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A Finite-Difference Time-Domain Method
Without the Courant Stability Conditions

Fenghua ZhengStudent Member, IEEEZhizhang ChenSenior Member, IEEEand Jiazong Zhang

Abstract—n this paper, a finite-difference time-domain method ~ Another technique is the so-called pseudospectral time-domain
that is free of the constraint of the Courant stability condi- (PSTD) method [4]. By using the fast Fourier transform (FFT)
tion is presented for solving electromagnetic problems. In it, to represent spatial derivatives, the PSTD method can also

the alternating direction implicit (ADI) technique is applied in hi id t of t i lenath
formulating the finite-difference time-domain (FDTD) algorithm. achieve a grid arrangement o two Steps per waveiengtn.

Although the resulting formulations are computationally more In this paper, a FDTD method without the Courant stability
complicate than the conventional FDTD, the proposed FDTD condition is presented. Itis based on the Yee’s grid but with the

is very appealing since the time step used in the simulation is jimplementation of the alternative direction implicit technique
no longer restricted by stability but by accuracy. As a result, nat has peen widely used to solve parabolic partial differential

computation speed can be improved. It is found that the number . . . . .
of iterations with the proposed FDTD can be at least three equation [5]. As a result, the time step used in the simulation

times less than that with the conventional FDTD with the same IS NO longer restricted by stability but by accuracy of the
numerical accuracy. algorithm. The numerical results indicate that with the same
Index Terms— Alternating direct implicit technique (ADI), ~ &ccuracy, the proposed FDTD method uses at least three times
FDTD method, instability, unconditional stable. fewer of iterations and is at least 1.55 times faster than the
conventional FDTD.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method [1] Il. THE PROPOSEDFDTD SCHEME

has been proven to be an effective means that providedn an isotropic medium, Maxwell's curl vector equations can
accurate predictions for varieties of electromagnetic interdee represented by a system of six scalar Cartesian equations.
tion problems [2]. Nevertheless, the FDTD is very memorior example, let us consider
and CPU-time intensive and consequently is not suitable for oF 1 /oH oH
large-scale problems. Such intensive memory and CPU time r — _< z _ y)
requirements come from two reasons: 1) the spatial increment ot €\ 9y 9z
steps must be small enough in comparison with the wavelengthl.he proposed FDTD method consists of the following
(usually 10-20 steps per wavelength) in order to make tﬂ%cretization

: . . L . process.
numerical dispersion error negligible, and 2) the time step must1 At th Dith t ¢ NOH. /9u. the first t
be small enough to satisfy the following stability condition ) e(@+ ) Ime Step, onhoH. / u, Inefirstterm -
on the right-hand side, is replaced with an implicit dif-

(the Courant condition): SR .
ference approximation in terms of the unknown pivotal
1 1 1 17Y2 values at the(n + 1)th time step, whiledH, /9z, the
Umax At < A2 + A + N . (1) secondterm on the right-hand side, is replaced with an
i explicit finite difference approximation in terms of the
Here u..x iS the maximum wave phase velocity within the ~ known values at the previousth time step.
model. 2) Atthe(n+2)th time stepgH, /0= (theseconderm) is
Various time-domain techniques have been developed to replaced by an implicit finite-difference approximation
improve the FDTD computation efficiency. One of them is in terms of the unknown pivotal values at tfwe+ 2)th
the recently developed multiresolution time-domain (MRTD)  time step while thedH, /9y (the first term) with an
method. By using orthonormal wavelet spatial expansions, the ~ explicit one in terms of the known values at the previous
MRTD scheme [3] can reduce the spatial discretization to  (n + 1)th time step.
two steps per wavelength. However, the stability condition for In other words, with the well-known Yee’s finite difference
MRTD becomes more stringent. The time to spatial step raftipid arrangement, (2) is computed in two steps:
becomes five times less than that with the conventional FDTD.

