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Abstract—This letter treats the finite-difference (FD) analysis
of transmission lines including metallic loss. Computational costs
are reduced drastically by incorporating correction factors into
the FD equations in frequency domain. These factors are obtained
from the quasistatic field behavior in the vicinity and within the
metallic conductors. Thus, FD analysis can be performed using a
coarse grid without loss of accuracy. The new method is verified
for a typical monolithic microwave integrated circuit (MMIC)
coplanar waveguide.

Index Terms—Coplanar waveguide, finite difference, MMIC,
quasi-statics, transmission-line analysis.

I. INTRODUCTION

T HE finite-difference (FD) method is one of the most
powerful electromagnetic simulation tools today and its

time-domain formulation (FDTD) is in widespread use. Nev-
ertheless, its capabilities still fall short off the needs in mono-
lithic microwave integrated circuit (MMIC) design. There
is the necessity to include housing effects, and finally one
would like to analyze entire chips. However, the smallest
dimensions on the chip are in the range of micrometers, such
as metallization thickness in coplanar MMIC’s, whereas the
largest ones are in the millimeter range. In the conventional FD
method, this huge difference in length leads to an excessively
large mesh size. If conductor losses are considered situation
gets even worse since skin-depth further reduces the smallest
cell size required.

Since the first formulation of the FDTD method by Yee, a
lot of work has been done to improve efficiency with regard
to this problem. In the beginning of the 1990’s an enhanced
FDTD method was proposed incorporating the asymptotic
field behavior around microstrip discontinuities [1]. Other
contributions followed [2]–[4] usinga-priori knowledge from
analytical or numerical solutions of static fields. Until now,
however, the treatments are confined to the lossless case.

A common method to include conductor loss is the surface
impedance [5] approach, which, however, relies on a simplified
one-dimensional (1-D) field dependence within the conductors.
This assumption is questionable for structures with metal
thicknesses comparable to skin depth and inherently two-
dimensional (2-D) field distributions, as is the case for MMIC
coplanar lines, for instance.
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The approach presented here does not involve such restric-
tions but applies only the quasi-static assumption. The princi-
pal idea is that geometrical details and skin-depth are treated
a priori by a quasi-static approach. Since in most MMIC
structures wavelength is much larger than these dimensions,
our approach enhances efficiency without sacrificing accuracy.
The method is similar to [3], which however was restricted to
the lossless case. In this letter, ohmic losses are considered in
such a numerical approach for the first time. Doing this adds
complexity since now the full magnetostatic formulation has
to be treated including the frequency-dependent eddy-current
problem. Because skin depth usually is the smallest length
quantity, however, the savings in computational efforts due to
the new approach are higher than in the lossless case of [3]. To
demonstrate validity and benefits of the improved algorithm,
it is applied to a typical CPW structure and compared to the
conventional FD frequency-domain (FDFD) method.

II. THE IMPROVED FD FORMULATION

According to [6] we derive the finite-difference frequency-
domain (FDFD) approach starting from the integral forms of
Ampère’s law (1) and Faraday’s law (2) for each elementary
cell

(1)

(2)

Matrix equations are set up for each of (1) and (2) which
possess the same properties (div rot , etc.) as their
analytical counterparts. These equations are then combined to
give a matrix wave-equation for the unknown electric field
components in the FD grid.

The task of determining the propagation characteristics
of a longitudinally homogeneous waveguide is reduced to
an eigenvalue problem for the transverse electric field by
imposing the conditiondiv in the FD grid. This
eigenvalue problem is then solved by an implicitly restarted
Arnoldi method.

In order to improve efficiency, the FD equations are mod-
ified as in [1] and [3] usinga-priori knowledge of the quasi-
static field behavior. This information is introduced by means
of so-called correction factors, which are multiplied to the
integrals over the electric and magnetic field. In contrast to the
lossless case, however, the correction factors for the magnetic
field quantities are frequency dependent in the lossy case.
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To illustrate the incorporation of correction factors into the
FD formulation, one may consider the line and surface integral
approximations given in (3) and (4), respectively. denotes
the discretized field value. In the conventional FD method, the
line integral is approximated by In the new method,
a correction factor is introduced, which is determined
from the ratio between line integral and centered value of
the quasi-static case. The surface integral in (4) is treated
correspondingly

where

in the quasi-static case. (3)

where

in the quasi-static case.

(4)

The correction factors are obtained from a quasi-static FD
analysis, which is performed before its dynamic counterpart.
Note that a quasi-static approach is always possible if the
characteristic dimensionsof a structure are small compared
to wavelength .

The quasi-static approach consists of an electrostatic and
a quasi-static magnetic part yielding the correction factors
for the corresponding electric and magnetic field integrals,
respectively. In the electrostatic case, a FD approximation of
the Poisson equation is solved for the electrostatic potential.
The solution of the corresponding symmetric linear system
of equations can be obtained using a conjugate-gradient-type
method. For the quasi-static magnetic part, a more involved
treatment is required since in the presence of losses the fields
become frequency dependent and cannot be reduced to a
scalar potential. For the quasistatic magnetic problem the first
Maxwell equation reduces to

(5)

Equation (5) contains the electric field source for which
(without loss of generality) a homogeneous distribution over
a conductor cross section is assumed. In the case of the
CPW in Fig. 1, for instance, we assumed a constant electrical
field in -direction V/m over the cross section
of the outer conductor and V/m over the cross
section of the inner conductor, respectively. Equation (5) is
discretized in the same way as (1). The FD matrix equations
of (5) and (2) are then combined such that the magnetic flux
density is eliminated. The resulting system of equations for
the electric grid field is solved by means of Krylov Subspace
methods. For transmission-line analysis, the electric field of the
quasistaticmagneticpart has only the longitudinal component

1 This means one has a scalar problem. Finally, the transverse
magnetic flux density is obtained by using (2).

1Note that the transverse components are covered by theelectrostatic
part.

