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Abstract—An efficient algorithm combining multilevel fast
multipole method and the discrete complex image method is
presented for analyzing large-scale microstrip structures. The re-
sulting algorithm has the memory requirement and the CPU time
per iteration proportional to O(N logN); where N denotes the
number of unknowns. Numerical results for microstrip antennas
are presented to demonstrate the efficiency and accuracy of this
method.

Index Terms—Green’s function, fast multipole, method of mo-
ments, microstrip, multilevel algorithm.

I. INTRODUCTION

T HE method of moments (MoM) has been widely used for
the analysis of microstrip structures, such as microstrip

antennas, microwave integrated circuits, and microstrip inter-
connects. To simulate large-scale complex microstrip struc-
tures, it is often necessary to employ a large number of
unknowns. For the conventional MoM, the memory require-
ment is proportional to The computing time can also
become very excessive because direct matrix inversion solvers
require floating-point operations. When an iterative
solver is employed for solving the MoM matrix equation, the
operation count is per iteration because of the need to
evaluate the matrix-vector multiplication. This operation count
is too high for an efficient simulation.

To make the iterative method more efficient, it is necessary
to speed up the matrix-vector multiplication. There are several
techniques developed for this purpose, including the adaptive
integral method (AIM) [1], the fast multipole method (FMM)
[2]–[4], and the singular value decomposition-based algorithm
[5]. Recently, effort has been made to extend these fast
algorithms to microstrip problems. The AIM is successfully
adapted in [6] with the aid of the discrete complex image
method (DCIM) [7]. Extension of FMM is difficult because
of its dependence on the Green’s function. One approach is to
combine FMM with DCIM [8]–[10]. In [8] and [9], which treat
the static and two-dimenionsl (2-D) problems, the equivalent
problem is set up by adding images at the corresponding
complex coordinates, and therefore, represented by
basis functions. In the FMM implementation, the translation
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is different for different images. In [10], both the 2-D and
three-dimensional (3-D) FMM’s are employed because the
surface-wave poles are extracted in DCIM, which makes the
implementation complicated. The multilevel algorithm is not
implemented in those analyzes. The other FMM approach is to
express the Green’s function in terms of a rapidly converging
steepest descent integral and then to evaluate the Hankel
function arising in the integrand by FMM [11]. This approach
is good for thin-stratified media.

In this letter, the multilevel fast multipole algorithm
(MLFMA) [2], [4] combined with DCIM is presented for
efficient analysis of microstrip structures. Instead of being
treated separately, the image sources are grouped with the
original source. By the use of the multilevel algorithm, the
complexity is reduced to The algorithm requires
little extra computation compared with that applied to free-
space problems. Numerical results for microstrip antennas are
presented to demonstrate the efficiency and accuracy of this
method.

II. FORMULATIONS

Consider a general microstrip structure residing on an
infinite substrate having relative permittivity and thickness

The microstrips are in the - plane and excited by an
applied field The induced current on the microstrips can
be found by solving the well-known mixed potential integral
equation (MPIE) [12]. First, the microstrips are divided into
triangular elements and then the current is expended using
triangular rooftop basis functions. Applying Galerkin’s method
results in a matrix equation

(1)

in which the impedance matrix has the elements given by

(2)

where and represent the testing and basis function,
respectively, and denote their supports, is the -
component of the Green’s function for vector potential, and
is the Green’s function for scalar potential. In general, both
and can be expressed as an inverse Hankel transform of
their spectral domain counterparts, which is commonly known
as the Sommerfeld integral (SI). The analytical solution of the
SI is generally not available, and the numerical integration is
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time consuming. This problem can be alleviated using DCIM
[7], which yields closed-form expressions as

(3)

where and are the complex coefficients obtained from
DCIM.

To use FMM, we first divide the entire structure into groups
denoted by Letting be the field point
in group centered at and be the source point in
group centered at we have

(4)

Employing the addition theorem and the elementary identity
[3], we can rewrite the Green’s function in (3) as

(5)

where

(6)

Substituting (5) into (2), we obtain

(7)

where

(8)

(9)

(10)

When an iterative method is used to solve (1), the matrix-
vector multiplication can be performed in such a way that the
contributions from nearby groups are calculated directly and
the far interactions are calculated using (7).

The concept of FMM can be extended to multilevel using
MLFMA [4]. To implement MLFMA, the entire solution
region is first enclosed in a large box, which is divided into
four smaller boxes. Each subbox is then recursively subdivided
into smaller boxes until the edge length of the finest box is
less than half a wavelength. For two elements in the same or
nearby finest boxs, their interaction is calculated in a direct
manner. However, when the two elements reside in different
nonnearby boxes, their interaction is calculated by FMM, as
described above. The level of boxes on which FMM is applied
depends on the distance between the two elements.

(a)

(b)

Fig. 1. Matrix elementZ1j (j = 1; 2; � � � ; 80) calculated by the conven-
tional MoM and MLFMA.

Fig. 2. Complexity of MLFMA. The CPU time per iteration is close to 9�
10�6N logN and the memory requirement is close to 7� 10�3N .

III. N UMERICAL RESULTS

Before the proposed method is applied to realistic prob-
lems, the accuracy of this algorithm is examined. Consider
a microstrip line on a substrate with relative permittivity

and thickness mm. The frequency
is 3.0 GHz. The line is 5 mm wide and 400 mm long.
As shown in Fig. 1, the line is discretized into triangular
elements with edge length 5 mm. Fig. 1 shows the values
of matrix elements obtained by using
two different approaches. One approach is to use the original
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(a)

(b)

Fig. 3. Current distribution and radiation patterns of the corporate-fed
microstrip antenna array.�r = 2:2; h = 1:59 mm, l = 10:08 mm,
w = 11:79 mm,d1 = 1:3 mm,d2 = 3:93 mm, l1 = 12:32 mm, l2 = 18:48

mm, D1 = 23:58 mm, D2 = 22:40 mm, f = 9:42 GHz.

formulation (2). The other approach is to use MLFMA, where
the group size is with being the wavelength
in free space. Note that is considered
as the near interaction and is calculated directly, and

is considered as the far interaction and
is calculated by MLFMA. As seen from Fig. 1, these two
approaches agree well. In this calculation, the number of
modes is chosen to be

Next, the complexity of this algorithm is evaluated. The
CPU time per iteration and the memory requirement versus
the number of unknowns are plotted in Fig. 2 for solving the

problem of a rectangular microstrip patch antenna. It is seen
that the CPU time per iteration is scaled as and
the memory requirement is scaled as

Now consider a corporate-fed microstrip antenna array,
which involves 6569 facets and 8668 unknowns. At frequency

GHz, the current distribution and the radiation
patterns in the two principal planes are given in Fig. 3,
which shows excellent agreement between this method and the
conventional MoM. For the conventional MoM, the memory
requirement is over 600 MB and the CPU time per iteration
is 15.8 s. However, it takes only 36.3 MB and 3.0 s for the
five-level MLFMA. The MLFMA also yields an over 70%
reduction in the CPU time for the matrix fill comparing to the
conventional MoM.

IV. CONCLUSION

This letter presents a fast algorithm to deal with large-scale
microstrip problems. The MLFMA originally developed for
free-space problems is extended to microstrip problems with
the aid of DCIM. The complexity of this algorithm is scaled
as The efficiency and accuracy of this method is
demonstrated by numerical results.
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