
4 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 10, NO. 1, JANUARY 2000

An Approach to the Analysis of Arbitrarily Shaped
Helical Groove Waveguides

Yanyu Wei, Wenxiang Wang, and Jiahong Sun

Abstract—A simple but accurate approach to the analysis of
the arbitrarily shaped helical groove structures is presented in
this letter. The unified dispersion equation is obtained by means
of an approximate field-theory analysis, in which the profile of the
groove is approximately replaced by a serious of steps and the field
continuity at the interface of two neighboring steps together with
the matching conditions at the interface between the groove region
and central region are employed. The derived transcendental
equation is resolved numerically. A half-circular helical groove
structure was manufactured and the cold measurement was made.
The experimental data are in good agreement with the numerical
calculation results.

Index Terms—Gyro-TWT, helical groove waveguide, mil-
limeter-wave traveling wave tube, slow-wave structure.

I. INTRODUCTION

RECENTLY, during the development of high-power
broad-band traveling wave tube (TWT), the helical

groove waveguide [1]–[4] has attracted the scholar’s interest
due to some of its peculiarities: large size, the transverse
dimensions comparable to those of coupled cavity structures;
high precession of manufacturing and assembling, the pitch can
be machined to close tolerance; and superthermal conductivity
and low loss, which make it worth consideration, especially at
millimeter frequencies. And there is an increasing interest in
variable-shape helical groove structure for use as a slow-wave
structure (SWS) in a TWT [1]–[4]; meanwhile, the use such
kinds of structures as operating systems for a gyrotron TWT
allows significant widening of its bandwidth and an increase in
efficiency [5]. Thus, the helical groove waveguide will play a
pivotal role in the future traveling wave tube designs.

The investigation on the helical groove waveguide with
rectangular groove shows that this structure is more dispersive,
which is suitable for use in narrow-band millimeter-wave
communication TWT’s. The introduction of capacitive
ridge-loading tends to reduce the dispersion of this circuit [1],
[3], however the instantaneous bandwidth of the Raytheon’s
ridged helical TWT is only 1.3% [1]. The analysis of the
helical half-circular-shaped groove waveguide indicates that
this circuit has relatively broader band than that of the helical
rectangular-shaped one [2]. For further broad-banding this
structure, the authors recently have developed the circuit by
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Fig. 1. Arbitrarily shaped helical groove waveguide.

means of increasing the arc-angle. So far, all the researchers
have only considered the regular shape.

For both analyzing such practical circuit such as the deformed
structure, etc., and obtaining a lower dispersion circuit, it is nec-
essary to consider the influence of the groove form, such as
V-type, cosine-type, or sector-shape, etc. However, a unified ap-
proach to analyzing this kind of helical groove structure, even a
simple one, is not presented. In the following text, a simple but
accurate approach of analyzing helical arbitrarily shaped groove
structures, as shown in Fig. 1, is presented by means of an ap-
proximate field-theory analysis.

II. THEORY

In Fig. 1, � is the width of the groove,L is the pitch, is
the pitch angle, andra andrb are the radii of the mouth and
bottom of the groove, respectively. Note that the boundary of the
groove is arbitrarily whether it is smooth or not. In the analysis
of the helical rectangular-shaped groove structure, the approx-
imate expressions of the field components may be obtained by
employing a helical coordinate system [4]. However, when the
shape of the groove is nonrectangular, the theoretical solution
of the wave equation cannot be obtained. Here, some approxi-
mations and assumption are made: 1) the profile of the groove is
replaced by a series of rectangular steps which are as close to the
profile as possible; 2) the discontinuity capacitance at the inter-
face of two consecutive steps is neglected; and 3) each step sup-
ports the fundamental TE model which propagates along the he-
lical direction, as carried out by a rectangular groove [4]. Then,
the staircase representation of an arbitrarily groove is shown in
Fig. 2, where the groove space is divided intoM regions and
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Fig. 2. The staircase representation of an arbitrary groove.

dnis the width of thenth region. In each area the helical coordi-
nate system(r; �; �) is employed [4] to solve the wave equation.
Thus, the field expressions in thenth region may be written as

EII
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0
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where
AII
n andBII

n field amplitude factors;

k wavenumber in the free space;

Y0 wave admittance in the free space;

v angular propagation coefficient in the groove
region and the relationship between it and�0.
The axial phase propagation constant in the
center region can be determined by the fact
that the phase change per pitch in the center
region should be equal to the phase change
per turn in the groove, and this leads tov =
�0L=2� [3];

J�v normal Bessel Function of the first kind and
order �v, which indicates the fundamental
mode excited here is oscillating in ther-direc-
tion [4];

J 0�v(kr) first differential ofJ�v(kr)with respect tokr.

