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Abstract—An analytical expression is derived for the reflection which is a translation of théz, y) coordinate system by 45
coefficient of a staircased air/dielectric interface. This expres- The discretized form of Maxwell’s equation for the magnetic

sion for the reflection coefficient is then used to determine fo1q at a location(7, m) which is in the center of the cell just
the attenuation and propagation constants of the wave induced S L
to the left of the interface, is given by

by staircasing. It is demonstrated here that the errors due
to staircasing increase as the relative dielectric permittivity is

increased and converges to the results for an air-PEC interface. — (g+! _ gn ) = i[ n+1/2 _ prtl/2
§ z(l,m) z(l,m) /vboh z(l,m+1/2) z(l,m—1/2)

Index Terms—Air—dielectric interface, FDTD, staircasing er- 4 L2 g2 |
rors. y(l—1/2,m) y(+1/2,m)l

1)

o . ) The electric fields surrounding the magnetic field (&tm)
T HE finite-difference time-domain (FDTD) method formay pe written in the form

solving Maxwell's equations has become a very popular

. INTRODUCTION

and widely used technique. The traditional FDTD algorithm i§n+1/2 _ g2 R (H” _gn ) (2
based on a Cartesian coordinate system. A simple and commefi—1/2.:m) — “u(l=1/2m) — o p V7 alm) #(I=1,m)
approach to modeling arbitrary geometries that do not conform, ., ; /> _ m—1/2 6 " "

to a Cartesian grid is to use a staircased approximat'rg(l+1/2,m) _Ey(l+1/2,m) " eoh (HZ(HLm) - Hz(l,m)) (3)

of the curved surface. The issue of staircasing error has_, , ne1/2 8 . .

been addressed by many in the FDTD community [1}-[3Fu(mr1/2) = Eewmrisz) = =7 Fgmery = Higm) (4)
and several methods to overcome the inaccuracies througthrl/2 ne1/2 (;5

modified FDTD algorithms have been proposed (€.., [41-8ewm1/2) = Eawm 179 = =7 Him) = Higm-1)) ()
Railton and Schneider [3] compared some of these methods 2

for the treatment of curved PEC surfaces. Cangellaris anthereé is the time step and is the cell size. Equations (2)
Wright [2] presented a numerical approach for the analysisid (4) represent the electric fields in the dielectric material
of the staircasing errors present at an air—PEC interfacednd differ from equations (1) and (3) by the relative dielectric
two dimensions. The reflection coefficients for TMnd TE.  permittivity ¢,.. Substituting (2)—(5) into the equation for the
polarizations were derived in order to find the characterimagnetic field (1) results in

tic equation for surface waves supported by the staircased

. . . h2
boundary. In this letter, we present a generalization of the M (HZ’(er,in) —2HT, +H2’(7,3n,))

technique originally introduced in [2] that includes the ability 62
to characterize the errors associated With a s_taircased boundary _ i(HQ(l ity = 2H 0+ Hg )
between free space and a lossless dielectric. o o A
1 n n n
ll. ANALYSIS METHOD + g( Sutmy = 2HZ y F H e y)- - (6)

The reflection coefficient for a TEplane wave being . . . o
scattered by a lossless dielectric at the interface can be deri\'/\!%i(t’ we introduce th_e following expressions for th_e incident,
by starting with the FDTD equations for the electric an ectgd, .and. transmitted magnetic fields, for the interface at
magnetic fields. For the purpose of this study, we will adopt ik 4% inclination
same geometry as that originally proposed by Cangellaris and i .
Wright [2], where the boundary is tilted by 45The inclination H, =4 eXp[_J(]?w(lh) +hy(mh) = w(nd)] (7)
of the interface introduces a new coordinates systefy’), H" = RH, exp[~j(ky(h) + kz(mh) — w(nd)] (8)

H' =TH, exp[—j(kup2(IR) + ky2(mh) — w(nd)]  (9)
Manuscript received June 29, 1999; revised September 28, 1999. This

work was supported by the U.S. Department of Energy, Lawrence Livermar . . . .

Laboratory, under Contract W-7405-Eng-48. Where the total field in the free space region is represented by
A. Akyurtlu, D. H. Werner, V. Veremy, and K. Aydin are with Pennsylvaniathe sum of the incident and reflected field, given in (7) and

State University, University Park, PA 16802 USA. 58) respectively.
D. J. Steich is with Lawrence Livermore National Laboratory, Livermor _l'_h . in the diel ic d &

CA 94550 USA. e propagation constants in the Jie ectric, eno_te By
Publisher Item Identifier S 1051-8207(99)09814-1. and k2, are related to the propagation constants in the free

