4 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 10, NO. 1, JANUARY 2000

An Approach to the Analysis of Arbitrarily Shaped
Helical Groove Waveguides

Yanyu Wei, Wenxiang Wang, and Jiahong Sun

Abstract—A simple but accurate approach to the analysis of

the arbitrarily shaped helical groove structures is presented in / /
this letter. The unified dispersion equation is obtained by means

of an approximate field-theory analysis, in which the profile of the u
groove is approximately replaced by a serious of steps and the field 8 /]
continuity at the interface of two neighboring steps together with I‘

the matching conditions at the interface between the groove region ]

and central region are employed. The derived transcendental
equation is resolved numerically. A half-circular helical groove
structure was manufactured and the cold measurement was made.
The experimental data are in good agreement with the numerical ‘ T,

calculation results.

Index Terms—Gyro-TWT, helical groove waveguide, mil-
limeter-wave traveling wave tube, slow-wave structure.

|. INTRODUCTION Fig. 1. Arbitrarily shaped helical groove waveguide.

ECENTLY, during the development of high-power
broad-band traveling wave tube (TWT), the helicaneans of increasing the arc-angle. So far, all the researchers
groove waveguide [1]-[4] has attracted the scholar’s interdive only considered the regular shape.
due to some of its peculiarities: large size, the transverseFor both analyzing such practical circuit such as the deformed
dimensions comparable to those of coupled cavity structur&&ucture, etc., and obtaining a lower dispersion circuit, it is nec-
high precession of manufacturing and assembling, the pitch &g$ary to consider the influence of the groove form, such as
be machined to close tolerance; and superthermal conductiwtyype, cosine-type, or sector-shape, etc. However, a unified ap-
and low loss, which make it worth consideration, especially &foach to analyzing this kind of helical groove structure, even a
millimeter frequencies. And there is an increasing interest fimple one, is not presented. In the following text, a simple but
variable-shape helical groove structure for use as a slow-wa&curate approach of analyzing helical arbitrarily shaped groove
structure (SWS) in a TWT [1]-[4]; meanwhile, the use suchiructures, as shown in Fig. 1, is presented by means of an ap-
kinds of structures as operating systems for a gyrotron TWoroximate field-theory analysis.
allows significant widening of its bandwidth and an increase in
efficiency [5]. Thus, the helical grooveaveguide will play a
pivotal role in the future traveling wave tube designs. Il. THEORY
The investigation on the helical grooveavweguide with

rectangular groove shows that this structure is more dispersiwénpilgﬁ ;’nzlls tgr? dWK;;hd(;: g]ree %:;O:/aejii szt?he eprlrg((:::],;ﬁ Ijn d

which is suitable for use in narrow-band mllllmeter'\’\"'Jl\/"f:)ottom of the groove, respectively. Note that the boundary of the

communication TWT's. The infroduction of capacitive roove is arbitrarily whether it is smooth or not. In the analysis

ridge-loading tends to reduce the dispersion of this circuit [13f the helical rectangular-shaped groove structure, the approx-

[3], however the instantaneous bandwidth of the Raytheorf ate expressions of the field components may be obtained by

ridged helica] TWT is only 1.3% 1] The qna!ysis of theemploying a helical coordinate system [4]. However, when the
helical half-circular-shaped grooveaweguide indicates that

o . . shape of the groove is nonrectangular, the theoretical solution
this circuit has relatively broader band than that of the helic P 9 9

; lar-shaped 21 For further broad-banding t the wave equation cannot be obtained. Here, some approxi-
rectangular-shaped one [2]. For further broad-ban 'Ng Miations and assumption are made: 1) the profile of the groove is
structure, the authors recently have developed the circuit

placed by a series of rectangular steps which are as close to the
profile as possible; 2) the discontinuity capacitance at the inter-
Manuscript received August 19, 1999; revised November 16, 1999. This WJ@(CG of two consecutive steps is neg_IeCted; and 3) each step sup-
was supported by the fund of the Institute of Electronics Science of China. ports the fundamental TE model which propagates along the he-
The authors are with the National Key Lab of High Power Vacuum Elegica| direction, as carried out by a rectangular groove [4]. Then,
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and Technology of China, Chengdu 610054, China. e staircase representation of an arbitrarily groove is shown in
Publisher Item Identifier S 1051-8207(00)02291-1. Fig. 2, where the groove space is divided idtb regions and
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Fig. 2. The staircase representation of an arbitrary groove.

d,is the width of thexth region. In each area the helical coordi-
nate systenir, 6, ¢) is employed [4] to solve the wave equation. Yay—i,m =

Thus, the field expressions in th#h region may be written as

Egn) =[AnJy(kr) + By J_y (kr)]e =77
Hg{n) = jYO[A J(kr) + BnJ’_v(kr)]e_J”‘g
» (1)
11 —— [AnJy (k) + B J_y (kr)]e=iv8

r(n) = TWLg

whereC,_1 = B,_1/A,—1. Using the admittance matching
conditions at the interface of two successive steps leads to the
following recurrence relationship of:

Yn—Z,n—l :Qv(krn—la krn—Z)
dn—lyn—l,n - dnTv(krn—Z; krn—l)
dn—lyn—l,n - anv(krn—Z; krn—l)

where the functiong’, and(), are defined as

(3)

_J'( 2)J Ly (y) — I, (2) 14 ()

e ) = G ) = T @)

Jo(@)JL, (y) = J-o(x)J3(y)

Ol ) = T y) = T
Whenn = M, that isry = 7, there existsEéI =
AMJU(ka) + BMJ_U(k‘Tb) = 0, thus

CM = —Jv(]ﬁ“b)/J_v(k‘Tb)

and
Jo(krar—1)J_y(kro) — Jy(kro)J.  (krar—1)
Jo(krar—1)J —o(kr.) — Jy(kro) L, (krar—1)

The expression of; ;can be obtained by using recurrence
relationship given in (3) and the initial values 6fy; and
Yar—1,m.