The normalized transverse admittance of the(n�1)th region
at radiusr = rn�2 is defined by
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1

�jY0

HII
�(n�1)(krn�2)

EII
�(n�1)(krn�2)

=
J 0v(krn�2) +Cn�1J

0
�v(krn�2)

Jv(krn�2) +Cn�1J�v(krn�2)
(2)

whereCn�1 = Bn�1=An�1. Using the admittance matching
conditions at the interface of two successive steps leads to the
following recurrence relationship ofY :

Yn�2;n�1 =Qv(krn�1; krn�2)

�
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�
(3)

where the functionsTv andQv are defined as
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0
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When n = M , that is rM = rb, there existsEII
� =

AMJv(krb) + BMJ�v(krb) = 0, thus

CM = �Jv(krb)=J�v(krb)

and

YM�1;M =
J 0v(krM�1)J�v(krc)� Jv(krc)J 0�v(krM�1)

Jv(krM�1)J�v(krc)� Jv(krc)J 0�v(krM�1)
:

The expression ofY0; 1can be obtained by using recurrence
relationship given in (3) and the initial values ofCM and
YM�1;M .

The field components in the center region [3] can be obtained
by using the Floquet’s theorem in (4), shown at the top of the
next page, whereCm andDm are the field amplitude factors of
themth space harmonic.
m is the radial propagation constant,
and defined as
2m = j�2m � k2j. If 
2m = �2m � k2 > 0,
Fm(
mr) = Im(
mr) and the upper of the signal “�” or “�”
is selected, while
2m = k2 � �2m > 0, Fm(
mr) = Jm(
mr),
the lower case of the signal� or � is chosen.Im(
mr) and
Jm(
mr) represent the modified and ordinary Bessel functions
of m order, respectively;�m is the axial propagation constant
of mth space harmonic, and can be expressed as�m = �0 +
2m�=L.

With the aid of the following field matching conditions at the
interface between the groove space and central space [3]
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the unified dispersion equation is derived
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whereY0;1 is the surface admittance of the groove atr = ra.
Then, the properties of the power flow and the interaction

impedance in this structure can be also obtained by making use
of the solution of (6).
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Fig. 3. The dispersion curve of a half-circular helical groove structure with the
physical dimensions (unit: mm)ra = 14:5, rb = 16:5, � = 4:0, L = 12:0.

III. T EST

Equation (6) is a unified determining equation, as
M = 2; r2 = rc; r1 = rb; r0 = ra; d1 = �; d2 = S, it can
be simplified to the dispersion equation of the ridge-loaded
helical-groove structure, i.e.,
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This equation turns out to be basically the same as the re-
sults obtained in previous study [3] if neglecting the step dis-
continuity capacitance. It can also be reduced to the character-
istic equation of the rectangular groove circuit whenrM = rb,
rM�1 = r0 = ra, d1 = �, i.e.,
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This is identical to the result obtained in [4].
To solve the transcendental equation (6), the author has devel-

oped a general FORTRAN computer program, which permits
the number of the stepsM to be arbitrarily specified.

In order to study the accuracy of the presented method, we
have manufactured a half-circular helical groove waveguide and
made the cold test on dispersion characteristics by resonance
method [6]. Fig. 3 shows the experimental results. It is very clear
that experimental data are in good agreement with the numer-
ical calculation data, which indicates this method is tenable and
accurate.

IV. CONCLUSIONS

An approach to the analysis of the arbitrarily shaped helical
groove waveguide has been described. It has been demonstrated
that the proposed method is accurate on the predication of the
dispersion property. The unified determining equation of the ar-
bitrarily shaped helical groove structure (whether the boundary
of the groove is smooth or not) is an important result obtained
by this method, which can be used to analyze the properties of
electromagnetic wave propagating through helical various shape
groove structures including V-type, cosine-type, or sector-shape
circuit, etc. The presented analysis is more general, and it is ap-
plicable to both the slow-wave and fast-wave regions.
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