to avoid rapid oscillations in the inte-
grand) then the major contribution to the integral would come
from the path section in the neighborhoods of the function real
part maximum. The real and imaginary part of an analytic com-
plex function cannot have maxima or minima but they can have
saddle points which can be exploited in the numerical evalua-
tion of (25) and (26). In Appendix B we show the details of this
well known [18], [19] method of numerical integration through
a saddle point along the path of steepest descent applied to the
present case.

It can be shown that the integrand in (25) and (26) has two
saddle points and on the real -axis which,
once determined, can be used to obtain the closed-formsad-
dlepoint approximationfor the bit error probability. By writing
(16) as and expanding in power
series about retaining terms up to , (25) and (26) can be
reduced to Gaussian integrals, which are evaluated to give the
saddlepoint approximation [19]

(27)

where stands for the second derivative of and or
must be used for the or sign, respectively. We found that the
saddle point approximation, which is the first term of an asymp-
totic expansion of (25) and (26), is very accurate and overesti-
mates the true error probability for a factor corresponding to less
than 0.01 dB on at error probabilities lower than 10.

V. RESULTS

In order to better appreciate the potential of the proposed
method, we show in the following some numerical results for
some typical cases.

Our method requires the determination ofin (9), as previ-
ously pointed out. As a filter impulse response time duration is
related to its bandwidth, we take as

(28)

where and are the noise equivalent bandwidths of
the optical lowpass equivalent and postdetection
filters, respectively, and is a dimensionless parameter which
must be determined. In practice we repeatedly evaluate the bit
error probability for increasing values ofuntil the result stabi-
lizes. This procedure may seem rough and time consuming, but
it turns out to be instead very simple and effective.

All the results shown here were obtained by specifying the
sequence as a 2-bit de Bruijn sequence [15]. In this se-
quence all 5–bit patterns occur exactly once in a single period
and thus it is possible to accurately account for intersymbol in-
terference due to two bits on either side of the desired bit (or the
preceding four bits) and this is more than adequate in our case.

As a first example, let us consider a standard NRZ PAM
signal, a nondispersive fiber, a matched optical filter and no
post-detection filter (or, equivalently, a post-detection filter with
a very large bandwidth). In this case it is known [20] that the
exact error probability is given by

(29)

where is the Marcum
-function [19], being the modified Bessel function of

the first kind and order zero, andis the optimum threshold
given implicitly by

(30)

For very high values of , using for the crude
approximation , we get and

. This last expression, however, is
only asymptotically exact and for small to medium values of

, overestimates the bit error probability for a factor of
about two, so we will use (29) with the value ofobtained by
numerically solving (30). Letting , we found
that the optimum threshold is very well fitted by

for (31)

In Figs. 3 and 4 the exact error probability is shown together
with the results obtained by applying the present analysis to
this case with and , respectively, as parameters and with
the threshold optimized for each . The exact value of the
error probability is obtained for and values all give
the same curve which is practically coincident with the exact
one. Notice that the asymptotic true value of the error proba-
bility is reached for corresponding to , the exact
duration of the matched filter impulse response.

As a second example, the results obtained for non dispersive
fiber with Gaussian optical end postdetection filters are shown
in Figs. 5 and 6 with and as parameters. The optical and
postdetection filter 3 dB bandwidths are such that
and , respectively [ is twice the 3 dB band-
width of ]. In this and all other figures the performance
curves shown are obtained with the threshold optimized for each

. The curves with as a parameter were obtained first
by choosing for a suitable value as explained in Appendix A,
then was fixed and varied for checking. As can be seen, for
fixed , the performance curves tend monotonically to a limiting
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Fig. 3. Performance curves for increasing value of parameter�. Nondispersive
fiber and matched optical filter.

Fig. 4. Performance curves for increasing value of parameter�. Nondispersive
fiber and matched optical filter.

Fig. 5. Performance curves for increasing value of parameter�. Nondispersive
fiber, Gaussian optical and postdetection filters with 3-dB bandwidths such that
B T = 8 andB T = 0:7, respectively.

curve which is already reached for . We observed that
this is a common behavior of all kinds of postdetection filters
with impulse responses which do not change sign, i.e., filters
for which the matrix in (A.20) is positive definite. This, for
example, is also the case for a RC-type (one pole) post-detec-
tion filter, to which Figs. 7 and 8 refers. In this case the limiting
curve is already reached for .

Fig. 6. Performance curves for increasing value of parameter�. Nondispersive
fiber, Gaussian optical and postdetection filters with 3-dB bandwidths such that
B T = 8 andB T = 0:7, respectively.

Fig. 7. Performance curves for increasing value of parameter�. Nondispersive
fiber, Gaussian optical filter withB T = 8 and RC-type postdetection filter
with B T = 0:7.