The field components in the center region [3] can be obtained
by using the Floquet's theorem in (4), shown at the top of the
next page, wheré',, andD,,, are the field amplitude factors of
themth space harmonie,, is the radial propagation constant,

11 11 II
Eyiny = Eriny = Hyiny = 0 and defined ag?2, = |82 — k2. If 42, = B2, — k? > 0,
Fon(ym7) = I (ymr) and the upper of the signat” or “ F"
where _ _ is selected, while2, = k2 — 82, > 0, Fon (ym7) = Jom (3m7),
A, andB, field amplitude factors; the lower case of the signal or F is chosen.,,(v,,r) and
k wavenumber in the free space; Jm(ymr) represent the modified and ordinary Bessel functions
Y, wave admittance in the free space; of m order, respectivelyg,, is the axial propagation constant
v angular propagation coefficient in the groové)]c mth space harmonic, and can be expressed,as= /f +
region and the relationship between it ahd . N : .
The axial phase propagation constant in the Wlth the aid of the following field matching conditions at the
nterface between the groove space and central space [3]
center region can be determined by the fact
that the phase change per pitch in the center gl — pll o5 o, E!
. Z 3 » e
region should be equal to the phase change +6/2
per turn in the groove, and this leadstto= = _Egl sin ¢ / (H<Iz> cos ¥+ H! sin ) dz
BoL /27 [3]; -5/2
Tty normal Bessel Function of the first kind and _ /H/Z I . (5)
order v, which indicates the fundamental —5/2 f
mode excited here is oscillating in thedirec- - : . o :
; . the unified dispersion equation is derived
tion [4];
Jh, (kr) first differential of /1, (kr)with respect tar. N P i k| FL(ymra) L FLo(ymra)
The normalized transverse admittance ofithe- 1)th region I S U | F(ymra) B2y Fon(Ymra)

at radiusr = r,_» is defined by 5 9 in 82 9
mpQ,, 9 SN i,
(222 %92 tan ¢ ) ] (2) —0 @
1 Hg{n 1)(]6'7“”_2) . .
Yp_2no1 = whereYy, 1 is the surface admittance of the groove- at r,.
—JjYo E g(n 1)(]”“”—2) Then, the properties of the power flow and the interaction

- J,U(]ﬁ“n_z) + C’n_ljl_v(/m“n_
N Jv(krn—Z) + Cn—lj—v(krn—

2)

N (@)

of the solution of (6).

impedance in this structure can be also obtained by making use
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Bl = 3 Gy Pulymr)edm9=Fm)

m=—0Q

HI =7 > DyyhFn(ymr)ed m9=fn)
EL=F 3" [ConlmBan /1) Fm(ymr) = Do gt Fy (ym)]ed (18P

m=—00

Hi=+j Y [Cn(ymk®/wpo)Ely(ymr) = Do (mB/r) Fop (yr)]el 197 02)

144 2 . 2
Theoretical results : (mﬁm F 7y, tan 77/)> (M) =0. (8)
13+ = Experimental results " Tq 6m6/2

This is identical to the result obtained in [4].

To solve the transcendental equation (6), the author has devel-
oped a general FORTRAN computer program, which permits
the number of the step¥ to be arbitrarily specified.

In order to study the accuracy of the presented method, we
have manufactured a half-circular helical grooweeguide and
made the cold test on dispersion characteristics by resonance
method [6]. Fig. 3 shows the experimental results. Itis very clear
that experimental data are in good agreement with the numer-
ical calculation data, which indicates this method is tenable and
accurate.

Fig.3. Thedispersion curve of a half-circular helical groove structure with the
physical dimensions (unit: mmy), = 14.5, 7, = 16.5,6 = 4.0, L. = 12.0.
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IV. CONCLUSIONS

An approach to the analysis of the arbitrarily shaped helical
groove waveguide has been described. It has been demonstrated

Equation (6) is a unified determining equation, ag?at the_ proposed method |s accurate on the pred_ication of the
M =2 1y = re, 71 = 13,70 = ra, d1 = 6, ds = S, it can d!spe_rsmn property. The unified determining equation of the ar-
be simplified to the dispersion equation of the ridge-loadéﬂtrar”y shape_d helical groove s;ructu_re (whether the boun_dary
helical-groove structure, i.e., of the_z groove is sm_ooth or not) is an important result obta_med
by this method, which can be used to analyze the properties of
electromagnetic wave propagating through helical various shape
groove structures including V-type, cosine-type, or sector-shape
circuit, etc. The presented analysis is more general, and it is ap-

Il. TEST

b b [l 10 Tt )

Qulkry, kro) 4 (8/s) - Qu(krq, kry)

. 5 i 13 F! (vmra) ! F! (vm7a) plicable to both the slow-wave and fast-wave regions.
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