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Multilevel Fast Multipole Algorithm for Analysis
of Large-Scale Microstrip Structures
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Abstract—An efficient algorithm combining multilevel fast is different for different images. In [10], both the 2-D and
multipole method and the discrete complex image method is three-dimensional (3-D) FMM'’s are employed because the
presented for analyzing large-scale microstrip structures. The re- surface-wave poles are extracted in DCIM, which makes the

sulting algorithm has the memory requirement and the CPU time . - . . . )
per iteration proportional to O(N log V), where N denotes the implementation complicated. The multilevel algorithm is not

number of unknowns. Numerical results for microstrip antennas implemented in those analyzes. The other FMM approach is to
are presented to demonstrate the efficiency and accuracy of this express the Green’s function in terms of a rapidly converging

method. steepest descent integral and then to evaluate the Hankel
Index Terms—Green’s function, fast multipole, method of mo- function arising in the integrand by FMM [11]. This approach
ments, microstrip, multilevel algorithm. is good for thin-stratified media.

In this letter, the multilevel fast multipole algorithm
(MLFMA) [2], [4] combined with DCIM is presented for
efficient analysis of microstrip structures. Instead of being

HE method of moments (MoM) has been widely used fafeated separately, the image sources are grouped with the

the analysis of microstrip structures, such as microstrigtiginal source. By the use of the multilevel algorithm, the
antennas, microwave integrated circuits, and microstrip intefomplexity is reduced t@(N log N). The algorithm requires
connects. To simulate large-scale complex microstrip struitie extra computation compared with that applied to free-
tures, it is often necessary to employ a large number gbace problems. Numerical results for microstrip antennas are

unknowns. For the conventional MoM, the memory requirgyresented to demonstrate the efficiency and accuracy of this
ment is proportional t@>(N?). The computing time can also method.

become very excessive because direct matrix inversion solvers

require O(N?) floating-point operations. When an iterative I

solver is employed for solving the MoM matrix equation, the ] . . o

operation count i€©)(V2) per iteration because of the need to Consider a general microstrip structure residing on an

evaluate the matrix-vector multiplication. This operation couffifinite substrate having relative permittivity and thickness

is too high for an efficient simulation. h. T_he mlcrostrlps are in the-y plane and ex_mted _by an
To make the iterative method more efficient, it is necessafpPlied fieldE®. The induced current on the microstrips can

to speed up the matrix-vector multiplication. There are sevel§ found by solving the well-known mixed potential integral

techniques developed for this purpose, including the adapti%uat'on (MPIE) [12]. First, the m|crostr|ps_ are divided |ntc_>

integral method (AIM) [1], the fast multipole method (FMM)tr!angular elements gnd thgn the current is expended using

[2]-[4], and the singular value decomposition-based algorithffiangular rooftop basis functions. Applying Galerkin's method

[5]. Recently, effort has been made to extend these f48fUlts in a matrix equation

algorithms to microstrip problems. The AIM is successfully Z. 1=V 1)

adapted in [6] with the aid of the discrete complex image

method (DCIM) [7]. Extension of FMM is difficult becausein which the impedance matri¥ has the elements given by

of its dependence on the Green'’s function. One approach is to

combine FMM with DCIM [8]-[10]. In [8] and [9], which treat Zij = jw / / [fi(r) £ (r")Go(r, 1)

the static and two-dimenionsl| (2-D) problems, the equivalent T JT;

problem is set up by addingy. images at the corresponding

complex coordinates, and therefore, representet by, +1)

basis functions. In the FMM implementation, the translatio\pv

I. INTRODUCTION

. FORMULATIONS

1
- EV L)V ()G (r, )| drf dr (2)