Fig. 8. Performance curves for increasing value of parameter�. Nondispersive
fiber, Gaussian optical filter withB T = 8 and RC-type postdetection filter
with B T = 0:7.

Postdetection filters whose impulse response change sign ex-
hibit another kind of behavior as, for increasing values of, the
curves go initially in a direction, then after an inversion of direc-
tion they tend monotonically to the limiting curve. This is ex-
plained by the fact that considering an increasing duration of the
impulse response we arrive at a point when the negative portion
of the impulse response comes into play. Figs. 9 and 10 show the
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Fig. 9. Performance curves for increasing value of parameter�. Nondispersive
fiber, Gaussian optical filter withB T = 8 and second-order Butterworth
postdetection filter withB T = 0:7.

Fig. 10. Performance curves for increasing value of parameter�.
Nondispersive fiber, Gaussian optical filter withB T = 8 and second-order
Butterworth postdetection filter withB T = 0:7.

results obtained with a second-order Butterworth filter for which
the limiting curve is reached for and is not the leftmost
curve in Fig. 9 but the second from right (the solid one). Similar
results were observed with a sixth order Butterworth filter for
which the limiting curve was reached for . As a gen-
eral rule of thumb we observed that, when the bandwidth of the
optical filter is large and the postdetection filter has not a too
sharp cutoff, a value of is more than adequate, otherwise
a value of is sufficient in almost all practical cases.

The results in Fig. 11 are relative to a dispersive fiber with
ps/nmkm, nm, Gb/s, Gaussian op-

tical and postdetection filters with 3-dB bandwidths
and , and show the probability of error for a
back-to-back configuration and after km. The circles
represent the probability of error evaluated by the saddle point
approximation (27) while the dotted curves (whose values
should be read on the right) represent the optimum threshold.
As anticipated, the saddle point approximation is practically
coincident with the true error probability and gives the correct
value for the optimum threshold, too. As can be seen from the
same figure, the fiber chromatic dispersion dictates the use of
a higher threshold.

The usefulness of a fast accurate method for evaluating
the error probability in the general case is underlined by

Fig. 11. Performance curves for a dispersive fiber.R = 10 Gb/s,D =

17 ps/nm�km, � = 1550 nm, Gaussian optical and postdetection filters with
B T = 8 andB T = 0:7, respectively. Curves are obtained with� = 0:6
and� = 2.

Fig. 12. E =N penalty atP = 10 . Parameters are as in Fig. 11.

the penalty curves, which can be drawn easily at any given
. For the same set of parameters of Fig. 11, we show in

Fig. 12 the penalty at for a 10-Gb/s
system. The popular eye closure penalty [21]–[25] curve is
superimposed for comparison. The eye closure penalty is
defined as , where is the eye opening
at the post-detection filter output with no fiber ( km)
in place, and is the eye opening with the fiber in place. It is
evident that the eye closure penalty criterion fails completely
in predicting the true penalty, as for example for
km it predicts 0.5-dB penalty while the true penalty is about
2.5 dB. The reason for this failure may be explained in the
following way. The motivation behind the eye closure penalty
criterion is that given the eye opening , where is
the lowest level corresponding to a “1” and the highest
level corresponding to a “0,” assuming the noise is Gaussian
with standard deviations and when transmitting a “1”
or a “0,” respectively, and setting the threshold so that the
probability of error is equal for both “1” and “0” [26], we
have that . So it
may seem that effectively the eye opening can give the exact
penalty. But, even approximating the noise as Gaussian, one
should consider that , and also depend on the value of

and , and then if gets decremented by and
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Fig. 13. Performance curves for a dispersive fiber and several optical and
postdetection filter types.R = 10 Gb/s,D = 17 ps/nm�km, � = 1550 nm,
optical and post-detection filters with 3-dB bandwidths such thatB T = 1 and
B T = 0:5, respectively. Curves are obtained with the following parameters
(optical filter/postdetection filter):� = 0:8 and� = 3 for Gaussian/Bessel,
Gaussian/second-order Butterworth and Gaussian/RC;� = 0:9 and� = 4

for second-order Butterworth/RC;� = 1:9 and � = 2 for sixth-order
Butterworth/RC;� = 24 and� = 1 for Ideal/RC;� = 1 and� = 4 for
RC/RC.

