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High-Power GaN MESFET on Sapphire Substrate

C. Gaquiere, S. Trassaert, B. Boudart, and Y. Crosnier

Abstract—The first power results of GaN MESFET achieved at !
2 GHz are presented. A power density of 2.2 W/mm has been ob- 350
tained with an associated power-added efficiency of 27% &4 =
30 V and Vs = —2 V. These results represent a significant im-
provement over similar MESFET’s or HFET’s grown on GaAs or
InP substrates.
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Index Terms—MESFET, microwave power.

|. INTRODUCTION

rain current density (mA/mm)

N RECENT years the wide-bandgap semiconductors, silici &

carbide (SiC) and gallium nitride (GaN), have received ir 0 , ‘ , ‘
creased attention because of their potential for use in a wi 0 5 0 i 20 25
variety of high-power high-frequency devices [1], [2]. Thei
unique material properties, high electric field breakdown due Drain source voltage (V)

the wide band gap, and high saturated electron drift velocity are
what give these materials their tremendous potential in the highg. 1. I-V' characteristics of 2 x 50 « 0.3 um* MESFET forV. from -9
frequency power device area. In these conditions these devies" (StP 2 V)-

will become the microwave amplifier of choice for the rising
wireless communication market of the future. Inthis regard, few 25
studies have been achieved on GaN MESFET's as compared"
HFET'’s, whereas the MESFET's epilayers are easier to realiz

and the physical effects are easier to interpret (no heterojunc 20 N
tions and piezoelectric strain effects). Hence, GaN MESFET's
devices have been investigated. After a brief device technolog'
description, small and large signal results are presented.
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Il. DEVICE DESCRIPTION
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current gain [H21| (dB)
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The device structure was grown by metal organic chemica
vapor deposition on a (0001) sapphire substrate. A 25-nm Gal \
nucleation layer was followed by a 36n undoped GaN layer 5 \ P
and a 200-nm n-GaN active layer. A doping level of 2.7710 .l
cm~3 and a mobility of 330 c¥V - s were deduced from
Hall measurements performed at room temperature. Ther
Ti/Al/Ni/Au (15/220/40/50 nm) metallization layers were 01 ! 10 100
evaporated to realize ohmic contacts. These contacts wel Frequency (GHz)
annealed under nitrogen atmosphere at°@0@uring 30 s. _
The device isolation was made by reactive ion etching usiﬁ@‘
8 sccm of SiC) gas, a radio frequency (RF) power of 200
W, and a pressure of 40 mTorr. This results in an etch rate of _ ) )
20 nm/min. The submicrometer gate was defined by electronDevices with a source-drain spacing of 2.3, a gate length

beam lithography. Pt/Au (10/100 nm) metallization layers wefd 0-3#m, and a gate width of 2 x 50m were fabricated. The
used for the Schottky contact. gate to source spacing igiin. These devices are not passivated.

2. Short-circuit current gaif|H21|) versus frequency for @ * 50 *
um? MESFET atVa, =30 VandVy. = —2 V.
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Fig. 3. Output power, power gain, and power-added efficiency versus input power at 2 GHzsfdite« 0.3 pm? MESFET atVa; = 30 V andV, = —2 V.

These devices are fabricated on a sapphire substrate, heferent conditions (with and without light). These measurements
the high-power thermal effects are encountered. This excessive described in [5] and prove the existence of electrical traps
heating of power GaN FET'’s can be overcome by using a S&ssociated with the surface states. Hence, when the gate source
substrate in place of a sapphire substrate [3] or a flip chip paadloltage increases the trap effects are less important and in these

aging [4]. conditions the power results obtained are very encouraging.
The small-signal RF performance were measured on-wafer.
These devices were not provided with any special measures to IV. CONCLUSION

alleviate the thermal problem imposed by the poor thermal con- o ) ,

ductivity of the substrate. The substrate was placed on a room © OUr knowledge this is the first GaN MESFET's power

temperature chuck. Fig. 2 illustrates the short-circuit curreffieasurements conducte_d at 2 GHz. A power density of

gain|H21| as a function of frequency calculated from scatterin 2 W/mm has been obtained with an associated power-added

parameters. The device shows a current cutoff frequéncyf fiiciency of 27% aﬁ/d? = 30 V andVgs =—2V. The_zse power

11 GHz. A slope of 20 dB/decade has been checked. resuIFs are very promising. With an improvement in the quality
Then large-signal measurements have been carried out o grilayers, better device performances could be expected.
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