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Henk Derudder, Frank Olyslager,Senior Member, IEEE, and Danïel De Zutter,Senior Member, IEEE

Abstract—A new efficient technique is proposed to derive
a series representation for the two-dimensional (2-D) Green’s
function of a planar substrate. A perfectly matched layer (PML)
is used to turn the original open configuration into a closed
one. The resulting structure is regarded as a waveguide and the
resulting—analytically known—discrete set of eigenmodes is then
used to expand the Green’s function. The method turns out to be
elegant and efficient for distances larger than 0.1� away from
the source.

Index Terms—Absorbing boundary condition, Green’s func-
tion, substrate, surface waves.

I. INTRODUCTION

A typical monolithic microwave integrated circuit (MMIC)
consists of a layered substrate and distributed and/or

lumped components that interact through their interconnected
ports. If such a structure is invariant in a given direction,
such as a microsrip line, a two-dimensional (2-D) method of
moments can be used to study the structure. The core of such a
method of moments simulation is the 2-D Green’s function of
the structure. This 2-D Green’s function represents the fields
generated by a line source. In [1] it is shown that after spatial
Fourier transformation of Maxwell’s equations the layered
structure can be transformed in an equivalent transmission
line cascade which can be easily solved. The 2-D Green’s
function in the space domain is then found by a numerical
inverse Fourier transformation of the solution of this cascade.
In this paper a new technique to calculate the 2-D Green’s
function is proposed by placing a PML [2] above the air-
region and expanding the Green’s function in the eigenmodes
of the resulting closed waveguiding structure.

II. PML WAVEGUIDES

In the context of this letter, a perfectly matched layer (PML)
will be considered in its stretched coordinate formalism [3],
[4]. In [3] and [4] it is shown how the analytic continuation of
the frequency-domain Maxwell’s equations to complex space
achieves the reflectionless absorption of the electromagnetic
waves. In Cartesian coordinates (Fig. 1) a PML is formed by
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Fig. 1. Configuration without (I) and with (II) the PML. The structure is
invariant in thex-direction.

using a stretched-coordinate which obeys

(1)

with
and being the parameters of the PML) while leaving
the tangential - and -coordinates unchanged. This leads to
the conclusion that a layer of air with a PML on top of it
can be seen as one layer of air with a complex thickness

where and
where is taken on the interface between the air and the
PML [5]. In this letter will be equal to one.

Consider a grounded dielectric substrate with thickness
and relative permittivity [Fig. 1(I)]. Above the substrate
there is a layer of air with thickness On top of the
air we have a PML with thickness [Fig. 1(II)]. We
look for the TE-polarized eigenmodes (thus having only

and -components) of this structure which propagate
along the -axis and hence obey an -dependence. As
we already stated, the layer of air and the PML can be seen
as one layer of air with a complex thickness. Making use of
this, it is straightforward to deduce the dispersion relation for
TE-polarized eigenmodes [5]

cot cot (2)

where and
In Fig. 2 the solutions for this dispersion relation are plotted
for a configuration with the following parameters:

mm, mm, mm, GHz,
and The eigenmodes in the waveguide

of Fig. 1(II) can be grouped into three categories [5]–[7]. The
first category of eigenmodes are propagating modes. These
eigenmodes have a real propagation constant. These modes
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Fig. 2. Normalized propagation constants for the waveguiding structure depicted in Fig. 1 (II).

also exist in the original open waveguide without the PML
layers [Fig. 1(I)]. The propagation constants of these modes
are the same (with a relative difference for both the
waveguide with and without the PML’s. We call the sec-
ond category of eigenmodes Berenger eigenmodes. For these
modes the field is mainly concentrated in the PML. For higher
order modes more of the field is concentrated in the PML.
The last category of eigenmodes can be labeled as evanescent
eigenmodes. They behave as evanescent eigenmodes in a
closed waveguide. These modes have substantial fields inside
the substrate. When the frequency increases these modes
will turn into propagating eigenmodes with real propagation
constants.

III. GREEN’S FUNCTION

On the interface between the substrate and the air we place
a Dirac line current (Fig. 1). The
aim is to calculate the -component of the electrical field
on the interface. One can easily prove that and equal
zero for this problem. We will do this in two ways. For
the configuration of Fig. 1(I) this can be done by Fourier
transforming Maxwell’s equations along the-direction for the
given structure. Solving the equations in the spectral domain
yields can then be found
by a numerical inverse Fourier transformation. This yields the
exact 2-D -component of the Green’s function for the
electrical field on the interface. It is straightforward to show
that is given by

(3)

A second and new way to calculate is
to use an expansion in the TE-eigenmodes of the modified

configuration [Fig. 1(II)]

(4)

where are the expansion coefficients and the modal
fields. Details on will be given in [5]. The method to
determine is found in [8]. The TM-polarized eigenmodes
must not be taken into account as their -component is
identically zero and hence they do not contribute to the-
field on the substrate–air interface. We apply the Lorentz
reciprocity theorem [9]

(5)

to the contour depicted on Fig. 1(II). Asfield we choose the
fields generated by the line source
and as field the field of an eigenmode with index The
eigenmodes are normalized such that

(6)

where is the total thickness of
the resulting closed waveguiding structure. In this way the
expansion coefficients are found to obey the following simple
and elegant formula

(7)

IV. RESULTS

We apply the two methods described in the previous sec-
tion to the following configuration: mm,
, and GHz mm). At this frequency

the substrate only supports one surface wave with
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Fig. 3. Magnitude forEx(y; z = dsub) as a function ofy; prop stands for the propagating mode,ber for the number of Berengermodes, andev
for the number of evanescent modes.

TABLE I
NUMBER OF MODES AS A FUNCTION OF DISTANCE FOR AN ACCURACY OF 0.1%

y (mm) Nevan Nber Ntot

3 7 60 67
5 1 50 51
10 0 20 20
20 0 10 10
30 0 3 3
40 0 1 1

In Fig. 3 we plotted the magnitude
of as a function of on a logaritmic
scale (the source is located at The full line rep-
resents for the original open structure.
The other curves are the results of our PML-waveguide
expansion technique. Our numerical results are obtained for

Similar results are obtained for
the phase of . However, numerous numerical
experiments prove that he precise values of and
are not critical with respect to the final results. Given the set
of propagation constants, can be calculated everywhere
almost instantaneously. In the expansion, the three types of
eigenmodes described in Section II can be used. It is observed
that for mm only the single propagating and the
Berenger modes must be taken into account to calculate

This is of course not surprising because
the propagation constants of the evanescent modes have a
large imaginary part and hence will not contribute for large

For mm there is a visible difference between the
exact and the series expansion result when no evanescent
modes are used in the expansion. When one also takes these
modes into account a very good approximation is obtained
for mm (a relative error smaller than 0.01%). In
Table I we show, for a given , how many Berenger and
evanescent modes one has to use to obtain an approxima-
tion for with a relative error smaller than
0.1%.

V. CONCLUSIONS

A new method is proposed to calculate the 2-D Green’s
function for a planar grounded substrate. We place a PEC-
backed PML on top of the structure thus turning the original
open structure into a closed one. The discrete set of eigen-
modes (propagating, Berenger- and evanescent modes) is then
used to derive a series expansion for the Green’s function. It
turns out that we recover both the magnitude and the phase
of the exact Green’s function with a relative error smaller
than 0.01% for distances larger than away from the
source. The generalization to multilayered substrates is easy
to perform by using a scattering matrix technique to find the
dispersion relation for the eigenmodes of the multilayered
substrate backed by a PML.
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