Fig. 14. Performance curves for a dispersive fiber, several optical filter
types and sixth-order Butterworth postdetection filter.R = 10 Gb/s,
D = 17 ps/nm�km, � = 1550 nm, optical and postdetection filters with
3-dB bandwidths such thatB T = 1 andB T = 0:5, respectively. Curves
are obtained with the following parameters (only optical filter is specified):
� = 1:6 and� = 3 for Gaussian;� = 1:9 and� = 4 for RC; � = 2 and
� = 3 for second-order Butterworth;� = 10 and� = 1 for Ideal;� = 2 and
� = 2 for fourth- and sixth-order Butterworth.

incremented by this results in a penalty larger
than that expected by the eye closure criterion. Moreover, the
Gaussian approximation is very questionable when the signal
level is low as in this case the noisenoise term may not be
negligible with respect to the signal noise one.

As a concluding example, the effect of different filter types
is shown in Figs. 13 and 14 which refer to a dispersive fiber
of length km and where several different optical fil-
ters with the same narrow 3-dB bandwidth (such that
) were used together with several post-detection filters with

. These figures are representative of the dependence
of the performance on the shape of the pre- and postdetection
filters when both bandwidths are small with respect to the bit
rate. It turns out that if using a postdetection filter with a smooth
cutoff, the choice of the optical filter is not very important as the

performance is always within 0.4 dB (given the same postdetec-
tion filter, since different couples can give differences of about
1 dB). But more care should be taken in selecting the optical
filter when the postdetection one has a sharp cutoff, since a bad
choice can result in a penalty of more than 2 dB, as can be seen
from Fig. 14 in which the postdetection filter is a sixth-order
Butterworth one. In this latter case it is important that the op-
tical filter has a smooth cutoff or a phase as linear as possible, as
evidenced by the fact that a sixth-order Butterworth type optical
filter incurs in about 1.5 dB penalty with respect to an ideal one.
All curves in Figs. 13 and 14 required about a minute of running
time on a relatively fast processor and we point out that there is
no other theory available in the literature from which they can
be derived.

As regards of numerical results, we point out that our pri-
mary intention in this section is to demonstrate the potential of
our method which may easily provide results for any practical
situation.

VI. CONCLUSION

A novel approach for the analytical evaluation of the bit error
probability of a preamplified direct detection system has been
presented. It can take into account arbitrary pulse shapes and fil-
tering and therefore permits to analyze the effects of chromatic
dispersion, chirping and pre- and postdetection filter combina-
tions. The saddle point integration method allows for a fast and
reliable evaluation of the bit error probability. For example, all
the performance curves shown were obtained with a program
that automatically searches for the optimum threshold with three
figures accuracy in a time variable from about 1–2 min on a
SPARC processor. The computational burden is essentially a
slowly increasing function of in (A.5) and also depends on
the fact that the integrals in (25) and (26) can be performed along
the steepest descent path or should be done along a straight line
through the saddle point. Much faster times can be achieved
when using the saddle point approximation with practically no
loss of accuracy. It has been shown that the eye closure penalty
criterion is too optimistic in that it predicts substantially lower
penalties than the real ones.

APPENDIX A

In this Appendix we give an expression for the sample
at the input of the decision device of Fig. 2.

By retaining only the nonnegligible harmonics, the quadratic
detector input signal component is

(A.1)

where

(A.2)

(A.3)

and are as in (8). The value of to be used in (A.2) de-
pends on the optical filter shape and may be chosen such that
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, with small enough, or may be found by
successive trials. We found that a value of is
more than safe in any practical situation.

As regards the quadratic detector input noise we can write it
as

for (A.4)

where

(A.5)

(A.6)

and are as in (9). Then the quadratic detector output signal,
in the time interval , may be written as

(A.7)

being the autocorrelation of the coefficients of the Fourier
series expansion of the signal in (A.1)

(A.8)

After filtering by and sampling, the sample may
be written as

(A.9)

or, in compact matrix notation, as

(A.10)

where is a column vector whose components are

(A.11)
being as in (9), is a matrix whose

elements are

(A.12)

and, for the Hermitian symmetry of , they are such that
(i.e. is Hermitian), is a column vector whose

components are

(A.13)

and finally is the constant

(A.14)

Notice that is a complex Gaussian random vector with zero
mean and diagonal covariance matrix

(A.15)

where is as in (10), is by definition a diagonal ma-
trix whose diagonal elements are , , and

(A.16)

As the statistics of the filtered noise do not depend on the op-
tical filter phase response but only on its amplitude response, by
convenience we can define the matrixas follows

(A.17)

and by using the transformation

(A.18)

(where the equal sign is to be interpreted in the sense that both
sides are statistically equivalent) we may write