here f; and f; represent the testing and basis function,
respectively,Z; andl; denote their supportsy, is the zz-
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time consuming. This problem can be alleviated using DCIM G, Gis
[7], which yields closed-form expressions as
N, . » 4
G(r,r') = Z a,——, p=r—("+2b) B — o
e B AA44A4d A4 AL A AT
wherea,, and b, are the complex coefficients obtained from
DCIM.
To use FMM, we first divide the entire structure into groups ()
denoted by&,,,(m = 1,2,---, M). Lettingr; be the field point .
in group GG,,, centered at,,,, andr; be the source point in X120 .
group G,,,» centered at,,,-, we have 0 MoM |
o5 +  MLFMA
r;j =r; — (I‘j + ?:“bp) %-: of
= (ri - rrn) + (rrn - rrn’) + (rrn’ - r]) - ébp m_o's.
=Tim + Cmm’ — Tim/ — 72bp (4) -1
0
Employing the addition theorem and the elementary identity 107 i
[3], we can rewrite the Green'’s function in (3) as 1
k N. 05
~ ik 2y ~
G(ri,r]’) NW f pzz;) CLPCJ % ok
. ~ ~ -0.5
x e IR Tim = )R k) B2l (B)
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where i
< @) (b)
TPy - k) = — DL+ DR (Bt s ) P (P - ).
( mm ) lz_% ( J) ( ) t ( mm ) l( mm ) Fig. 1. Matrix elementZ;; (j = 1,2,---,80) calculated by the conven-
- tional MoM and MLFMA.
(6)
Substituting (5) into (2), we obtain 1000 o Cod
wk N N . - Sy o Eoo CPU time per iteration ]
Zij = 1672 [j{ Sa(k)Uim(k) 'T(Tmm’ak)U;k'm’(k) d°k [ o= Memory requirement
1 Sl T 9x10®NlogN 10°
- 55§ ST G DV B} 2 ) 7 5
w & I - E;
where s e . P
X ' = 10 ¢ - 110° 8
Uirn(k) = / Ci]k.rimfi dr (8) %; 3
T, £ 3
R . > . L=
Vim(k) = / e IKTinyg L f;dr 9 S0 w 1100 5
T . BRI
N. [ 4"" 1
i jk-2b L 1
S(k)y=>_ ape/. (10) e e
p=0 102 10° 10* 10°
When an iterative method is used to solve (1), the matrix- Number of Unknowns

vector multiplication can be performed in such a way that thmy. 2. Complexity of MLFMA. The CPU time per iteration is close to<9
contributions from nearby groups are calculated directly ad@ °~ log N and the memory requirement is close <710~ N.
the far interactions are calculated using (7).

The concept of FMM can be extended to multilevel using . NUMERICAL RESULTS
MLFMA [4]. To implement MLFMA, the entire solution ) ) o
region is first enclosed in a large box, which is divided into Before the proposed method is applied to realistic prob-
four smaller boxes. Each subbox is then recursively subdividl&dns, the accuracy of this algorithm is examined. Consider
into smaller boxes until the edge length of the finest box f Microstrip line on a substrate with relative permittivity
less than half a wavelength. For two elements in the same¢or = 2.17 and thicknessh = 1.58 mm. The frequency
nearby finest boxs, their interaction is calculated in a direlt 3.0 GHz. The line is 5 mm wide and 400 mm long.
manner. However, when the two elements reside in differef® shown in Fig. 1, the line is discretized into triangular
nonnearby boxes, their interaction is calculated by FMM, &ements with edge length 5 mm. Fig. 1 shows the values
described above. The level of boxes on which FMM is applieaf matrix elementsZ;,(j = 1,2,---,80) obtained by using
depends on the distance between the two elements. two different approaches. One approach is to use the original
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problem of a rectangular microstrip patch antenna. It is seen
that the CPU time per iteration is scaled @&N log N) and
the memory requirement is scaled @$N).

Now consider a corporate-fed microstrip antenna array,
which involves 6569 facets and 8668 unknowns. At frequency
f = 9.42 GHz, the current distribution and the radiation
patterns in the two principal planes are given in Fig. 3,
which shows excellent agreement between this method and the
conventional MoM. For the conventional MoM, the memory
requirement is over 600 MB and the CPU time per iteration
is 15.8 s. However, it takes only 36.3 MB and 3.0 s for the
five-level MLFMA. The MLFMA also yields an over 70%
reduction in the CPU time for the matrix fill comparing to the

MLFMA
{ + MoM -
o)
°
e _
3 (1]
i R
c +
8 2]
-"@' _
3 (3]
o
A
) [4]
-35 By at ¢= 90
_agl4 s s s s s . ‘ ‘ [5]
-80 -60 -40 -20 0 20 40 60 80
0 (deq)
6]
(b)
Fig. 3. Current distribution and radiation patterns of the corporate-fed
microstrip antenna arraye, = 2.2, h = 1.59 mm, ! = 10.08 mm, [7]

w=11.79 mm,d; = 1.3 mm,d> = 3.93 mm,l; = 12.32 mm,l> = 18.48
mm, Dy = 23.58 mm, D> = 22.40 mm, f = 9.42 GHz.