1051-8207/99$10.001 1999 IEEE



AKYURTLU et al. STAIRCASING ERRORS IN FDTD 445

space region by which leads to the well-known result for parallel polarization
given by
ke + K k2 (ke 4k
by = — y+\/—m—< - y) (10) —cos0; + (1//Er2)/1 — (1/e,2) sin? 6;
2 2 2 R= 2 \/ 2 .19
o ko + \/k% <kac 4 ky>2 an cos b, + (1/‘/57,2)\/1 — (1/e,9)sin? 6;
v 2 2 2 ' Finally, by substituting (10) and (11) into (16) and expressing

The continuity of the tangential magnetic fields at the interfacteh,e result in terms ofv and / yields

x = y, leads to the phase matching condition <A1 + Li (Ape®™ — 2) + Ei (Ap Az — Z)D
o 2
kaz + by = ko + ky. (12) f=- T 1
<A1 + |:— (AQG_ah — 2) + — (AQAg — 2):|>
The term,k,, appearing in (10) and (11) is given by €o c2 (50)
ky = w\/Erav/lioEo = fErakt = \/Era\[kL + k7 (13)  \where
which represents the propagation constant in the dielectric. Az =2cos(8h)
The z- and y-components of the propagation constant in the Az = exp(—j\/(Bh)2(e,2 — 1) — e.2(ah)?).  (21)
(z’',y') and (x, y) coordinate systems can be related to each ) ) o .
other in the following way: At this point, we turn our attention to finding expressions
for the propagation constart and attenuation constarnt
ko = (ks + ky)/V2,  ky = (ky — k2)/V2 associated with the surface wave supported by the staircased

ko = (ky + ko) V2, ky = (ky — ko) V2. (14) boundary. A surface wave is supported as the reflection
coefficient,R, goes to infinity. Hence, setting the denominator

. L . f (2 i Its i
Following the notation introduced in [2], we assure>0 of (20) to zero and rearranging terms results in
and let <

Er2

1+ i) — 24,4
. . —ah - _
ke=p—ja,  ky=p+jo (15) M+ — Ag = Aa /2 (22)

Once the appropriate magnetic fields from (7), (8), and (9here

are substituted into (6) and condition (12) is enforced, the n\?2 , [ w6

following expression for the reflection coefficient results, 4 = <E) sin <?> (23)
shown in (16) at the bottom of the page, where

and ¢ is the speed of light in free space. Since this equation
A — 4uh2 o [wd contains two unknown quantities, and 2, a second equation
1 =45 Sln - . (17) . . . .
6 2 is required in order to solve for these parameters. A numerical

o ) . dispersion analysis of the wave equation propagating on the
In the limit ash — 0 (i.e., for well-resolved waves), this EpTp grid toward the boundary provides a second expression
expression reduces to relating « and 3, which is given by [2]

. 1/60(163;—]6,)—i—l/&‘g(k)g—k‘mg) 1—A4
lim R = Y Y 18 h) = ——. 24
1o 1/eo(ky — kz) + 1/e2(ky2 — kz2) (18) cos(/3h) cosh(ah) (24)
1 —jk,h Gk k 1 —jkaok Gk h
A1+—(6J-”L—i-ej”’b—Q)—i——(eJ“‘2L+6192L—2)
R=— e 2 (16)
Al + = (ejkyh + e—jka:h _ 2) + = (e—jka;zh + ejkyzh _ 2)
£o £2

oo ) o (e il o3 )| =

(25)
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Fig. 1. Attenuation constanth versush /A for various values of,2 obtained using (26). Plots are made for an assumed Courant number of 0.85.

Equation (24) can be used to eliminate th& terms that indication of the level of staircasing error present. These plots
appear in (22), without making any approximations for “welldlustrate the fact that as the grid resolution decreases (i.e.,
resolved” waves. This gives rise to a transcendental equatiph\ increases), the effects of dispersion errors inherent in
that only depends onh, shown in (25) at the bottom of thethe difference scheme correspondingly increase. When the
previous page. This equation can be further simplified by usipgrmittivity for the material to the right of the interface is
the expression for the Courant numlgyr — v/2¢6/h, so that set to that of free space (i.es,2 = 1), we expect that

the attenuation constant identifying the artificial surface wave
should be zero, since there is no material discontinuity and the
effects of staircasing should not be seen. On the other hand, as

1 . 1
A+ — (€79M(24;5) = 2) + —(2exp
Eo £2

‘ e,2 approaches infinity, the values ah. for the surface wave
: (—J V (cos—1(A5)2(gp2 — 1) — £pa(ah)? — 2)) =0 at the air—dielectric interface asymptotically approach those
(26) of the air—PEC interface. The plots shown in Fig. 1 indicate

that «h values for a surface wave existing on an air—dielectric
interface are less than the values for an air—PEC interface,
which suggests that the associated staircasing error will also be
less. A similar type of analysis can be conducted on interfaces
. (27) between more general materials.

where

1— (2 ) sin? o h
cz )"\ A
cosh(ah)

The parameteh /A represents the size of the discretized cells REFERENCES
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