2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Microwave and Guided Wave Letters
Volume 10 Number 1, January 2000
Table of Contents for this issue
Complete paper in PDF format
A Distributed Heterostructure
Barrier Varactor Frequency Tripler
Stein Hollung, Jan Stake, Member, IEEE Lars Dillner, Mattias Ingvarson, Student Member, IEEE and Erik Kollberg Fellow, IEEE
Page 24.
Abstract:
We present a broad-band nonlinear transmission line (NLTL) frequency
multiplier at F-band. The multiplier consists
of a finline section periodically loaded with 15 heterostructure barrier varactor
(HBV) diodes. Tapered slot antennas are used to couple the fundamental signal
from a WR-22 rectangular waveguide to the distributed multiplier as well as
radiate the output power into free space. The frequency tripler exhibits 10-dBm
peak radiated power at 130.5 GHz with more than 10% 3-dB bandwidth and 7%
conversion efficiency. The tripler can be used as an inexpensive broad-band
solid-state source for millimeter-wave applications.
References
-
A. C. Scott, F. Y. F. Chu and D. W. McLaughlin, "The soliton: A new concept in applied science", Proc. IEEE, vol. 61, pp. 1443
-1483, Oct. 1973.
-
R. Hirota and K. Suzuki, "Theoretical and experimental studies of lattice solitons in nonlinear lumped networks", Proc. IEEE, vol. 61, pp. 1483-1494,
Oct. 1973.
-
M. J. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl and R. Pullela, "Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics", Proc. IEEE, vol. 82, pp. 1037-1059, July 1994.
-
E. Carman, M. Case, M. Kamegawa, R. Yu, K. Giboney and M. J. Rodwell, "V -band and W -band broad-band, monolithic distributed frequency multipliers", IEEE Microwave Guided Wave Lett., vol. 2, pp. 253-254,
June 1992.
-
H. Shi, W.-M. Zhang, C. W. Domier, N. C. Luhmann, Jr., L. B. Sjogren and H.-X. Liu, "Novel concepts for improved nonlinear transmission line performance", IEEE Trans. Microwave Theory Tech., vol. 43, pp. 780-789, Apr. 1995.
-
M. Li, K. Krishnamurthi and R. G. Harrison, "A fully distributed heterostructure-barrier varactor nonlinear transmission-line frequency multiplier and pulse sharpener", IEEE Trans. Microwave Theory Tech., vol. 46, pp.
2295-2301, Dec. 1998.
-
J. R. Thorpe, P. Steenson and R. E. Miles, "Non-linear transmission lines for millimeter-wave frequency multiplier applications", in Proc. 6th IEEE Int. Conf. Terahertz Electronics, Leeds, U.K., Sept. 1998, pp. 54-57.
-
X. Mélique, A. Maestrini, E. Lheurette, P. Mounaix, M. Favreau, O. Vanbésien, M. Goutoule, G. Beaudin, T. Nähri and D. Lippens, "12% efficiency and 9.5 dBm output power from InP-based heterostructure barrier varactor triplers at 250 GHz", in 1999 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, Anaheim, CA, June 1999, pp. 123-126.
-
E. L. Kollberg and A. Rydberg, "Quantum-barrier-varactor diode for high efficiency millimeter-wave multipliers", Electron Lett., vol. 25, pp. 1696-1697,
1989.
-
A. V. Räisänen, T. J. Tolmunen, M. Natzic, M. A. Frerking, E. Brown, H. Grönqvist and S. M. Nilsen, "A single barrier varactor quintupler at 170 GHz", IEEE Trans. Microwave Theory Tech., vol. 43, pp.
685-688, Mar, 1995.
-
J. Stake, L. Dillner, S. H. Jones, C. Mann, J. Thornton, J. R. Jones, W. L. Bishop and E. Kollberg, "Effects of self-heating on planar heterostructure barrier varactor diodes", IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2298-2303, Nov. 1998.
-
K. C. Gupta, R. Garg, I. Bahl and P. Bhartia, Microstrip Lines and Slotlines, Boston, MA:
Artech House, 1996, p.
365.
-
P. J. Gibson, "The Vivaldi aerial,"in 9th Europ. Microwave Conf.
Proc., Sept. 1979,vol. 9, pp. 101-105.
-
A. Alexanian and R. A. York, "Broadband spatially combined amplifier array using tapered slot transitions in waveguide", IEEE Microwave Guided
Wave Lett., vol. 7, pp. 42-44, Feb. 1997.