(@)

nt1 B Fig1/2,5k _"Ei+1/2,j,k

Manuscript received June 9, 1999; revised September 13, 1999. At
F. Zheng and J. Zhang are with the Department of Electrical and Computer . .
Engineering, Dalhousie University, DalTech, Dalhousie University, Halifax, 1 n+1Hi+1/2,j+1/2,k - n+1Hi+1/2,j—1/2,k
Nova Scotia, Canada B3J 2X4. = . Ay
Z. Chen is on leave with the Department of Electrical and Electronic v v
Engineering, The Hong Kong University of Science and Technology, Clear nH7‘,+1/2,j,k+1/2 - nH71+1/2,j,k—1/2
Water Bay, Kowloon, Hong Kong. — 3)
Publisher Item Identifier S 1051-8207(99)09816-5. Az

1051-8207/99$10.001 1999 IEEE



442 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 9, NO. 11, NOVEMBER 1999

is used to advance the solution from thth to the(n + 1)th 5E+307
time step, and
x T Fo
"+2Ei+1/2,j,k - "+1Ei+1/2,j,k .
At S o
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"+2Hi+1/2,j,k+1/2 - "+2Hi+1/2,j,k71/2
- ~ (4)  sE+307 :
0 500 1000 1500 2000 2500
for the advancement from thi + 1)th to the (n+2)th time t(ps)

step.
The notationlegjyk, nH; ), with « = z, ¥, z are the field

components with their positions in the Yee’s grid being the  ¢.02

(@

same as the conventional FDTD.
Similar expressions can be derived for the other COMpo-x 0.01 |
nents,E,,E., H,, H, andH at the(n + 1)th and(n + 2)th z
time-step, respectively. By substituting the expressionitfor = ¢
at the(n + 1)th time-step into (3), one can have k>
Q
At? 2A¢2 o -0.01 |
- <—uc A )n+1Ef+1/2,j+1,k + <1+ N >n+1Ef+1/2,j,k
AtQ 0.02 - -
x
_ <W>n 1By 0 500 1000 oo 1500 2000 2500
. At N »
= nEi+1/2,j,k + E(nHi+l/2,j+l/2,k - "Hi+1/2,j71/2,k) (b)
At i Fig. 1. Time-domain electric fields with the conventional FDTD and the

proposed FDTD. (a) The conventional FDTD solutions that becomes unstable
with At; = 1.2 ps. (b) The proposed FDTD solution with?; = 120 ps.
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y y cavity has the dimension of 9 mm 6 mm x 15 mm. A
- "Ez‘+1,j—1/2,k T "Ei,j—l/2,k)' (5) uniform mesh withAl = 0.6 mm was used, leading to a total

The equations for the other five components can be derivedmber of 10x 15 x 25 grid points.
in a similar way. Note that in the above equation, there is no
half time-step difference between electric and magnetic f|eE Numerical Verification of the Stability
components.

The above recursive equation can be solved either implicitly TO verify numerically that the proposed FDTD scheme is
or explicitly. In an actual computation, a recursive scheme c#ficonditional stable, simulations with the conventional FDTD

be used. For example, consider (5). Suppose that the leftm@d€l the proposed FDTD were run with a time stel,
values ofE,, say atj = 0 andj = 1 at the(n+1)th time step, exceeding the time step limit for the stable conventional FDTD
are obtained. The regt,’s can be calculated by applying (5)@lgorithm that isAtrprpayax = (Al/ev3) = 1.155 ps
with a sequence of ascendi'jgthat allows us to f|ndE'T at in this case. F|g 1 shows the electric field recorded at the
j+1from E, atj andj — 1. In such a way, the computationcenter of the cavityAtpprp = 1.2 ps was used with the

1.2 ps) was used with the proposed FDTD scheme. As can be
Numerical Stability seen, the conventional FDTD quickly becomes unstable [see

Fig. 1(a)], while the proposed FDTD still gives stable results
It can be proved theoretically that the proposed sche |ge I£i )], whi prop v !
:lt%ee g. 1(b)].

is inherently unconditionally stable or without the constrai
of the Courant stability condition. Due to the limit of the

space in this letter, the details of the theoretical proof am Accuracy Versus Time Step
not shown here. However, an experiment was performed to
numerically show the proposed scheme is stable as descrig?
in the following section.