Fig. 1. Coplanar cross section under investigation (dimensions are
w = 20 �m, s = 15 �m, t = 3 �m, h = 500 �m, a = 450 �m,
b = 1503 �m, "r = 12:9; � = 3 � 10

7 S/m).

In order to exploit the advantages of the hybrid method, two
different meshes are to be used for the quasi-static and the
dynamic analysis. A fine mesh is required for the quasi-static
part, which, however, can be confined to regions of high-field
gradients, i.e., inside and in the vicinity of the conductors,
whereas the dynamic part is based on a coarse grid covering
the entire volume. This leads to a significant reduction of
computational costs because in most cases the extra processing
time required for the quasi-static computations is considerably
smaller than the time needed for a full-wave analysis.

III. RESULTS

In order to verify the new hybrid FD method a typical MMIC
CPW structure is studied. Fig. 1 shows the geometry and
provides the parameters. Due to symmetry, only one half of
the structure is considered introducing a magnetic wall at

Three different meshes are used which are referred to as
the coarse, the intermediate, and the fine one in the following.
A detailed view of the intermediate mesh in the vicinity and
within the outer conductor is shown in Fig. 2. The dynamic
FD analysis is performed on the coarse mesh, whereas the
intermediate or the fine mesh is used to compute the correction
factors. Additionally, to demonstrate efficiency improvement
of the hybrid approach and to establish a reference the con-
ventional FD method is applied on the fine mesh, too. All
meshes are graded. Starting with the smallest cells, the cell
size is increased successively by a constant factorFor the
coarse mesh, the smallest cell size, which is located at the
corners of the inner conductor, is equal to m
and the largest one is m at the surrounding
magnetic wall ( denotes wavelength for a permittivity
at 100 GHz). The slot and the center conductor, respectively,
are described with only one cell in-direction. For the fine
and the intermediate mesh, the skin-depthof the metal at the
highest frequency (100 GHz) determines minimum cell size. In
our case, it is chosen to be about m and

m, respectively, whereas the largest cell size is about
m for both meshes. The factoris about

1.5 in the coarse mesh and 1.2 in the two other ones, respec-
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Fig. 2. Detailed view of the coarse and the intermediate mesh with
�xmin � �=3 in the vicinity and within the right-hand edge of the outer
conductor (see Fig. 1).

Fig. 3. Effective dielectric constant"
r;e� and attenuation of the CPW in

Fig. 1 against frequency: comparison between new hybrid method, conven-
tional FD method (fine mesh with�xmin � �=20), and mode-matching
results [7].

tively. In order to illustrate the differences in mesh resolution
one may consider the slot: in the coarse mesh, it is discretized
in direction by a single cell, whereas in the intermediate and
the fine mesh 32 cells and 52 cells, respectively, are used.

In Fig. 3, results of the new method are compared to the
conventional FD method on the finest grid and mode-matching
results obtained by the approach in [7]. Effective dielectric
constant and attenuation are plotted as a function of
frequency. The three curves cannot be distinguished within the
plot scale thus verifying the new method. More precisely, the
FD results agree with the mode-matching data with an error
of less than 0.05% in and 1% in respectively.

Fig. 4 provides a more detailed view presenting data on the
relative errors of the propagation constant Refer-
ence for the errors is a conventional FDFD analysis on the fine
grid. As can be seen the new hybrid approach describes the
full-wave results with less than 1.25% error for frequencies up
to 100 GHz if the intermediate mesh with minimum cell size
of about is used. For the fine discretization, the deviations
between hybrid and conventional approach decrease further.

Regarding the computational efforts, the eigenvalue problem
on the coarse grid (i.e., the dynamic part of the approach) can

Fig. 4. Relative error of the complex propagation constantkz = � � j�
of the hybrid method for two different grids with�xmin � �=3 and
�xmin � �=20 (reference: conventional FD method on fine grid with
�xmin � �=20).

be solved about 2000 times faster than that on the fine grid. Of
course, additional preprocessing time is required to perform the
quasi-static analysis and to compute the correction coefficients.
With our preliminary version we achieved for both the interme-
diate and the fine mesh an overall CPU time reduction of 75%
(comparing the hybrid method to the conventional one). Using
optimized algorithms for preprocessing, a further reduction to
more than 90% should be possible. As the eigenvalue problem
can be solved on a coarse grid and the quasi-static problems
are only scalar the storage can be reduced considerably as
well. This reduction is about 50%.

IV. CONCLUSIONS

The incorporation of correction factors into the FD formula-
tion is shown to give a marked improvement in computational
cost while maintaining accuracy compared to the standard
FDFD method. This approach provides a particular advantage
when including nonideal conductivity. Structural details and
skin effect are considered on a fine grid by quasistatic com-
putations only. This leads to drastic savings in CPU time and
storage, because a given accuracy can be achieved using a
much coarser grid. For transmission-line analysis of typical
MMIC CPW structure, we find CPU time being reduced to
less than 10% and storage to 1/2.
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