(A.19)

with

(A.20)

still Hermitian [27]. Since the matrix accounts for the noise
noise contribution after the postdetection filter and at the output
of the quadratic detector the noisenoise term is positive, then
if the postdetection filter impulse response is always positive
such is the noise noise contribution and then is positive
definite [27], otherwise it may not. In either case, beingHer-
mitian, the eigenvalues of are real (all positive if is positive
definite) and its eigenvectors orthogonal even if the eigenvalues
are not all distinct [27]. If is null at some discrete fre-
quencies, then it may happen thatis singular, but this is not a
problem as it is always possible to find a sequence of increasing
values of in (28) for which this does not occur [if is
an ideal lowpass filter, then by the choice this never hap-
pens]. So can be diagonalized by the unitary matrixformed
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by its normalized eigenvectors arranged in the same order of
their corresponding eigenvalues

(A.21)

where

(A.22)

Then we can write

(A.23)

with

(A.24)

and

(A.25)

which means that the components are independent complex
Gaussian r.v. with zero mean and same variance. By defining
the vector

(A.26)

and summing and subtracting to (A.10) the term , the
sample may be written as

(A.27)

The above expression represents the final results of our calcu-
lations showing that is composed by a signal term (the
middle one) and two noise terms (the first and last ones).

As a quick check for our results, let us consider the fiber as
nondispersive, i.e., , as a short-term inte-
grator over the bit time , as an ideal filter of bandwidth

with so that the duration of its im-
pulse response is negligible with respect to, and a one-shot
transmission, i.e. is a NRZ pulse which is described by (7)
with only in an interval equal to . Then ,

and become the identity matrix, i.e., for all
and , the constant in (A.14) becomes and

, so the last two terms in (A.27) cancel
each other and the sample becomes

(A.28)

which confirms the result of [5], valid only for this simplified
case.

APPENDIX B

In this Appendix we detail the numerical evaluation of (25)
and (26) by the saddle point method.

The probability density function of in (14) may be
evaluated from its MGF in (16) as

(B.1)

Denoting by the unit step function and using (B.1), we have
for the left-hand tail probability

(B.2)

where the restriction on the range is necessary for the conver-
gence of the inner integral in the second last equation in (B.2).
In similar manner, the right-hand tail probability may be evalu-
ated as

(B.3)

As the line integral of an analytic function does not depend on
the integration path, we rewrite (B.2) and (B.3) as

(B.4)

(B.5)

where the integration contours are conveniently chosen
to closely approximate the paths of steepest descent passing
through the saddle points of the integrands on the real
s-axis. Rewriting the integrands of (B.4) and (B.5) as

(B.6)
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with

(B.7)

the saddle points and are the roots of

(B.8)

where is the derivative of . The saddle points
are to be found numerically using, for example, the Newton’s
method. Starting with (real), the saddle points are the
limit of the succession

(B.9)

where

(B.10)

As explained in [19], a convenient starting valueis that de-
rived by approximating as a Gaussian r.v. with mean (19)
and variance (20)

(B.11)

where the sign is to be used for and the sign for . If
turns out to be outside the allowable range

, one simply takes .
The iteration (B.9) can be stopped when falls below
a prescribed value.

The paths of steepest descent are well approximated by
parabolas of the form

(B.12)

where [19]

(B.13)

(B.14)

The integrals (B.4) and (B.5) are then written as

(B.15)

and are evaluated by the trapezoidal rule

(B.16)

The sum is stopped when becomes negligible while the
initial step size is taken as [19]

(B.17)

and successively halved until the result stabilizes in the desired
number of digits. By using the trapezoidal rule, when halving
the step size, one can simply add to the previously accumulated
trapezoidal sum the values of the integrand at the intermediate
sampling points before multiplication by the final step size.
The advantage of this quadrature formula for infinite integrals
of analytic functions is that the number of reliable significant
figures approximately doubles when the step size is halved [28],
[2929]. All the results in this work were evaluated with four
reliable significant digits which needed the evaluation of a total
of 30–50 samples for each symbol in the sequence even
for probabilities down 10 .

When in (22) is near in (19) and when the saddle point
is , the path of steepest descent may be different from
the parabola (B.12) in that it initially goes as (B.12) predicts
with an initial curvature , then the curvature changes sign
and the path approaches another parabola with positive curva-
ture but with its axis parallel instead that coincident with the
real -axis. In this case, integrating along the path (B.12) would
cause the integral (B.15) to diverge. So, whenin (B.13) turns
out negative it should be set to zero in order to perform the in-
tegral in (B.15) along a straight vertical path. In a case such as
this, it may be also numerically convenient to rewrite (B.7) as

(B.18)

When the postdetection filter has an impulse response which
changes sign, i.e., when the matrixin (A.20) is not definite
positive, then the saddle point may be too near the closest sin-
gularity on its right for the trapezoidal sum to have the chance
of converging before the parabola approximating the steepest
descent path crosses the boundaries of the regularity domain.
This can be detected by the fact that the integrand diverges and
when this happens the integration must be stopped and per-
formed again along a straight vertical path through the saddle
point by setting in (B.13) to zero.
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