ince the proposed FDTD is always stable, the selection
he time step is no longer restricted by stability but by
modeling accuracy. As a result, it is meaningful to investigate
how the time step will affect accuracy.
For the comparison purpose, both the conventional FDTD
For the sake of simplicity and verifications, a rectanguland the proposed FDTD were used to simulate the cavity again.
cavity was computed with the proposed FDTD scheme. Théis time, the time ste@\trprp = 0.8 ps was chosen with

I1l. NUMERICAL RESULTS
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5 TABLE |
COMPARISONS OF RESULTS WITH THE
Unstable point CONVENTIONAL FDTD AND THE PROPOSEDFDTD
5 for the FDTD . - "
9 : —e US-FDTD Analytic | Conventional FDTD schemg Proposed FDTD scheme
=4 results (GHz] Simulation | Relative errof Simulation |Relative error
5 ——FDTD
u:J results (GHz), results (GHz
© 37 19.427 19.451 0.12% 19.400 0.14%
-% 26.022 25.972 0.19% 25.961 0.23%
E) 2 31.652 31.455 0.62% 31.553 0.31%
1L 34.776 34.613 0.47% 34.577 0.57%

On a Pentium 166-MHz PC, it took 58.97 s to finish with the
conventional FDTD and 38.13 s with the proposed FDTD. Itis
then concluded that a saving of 1.55 times with the proposed
Fig. 2. Relative errors of the conventional FDTD and the proposed FDTD ngD was achieved in our case.

the function of relative time step\t/Atrprparax. Dash line represents
the unstable point of FDTD scheme.

2 4 8

Relative time-step (Af/ At pprpyax )

IV. CONCLUSION

the conventional FDTD while the variable time st&p; was A three-dimensional (3-D) FDTD method was presented
chosen with the proposed FDTD to check on the accuracyfor solving electromagnetic problems. In it, the Yee's grid

Fig. 2 illustrates the relative errors computed for the domis used but the alternative direction technique is applied in
nant mode of the cavity using the conventional FDTD and tiermulating the algorithm. As a result, the stability condition
proposed FDTD with variable time steps. For clarity, relativassociated the FDTD method is removed. Time step used is
time-stepAt/Atrprpamax iS Uused. As can be seen, at lowthen solely restricted by the accuracy of the numerical discrete
At/Atrprpymax, the errors of both the conventional FDTDmodels. Preliminary numerical results showed the validity of
and the proposed FDTD are almost the same. However, aftee method. Theoretical roof of the unconditional stability
At/Atrprpmax = 1.0, the conventional FDTD solution be-and theoretical investigations on accuracy including numerical
comes diverge (unstable) while the proposed FDTD continudispersion of the FDTD method will be presented in our future
to produce stable results with increasing errors. publications.

It should be noted that very recently, the 2-D Courant-
condition free FDTD was proposed in [6]. This letter extends

Again, for the comparison purpose, both the conventiont e method to three dimensions with numerical validations.

FDTD and proposed FDTD were used to simulate the cavity.
This time, the time stepAtpprp = 0.8 ps was chosen
with the conventional FDTD Wh'_le the time stept; = 3 x [1] K. S. Yee, “Numerical solution of initial boundary value problems in-
Atpprp = 2.4 ps was chosen with the proposed FDTD. The  volving Maxwell's equations in isotropic mediaZEE Trans. Antennas

i i i i i Propagat, vol. AP-14, pp. 302-307, May 1966.
r?a.son for such tlme step selections is that they will provid 2] A. Taflove, Computational Electrodynamics: The Finite-Ddifference
similar accuracy with the two methods. The two methods can™ Time-pomain Method. Norwood, MA: Artech House, 1996
then be compared in a fair manner. Twelve hundred iteratiori§] M. Krumpholz and L. P. B. Katehi, “MRTD: New time-domain schemes
was run with the conventional FDTD and 400 iterations with

C. Computation Memory and CPU Time Saving
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