2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Microwave and Guided Wave Letters
Volume 10 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

A Distributed Heterostructure Barrier Varactor Frequency Tripler

Stein Hollung, Jan Stake, Member, IEEE Lars Dillner, Mattias Ingvarson, Student Member, IEEE and Erik Kollberg Fellow, IEEE

Page 24.

Abstract:

We present a broad-band nonlinear transmission line (NLTL) frequency multiplier at F-band. The multiplier consists of a finline section periodically loaded with 15 heterostructure barrier varactor (HBV) diodes. Tapered slot antennas are used to couple the fundamental signal from a WR-22 rectangular waveguide to the distributed multiplier as well as radiate the output power into free space. The frequency tripler exhibits 10-dBm peak radiated power at 130.5 GHz with more than 10% 3-dB bandwidth and 7% conversion efficiency. The tripler can be used as an inexpensive broad-band solid-state source for millimeter-wave applications.

References

  1. A. C. Scott, F. Y. F. Chu and D. W. McLaughlin, "The soliton: A new concept in applied science", Proc. IEEE, vol. 61, pp.  1443 -1483, Oct.  1973.
  2. R. Hirota and K. Suzuki, "Theoretical and experimental studies of lattice solitons in nonlinear lumped networks", Proc. IEEE, vol. 61, pp.  1483-1494,  Oct.  1973.
  3. M. J. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl and R. Pullela, "Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics", Proc. IEEE, vol. 82, pp.  1037-1059, July  1994.
  4. E. Carman, M. Case, M. Kamegawa, R. Yu, K. Giboney and M. J. Rodwell, "V -band and W -band broad-band, monolithic distributed frequency multipliers", IEEE Microwave Guided Wave Lett., vol. 2, pp.  253-254,  June  1992.
  5. H. Shi, W.-M. Zhang, C. W. Domier, N. C. Luhmann, Jr., L. B. Sjogren and H.-X. Liu, "Novel concepts for improved nonlinear transmission line performance", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  780-789, Apr.  1995.
  6. M. Li, K. Krishnamurthi and R. G. Harrison, "A fully distributed heterostructure-barrier varactor nonlinear transmission-line frequency multiplier and pulse sharpener", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2295-2301, Dec.  1998.
  7. J. R. Thorpe, P. Steenson and R. E. Miles, "Non-linear transmission lines for millimeter-wave frequency multiplier applications", in Proc. 6th IEEE Int. Conf. Terahertz Electronics, Leeds, U.K., Sept. 1998, pp.  54-57. 
  8. X. Mélique, A. Maestrini, E. Lheurette, P. Mounaix, M. Favreau, O. Vanbésien, M. Goutoule, G. Beaudin, T. Nähri and D. Lippens, "12% efficiency and 9.5 dBm output power from InP-based heterostructure barrier varactor triplers at 250 GHz", in 1999 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, Anaheim, CA, June 1999, pp.  123-126. 
  9. E. L. Kollberg and A. Rydberg, "Quantum-barrier-varactor diode for high efficiency millimeter-wave multipliers", Electron Lett., vol. 25, pp.  1696-1697,  1989.
  10. A. V. Räisänen, T. J. Tolmunen, M. Natzic, M. A. Frerking, E. Brown, H. Grönqvist and S. M. Nilsen, "A single barrier varactor quintupler at 170 GHz", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  685-688, Mar,  1995.
  11. J. Stake, L. Dillner, S. H. Jones, C. Mann, J. Thornton, J. R. Jones, W. L. Bishop and E. Kollberg, "Effects of self-heating on planar heterostructure barrier varactor diodes", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  2298-2303, Nov.  1998.
  12. K. C. Gupta, R. Garg, I. Bahl and P. Bhartia, Microstrip Lines and Slotlines, Boston, MA: Artech House, 1996, p.  365. 
  13. P. J. Gibson, "The Vivaldi aerial,"in 9th Europ. Microwave Conf. Proc., Sept. 1979,vol. 9, pp.  101-105. 
  14. A. Alexanian and R. A. York, "Broadband spatially combined amplifier array using tapered slot transitions in waveguide", IEEE Microwave Guided Wave Lett., vol. 7, pp.  42-44, Feb.  1997.