(8]

formulation (2). The other approach is to use MLFMA, where
the group sized is 0.25)y with )y being the wavelength
in free space. Note thafy,;(j = 1,2,---,14) is considered
as the near interaction and is calculated directly, afid
(j = 15,16,---,80) is considered as the far interaction am{ilo]
is calculated by MLFMA. As seen from Fig. 1, these two
approaches agree well. In this calculation, the number
modesL is chosen to béd + 31n(r + kd).

Next, the complexity of this algorithm is evaluated. Th 1o
CPU time per iteration and the memory requirement versus
the number of unknowns are plotted in Fig. 2 for solving the

El

conventional MoM.

IV. CONCLUSION

This letter presents a fast algorithm to deal with large-scale
microstrip problems. The MLFMA originally developed for
. free-space problems is extended to microstrip problems with
the aid of DCIM. The complexity of this algorithm is scaled
asO(N log N). The efficiency and accuracy of this method is
demonstrated by numerical results.

REFERENCES

E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AlM: Adaptive
integral method for solving large-scale electromagnetic scattering and
radiation problems,Radio Sci.vol. 31, pp. 1225-1251, Sept./Oct. 1996.
V. Rokhlin, “Rapid solution of integral equations of scattering in two
dimensions,”J. Comput. Physvol. 86, pp. 414-439, Feb. 1990.

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method
for the wave equation: A pedestrian prescriptiohZEE Antennas
Propagat. Mag. vol. 35, pp. 7-12, June 1993.

J. M. Song, C. C. Lu, and W. C. Chew, “Multilevel fast multipole
algorithm for electromagnetic scattering by large complex objects,”
IEEE Trans. Antennas Propagatol. 45, pp. 1488-1493, Oct. 1997.

S. Kapur and D. E. Long, “IES Efficient electrostatic and electro-
magnetic simulation,1EEE J. Comput. Sci. Engpp. 60-67, Oct./Dec.
1998.

F. Ling, C. F. Wang, and J. M. Jin, “An efficient algorithm for ana-
lyzing large-scale microstrip structures using adaptive integral method
combined with discrete complex image method,TBEE APS Int. Symp.
Dig., vol. 3, 1998, pp. 1778-1781.

Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, “A closed-form
spatial Green'’s function for the thick microstrip substrateEE Trans.
Microwave Theory Techvol. 39, pp. 588-592, Mar. 1991.

V. Jandhyala, E. Michielssen, and R. Mittra, “Multipole-accelerated
capacitance computation for 3-D structures in a stratified dielectric
medium using in a closed form Green’s functiorrit. J. Microw.
Millim.-Wave Comput. Aided Engvol. 5, pp. 68—78, May 1995.

L. Gurel and M. I. Aksun, “Electromagnetic scattering solution of
conducting strips in layered media using the fast multipole method,”
IEEE Microwave Guided Wave Letuol. 6, pp. 277-279, Aug. 1996.

P. A. Macdonald and T. Itoh, “Fast simulation of microstrip structures
using the fast multipole methodJht. J. Numer. Modeling: Electron.
Networks, Devices, Fieldvol. 9, pp. 345-357, 1996.

] J. S. Zhao, W. C. Chew, C. C. Lu, E. Michielssen, and J. M. Song,

“Thin-stratified medium fast-multipole algorithm for solving microstrip
structures,"lEEE Trans. Microwave Theory Teclvol. 46, pp. 395-403,
Apr. 1998.

J. R. Mosig, “Arbitrarily shaped microstrip structures and their analysis
with a mixed potential integral equationfEEE Trans. Microwave
Theory Tech.vol. 36, pp. 314-323, Feb. 1988.



