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An Efficient Series Expansion for the 2-D
Green’s Function of a Microstrip Substrate
Using Perfectly Matched Layers

Henk Derudder, Frank Olyslagesenior Member, IEEEand Dangél De Zutter,Senior Member, IEEE

Abstract—A new efficient technique is proposed to derive
a series representation for the two-dimensional (2-D) Green’s
function of a planar substrate. A perfectly matched layer (PML)
is used to turn the original open configuration into a closed
one. The resulting structure is regarded as a waveguide and the
resulting—analytically known—discrete set of eigenmodes is then 2%
used to expand the Green’s function. The method turns out to be ==
elegant and efficient for distances larger than 0.1 away from
the source.

Index Terms—Absorbing boundary condition, Green’s func-

tion, substrate, surface waves. Fig. 1. Configuration without (I) and with (ll) the PML. The structure is

invariant in thex-direction.

| INTRODUCTION using a stretched-coordinate which obeys
Atypical monolithic microwave integrated circuit (MMIC) P
consists of a layered substrate and distributed and/or Z= / a(7) d (1)

lumped components that interact through their interconnected

ports. If such a structure is invariant in a given directio®Vith a(z) = 1+ (ko — 1)f(2) — j(oo/weo)f(2) (Ko, o0
such as a microsrip line, a two-dimensional (2-D) method @nd f(») being the parameters of the PML) while leaving
moments can be used to study the structure. The core of sudh&itangential:- and y-coordinates unchanged. This leads to
method of moments simulation is the 2-D Green’s function ¢fe conclusion that a layer of air with a PML on top of it
the structure. This 2-D Green’s function represents the fielg@n be seen as one layer of air with a complex thickness
generated by a line source. In [1] it is shown that after spati&glir = dair + dparr, Wheredpy, = [§77* o(2) d2’ and
Fourier transformation of Maxwell's equations the layere@here>’ = 0 is taken on the interface between the air and the
structure can be transformed in an equivalent transmissiBNL [5]. In this letter f(z) will be equal to one.

line cascade which can be easily solved. The 2-D Green'sConsider a grounded dielectric substrate with thicknkgs
function in the space domain is then found by a numericand relative permittivitye, [Fig. 1(1)]. Above the substrate
inverse Fourier transformation of the solution of this cascad&ere is a layer of air with thicknesg,;.. On top of the

In this paper a new technique to calculate the 2-D Greerd§ we have a PML with thicknesgpyr, [Fig. 1(1)]. We
function is proposed by placing a PML [2] above the aidook for the TE-polarized eigenmodes (thus having ofly,
region and expanding the Green’s function in the eigenmodfg and H.-components) of this structure which propagate

of the resulting closed waveguiding structure. along they-axis and hence obey air*+¥-dependence. As
we already stated, the layer of air and the PML can be seen

as one layer of air with a complex thickness. Making use of
this, it is straightforward to deduce the dispersion relation for

TE-polarized eigenmodes [5]
In the context of this letter, a perfectly matched layer (PML)

will be considered in its stretched coordinate formalism [3], Feub COYYaub@sub) = ~Vair COUVair dair) (2)
[4]. In [3] and [4] it is shown how the analytic continuation of
the frequency-domain Maxwell's equations to complex spald1€ré vsu» =
achieves the reflectionless absorption of the electromagndficFig- 2 the solutions for this dispersion relation are plotted
waves. In Cartesian coordinates (Fig. 1) a PML is formed B9r a configuration with the following parametergiy,;, =
3.5 MM, dy; =5 MM, dgy, =9 MM, e,. = 3, f =12 GHz,
(09/weg) = 8 andkg = 10. The eigenmodes in the waveguide
Manuscript received September 2, 1999; revised October 21, 1999. of Fig. 1(Il) can be grouped into three categories [5]-[7]. The

II. PML WAVEGUIDES

\JwWiereopio — k2 and yqi = y/w?eopo — k2.
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Fig. 2. Normalized propagation constants for the waveguiding structure depicted in Fig. 1 (ll).

also exist in the original open waveguide without the PMktonfiguration [Fig. 1(11)]

layers [Fig. 1(1)]. The propagation constants of these modes N

are the same (with a relative differenegt0~7) for both the Eu(y, 7 = dow) = Z KpEon(z = dow)e ™Y (4)
waveguide with and without the PML’s. We call the sec-
ond category of eigenmodes Berenger eigenmodes. For these ) o
modes the field is mainly concentrated in the PML. For high¥fhere K, are the expansion coefficients ahd,, the modal
order modes more of the field is concentrated in the PMm{i€lds. Details onk, will be given in [5]. The method to
The last category of eigenmodes can be labeled as evanes@8frminek.,, is found in [8]. The TM-polarized eigenmodes
eigenmodes. They behave as evanescent eigenmodes fHU§t not be taken into account as théi,-component is
closed waveguide. These modes have substantial fields indffntically zero and hence they do not contribute to Hie

the substrate. When the frequency increases these motfld on the substrate-air interface. We apply the Lorentz
will turn into propagating eigenmodes with real propagatioffciProcity theorem [9]

constants.

