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Abstract—An analytical expression is derived for the reflection
coefficient of a staircased air/dielectric interface. This expres-
sion for the reflection coefficient is then used to determine
the attenuation and propagation constants of the wave induced
by staircasing. It is demonstrated here that the errors due
to staircasing increase as the relative dielectric permittivity is
increased and converges to the results for an air–PEC interface.

Index Terms—Air–dielectric interface, FDTD, staircasing er-
rors.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method for
solving Maxwell’s equations has become a very popular

and widely used technique. The traditional FDTD algorithm is
based on a Cartesian coordinate system. A simple and common
approach to modeling arbitrary geometries that do not conform
to a Cartesian grid is to use a staircased approximation
of the curved surface. The issue of staircasing error has
been addressed by many in the FDTD community [1]–[3],
and several methods to overcome the inaccuracies through
modified FDTD algorithms have been proposed (e.g., [4]–[8]).
Railton and Schneider [3] compared some of these methods
for the treatment of curved PEC surfaces. Cangellaris and
Wright [2] presented a numerical approach for the analysis
of the staircasing errors present at an air–PEC interface in
two dimensions. The reflection coefficients for TMand TE
polarizations were derived in order to find the characteris-
tic equation for surface waves supported by the staircased
boundary. In this letter, we present a generalization of the
technique originally introduced in [2] that includes the ability
to characterize the errors associated with a staircased boundary
between free space and a lossless dielectric.

II. A NALYSIS METHOD

The reflection coefficient for a TE plane wave being
scattered by a lossless dielectric at the interface can be derived
by starting with the FDTD equations for the electric and
magnetic fields. For the purpose of this study, we will adopt the
same geometry as that originally proposed by Cangellaris and
Wright [2], where the boundary is tilted by 45The inclination
of the interface introduces a new coordinates system,
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which is a translation of the coordinate system by 45
The discretized form of Maxwell’s equation for the magnetic
field at a location which is in the center of the cell just
to the left of the interface, is given by

(1)

The electric fields surrounding the magnetic field at
may be written in the form

(2)

(3)

(4)

(5)

where is the time step and is the cell size. Equations (2)
and (4) represent the electric fields in the dielectric material
and differ from equations (1) and (3) by the relative dielectric
permittivity Substituting (2)–(5) into the equation for the
magnetic field (1) results in

(6)

Next, we introduce the following expressions for the incident,
reflected, and transmitted magnetic fields, for the interface at
a 45 inclination

(7)

(8)

(9)

where the total field in the free space region is represented by
the sum of the incident and reflected field, given in (7) and
(8), respectively.

The propagation constants in the dielectric, denoted by
and are related to the propagation constants in the free
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space region by

(10)

(11)

The continuity of the tangential magnetic fields at the interface,
leads to the phase matching condition

(12)

The term, appearing in (10) and (11) is given by

(13)

which represents the propagation constant in the dielectric.
The - and -components of the propagation constant in the

and coordinate systems can be related to each
other in the following way:

(14)

Following the notation introduced in [2], we assume
and let

(15)

Once the appropriate magnetic fields from (7), (8), and (9)
are substituted into (6) and condition (12) is enforced, the
following expression for the reflection coefficient results,
shown in (16) at the bottom of the page, where

(17)

In the limit as (i.e., for well-resolved waves), this
expression reduces to

(18)

which leads to the well-known result for parallel polarization
given by

(19)

Finally, by substituting (10) and (11) into (16) and expressing
the result in terms of and yields

(20)

where

(21)

At this point, we turn our attention to finding expressions
for the propagation constant and attenuation constant
associated with the surface wave supported by the staircased
boundary. A surface wave is supported as the reflection
coefficient, goes to infinity. Hence, setting the denominator
of (20) to zero and rearranging terms results in

(22)

where

(23)

and is the speed of light in free space. Since this equation
contains two unknown quantities,and a second equation
is required in order to solve for these parameters. A numerical
dispersion analysis of the wave equation propagating on the
FDTD grid toward the boundary provides a second expression
relating and which is given by [2]

(24)

(16)

(25)
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Fig. 1. Attenuation constant�h versush=� for various values of"r2 obtained using (26). Plots are made for an assumed Courant number of 0.85.

Equation (24) can be used to eliminate the terms that
appear in (22), without making any approximations for “well-
resolved” waves. This gives rise to a transcendental equation
that only depends on , shown in (25) at the bottom of the
previous page. This equation can be further simplified by using
the expression for the Courant number so that

(26)

where

(27)

The parameter represents the size of the discretized cells
in FDTD as a function of wavelength. The cell size for a
conventional FDTD code should be one tenth of a wavelength
(i.e., ) or less at the highest frequency of interest.
The attenuation constant, is plotted in Fig. 1 as a function
of for various values of The case of a PEC from [2]
is compared with the dielectric model for There
is a discrepancy between the two plots which is attributed to
using different expressions for For our analysis, the exact
form for derived from (24) is used. On the other hand,
Cangellaris and Wright make an approximation for in [2],
which assumes “well-resolved” waves.

III. RESULTS

The plots of as a function of shown in Fig. 1
contain information about the strength of the artificially in-
duced surface wave on the interface and serve as a direct

indication of the level of staircasing error present. These plots
illustrate the fact that as the grid resolution decreases (i.e.,

increases), the effects of dispersion errors inherent in
the difference scheme correspondingly increase. When the
permittivity for the material to the right of the interface is
set to that of free space (i.e., ), we expect that
the attenuation constant identifying the artificial surface wave
should be zero, since there is no material discontinuity and the
effects of staircasing should not be seen. On the other hand, as

approaches infinity, the values of for the surface wave
at the air–dielectric interface asymptotically approach those
of the air–PEC interface. The plots shown in Fig. 1 indicate
that values for a surface wave existing on an air–dielectric
interface are less than the values for an air–PEC interface,
which suggests that the associated staircasing error will also be
less. A similar type of analysis can be conducted on interfaces
between more general materials.
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