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Analysis of Microstrip Lines in Multilayer Structures
of Arbitrarily Varying Thickness

Achim Dreher, Senior Member, IEEE,and Alexander Ioffe

Abstract—A general approach to the full-wave analysis of mi-
crostrip lines in multilayer dielectrics of arbitrarily varying thick-
ness is developed. It is based on the discrete mode matching tech-
nique (DMM) and uses a full-wave equivalent circuit for the strat-
ified structure, which is simple to apply in a numerical procedure.
As an example, the propagation constant of a microstrip line in the
interface of two dielectrics as a function of different shape charac-
teristics is computed.

Index Terms—Arbitrarily shaped interface, conformal, discrete
mode matching, DMM, microstrip lines, multilayer.

I. INTRODUCTION

FUTURE mobile communications and navigation systems
demand antennas and feed networks that can be integrated

in the surface of vehicles, airplanes, and satellites. For this
purpose, microstrip patch antennas are best suited due to their
low weight and flexibility. The design of the network and other
microwave circuit elements requires fast and exact procedures
for the precise determination of their electrical characteristics.
While proofed commercial software is already available
for planar antennas and circuits, the analysis of conformal
structures is often restricted to cylindrical bodies [1]–[3].
Procedures like finite differences (FDTD) or finite elements
(FE), which can be used for arbitrarily shaped objects, require
large storage and computation time, especially for thin layers.
In [4], the advantages of discrete mode matching (DMM) for
the analysis of multilayer planar structures have been shown,
and in [5] this procedure was adapted to waveguides filled
by nonplanar stratified dielectric without metallizations. In
this letter, the DMM is extended to microstrips with layers of
arbitrarily varying thickness. In DMM, fields and currents are
represented by an orthogonal set of basis functions, which are
the eigensolutions of Helmholtz’ wave equation with suitable
lateral boundary conditions. To match the fields at the interfaces
of different layers, the basis functions are disretized, but this is
necessary in only one dimension.

II. A NALYSIS

The fundamental geometry for the following analysis is de-
picted in Fig. 1. A wave propagation in -di-
rection is assumed. To obtain a full-wave solution, we start with
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Fig. 1. Microstrip lines in the interfaces of stratified dielectrics with arbitrarily
varying thickness.

Helmholtz’ wave equation (normalized by), which is given
within an arbitrary layer by

(1)

for the two independent field components . We
expand into a Fourier series truncated afterterms

(2)

where represents sine (cosine) functions forand , satis-
fying the Dirichlet and Neumann boundary conditions, respec-
tively, at the metallic walls and . Substituting (2) in (1) and
solving the resulting ordinary differential equations atsam-
pling points , we obtain

(3)

with . The constants are different for
each sampling point.

From (3) follows that the field components on both sides
of an arbitrary layer are related by

(4)

with

to be taken at .
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Fig. 2. Equivalent two-port representation of the stratified dielectric.

Fig. 3. Microstrip line on a dielectric layer with variable thickness." =
8:875; " = 1; b = 7:5 mm,a = 2b;w = 0:25a.

Fig. 4. Shape of the dielectric layery = d (x) = S (x) given by (9) for
different model parametersu.

At the interfaces, the tangential field components and
, which are given by

(5)

must be matched. For this purpose, and are ex-
panded according to (2) with suitable boundary conditions at
and . Using (4) and the relation between the field components
given in [5] all discretized tangential field components at both
interfaces of an arbitrary layer can be represented by hybrid
vectors and block matrices

(6)

This leads to a simple equivalent two-port representation of the
stratified dielectric (Fig. 2). If there are interfaces with ideal

Fig. 5. Propagation constantk as a function of the shape of the dielectric layer
determined by the model parameteru. FrequencyF = 30 GHz, 32 sampling
points on the metallization.

Fig. 6. Convergence of the propagation constant with increasing number of
sampling points for four different shapes of the interface (model parameteru =
4; 10;30;100). M is the number of discretization points on the metallization
of half the structure.

conducting lines, the appropriate continuity equations for the
tangential field components and currents

(7)

must be taken into account by introducing a formal current
source. Simple network analysis technique follows, also in-
cluding the boundary conditions at the bottom and the top of
the structure. From the condition, that the tangential electric
field components on the metallizations and the currents outside
must be zero, a system equation

or (8)
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is finally obtained. It can be solved for the propagation constants
by means of or .

III. RESULTS

The propagation constant of a microstrip line in the inter-
face between two dielectric layers with varying thickness en-
closed in a waveguide has been computed (Fig. 3). The shape of
the interface is given by the function

(9)

Different model parametershave been used (Fig. 4). For
, the structure is planar, where the thickness of the lower di-

electric is given by . If , the interface becomes
convex, and for large , its shape tends to a planar one with

, by reducing the convex segment to a thin peak in
the middle. Since the structure is symmetric, a magnetic wall
at reduces the computational effort and the calcula-
tion has been done with 32 sampling points on the metalliza-
tion of half the structure (Fig. 5). To compare with, the propa-
gation constants of planar microstrip lines with and

are also shown in Fig. 5. The convex interface shape
for between these two limits results in a first decrease and final
increase of the propagation constant. Unfortunately, no results
for the given structure were found in the literature.

Fig. 6 shows the excellent convergence behavior of discrete
mode matching. It permits an extrapolation to the exact solution

by means of a simple quadratic curve-fitting algorithm. Each
of the curves starts with a minimal number of sampling points
suitable to approximate the shape of the interface.

IV. CONCLUSION

The discrete mode matching procedure has successfully been
used to analyze microstrip lines on dielectric layers with ar-
bitrarily varying thickness. It provides an easy and systematic
CAD procedure with minimal discretization. It is also possible
to include lateral absorbing boundary conditions for the inves-
tigation of radiation effects.
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