n=1

7{ (B x Hy— Ey x Ha) - dl
C

Ill. GREEN'S FUNCTION _ // (7a "E,— T, 'Ea) ds (5)
On the interface between the substrate and the air we place <

a Dirac line current = &§(z — dou,)8(y)%, (Fig. 1). The

aim is to calculate thet,-component of the electrical field

on the mter_face. One can eas_lly prove t@t and £ equal and as field the field of an eigenmode with index= :. The

zero for this problem. We will do this in two ways. Foreigenmodes are normalized such that

the configuration of Fig. 1(l) this can be done by Fourief

transforming Maxwell's equations along thedirection for the L d

given structure. Solving the equations in the spectral domain 2 /0 y

yields E(ky,z = dau,). Ex(y,z = ds,) can then be found . )

by a numerical inverse Fourier transformation. This yields tf#heré d = dsu, + dair + dppr, is the total thickness of

exact 2-D G...-component of the Green’s function for thethe res_ultmg cI(_)s_ed waveguiding structure. In thl_s way the

electrical field on the interface. It is straightforward to shoXPansion coefficients are found to obey the following simple

to the contour depicted on Fig. 1(1l). Asfield we choose the
fields generated by the line sourde = §(z — doup)8(y) s

that £, (y,z = deuw,) is given by and elegant formula
Eon(z = dsu
Eac(yvz = dsub) Kn == _¥ (7)
_ _Jwho /Oo tan(Yeundsub)
27 oo Vsub Tt JVair ta11(’)’subdsub) IV. RESULTS
eI df,. (3)  We apply the two methods described in the previous sec-

tion to the following configurationdsy, = 9 mm, ¢. =
A second and new way to calculatB,(y,z = dsup) is 3, and f = 12 GHz (A = 25 mm). At this frequency
to use an expansion in the TE-eigenmodes of the modifidte substrate only supports one surface wave with; =
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Fig. 3. Magnitude forE.(y,z = d..1,) as a function ofy; prop stands for the propagating modeer for the number of Berengermodes, asd
for the number of evanescent modes.
TABLE | V. CONCLUSIONS

NUMBER OF MODES AS A FUNCTION OF DISTANCE FOR AN ACCURACY OF 0.1%

A new method is proposed to calculate the 2-D Green’s

Y (’;m) Ne;a“ *N;E:gf Né‘;“ function for a planar grounded substrate. We place a PEC-
5 1 50 51 backed PML on top of the structure thus turning the original
10 0 20 20 open structure into a closed one. The discrete set of eigen-
20 0 10 10 modes (propagating, Berenger- and evanescent modes) is then
4318 8 i i used to derive a series expansion for the Green’s function. It

turns out that we recover both the magnitude and the phase
) _ of the exact Green'’s function with a relative error smaller
(ky/ko) = 1.39379. In Fig. 3 we plotted the magnitudeihan 0.01% for distances larger thani\ away from the

of E.(y,z = dsu,) @s a function ofy on a logaritmic goyrce. The generalization to multilayered substrates is easy
scale (the source is located at= 0). The full line rep- 4 perform by using a scattering matrix technique to find the
resents Ex(y,z = dsup) for the original open structure. gispersion relation for the eigenmodes of the multilayered
The other curves are the results of our PML-waveguidg psirate backed by a PML.

expansion technique. Our numerical results are obtained for

doir = dpymr = (dsun/2). Similar results are obtained for REFERENCES

the phase ofF,.(y, z = ds,,). However, numerous numerical ] _ _
experiments prove that he precise valuesiaf. and dpag; I 1L Foee, F Oy e 0, Oe FueEectonagens ang O

are not critical with respect to the final results. Given the set  cjarendon, 1993.

of propagation constant€y, can be calculated everywhere [2] J. P. Berenger, “A perfectly matched layer for the absorption of

almost instantaneously. In the expansion, the three types of ifgf{omag”e“c waves,J. Comput. Physvol. 114, no. 2, pp. 185-200,

eigenmodes described in Section Il can be used. It is observgg w. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate
that for y > 8 mm only the single propagating and the stretching as a generalized absorbing boundary conditiMitrow. Opt.

- Technol. Lett. vol. 15, no. 6, Aug. 1997.
Berenger modes must be taken into account to CaICUIaﬁ] W. C. Chew and W. H. Weedon, “A 3-D perfectly matched medium from

E.(y,z = dsuw,)- This is of course not surprising because ~ modified Maxwell's equations with stretched coordinatédjtrowave
the propagation constants of the evanescent modes havg[5]a Opt. Technol. Lett.vol. 7, no. 13, pp. 599-604, Sept. 1994.

| . . dh il ib for | H. Derudder, F. Olyslager, D. De Zutter, and S. Van den Berghe,
arge imaginary part an ence will not contribute for larg “Efficient mode-matching analysis of discontinuities in finite planar

y. Fory < 8 mm there is a visible difference between the  substrates using perfectly matched layers,” submitted for publication.
exact and the series expansion result when no evanescdfitH- Derudder, D. De Zutter, and F. Olyslager, "Analysis of planar

. . stratified waveguides in the presence of perfect matched layerBjgin
modes are used in the expansion. When one also takes theseysnc/ursi Nat. Radio Science Meeting 1988y 1998, p. 276.

modes into account a very good approximation is obtaineff] , “Analysis of waveguide discontinuities using perfectly matched

- layers,” Electron. Lett, vol. 34, no. 22, pp. 2138-2140, Oct. 1998.
0
for y > 2 mm (a relative error smaller than 0.01%). In [8] F. Olyslager, B. Baekelandt, D. De Zutter, and M. Van Craenendonck,

Table | we show, for a givery, how many Berenger and “Plane wave scattering at structures consisting of bianisotropic lay-
evanescent modes one has to use to obtain an approxima- ers and resistive sheets,” Rroc. 3rd Int. Conf. Electromagnetics in

- . : - Aerospace Applications and 7th Eur. Structyr&993, pp. 295-298.
tion for Em(y,z - ds“b) with a relative error smaller than [9] F. Olyslager, Electromagnetic Waveguides and Transmission Lines

0.1%. Oxford, U.K.: Oxford Univ. Press, 1999.




