2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Microwave and Guided Wave Letters
Volume 10 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

Micromachined 28-GHz Power Divider in CMOS Technology

Mehmet Ozgur, Mona E. Zaghloul and Michael Gaitan

Page 99.

Abstract:

A broad-band power divider is presented in CMOS technology. The devices are realized by postprocessing chips that are fabricated in a standard 1.2-µm CMOS process. Developed postprocessing includes wire bonding for ground equalization, deposition of a stress-compensation layer, and selective etching of the silicon substrate. By employing coupled coplanar transmission lines, the area of dividers is minimized to 0.8 mm × 2.1 mm. A 20-35-GHz power divider exhibits a coupling of -3.8 dB ± 0.6 dB.

References

  1. K. E. Schmegner, "A single chip monolithic integrated S -band frequency discriminator", in IEEE Int. Microwave Symp. Dig., Orlando, FL, June 1995, pp.  1333-1336. 
  2. T. M. Weller, L. P. B. Katehi, M. I. Herman, P. D. Wamhof, K. Lee, E. A. Kolawa and B. H. Tai, "New results using membrane-supported circuits: A Ka-band power amplifier and survivability testing", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1603-1606, Sept.  1996 .
  3. V. Milanovic, M. Gaitan, E. Bowen and M. E. Zaghloul, "Micromachining microwave transmission lines in CMOS technology", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  630-635, May  1997.
  4. M. Ozgur, M. E. Zaghloul and M. Gaitan, "A new CMOS micromachining process for RF applications", A new CMOS micromachining process for RF applications ,
  5. M. Ozgur, M. E. Zaghloul and M. Gaitan, "High-Q backside micromachined CMOS inductors", in Proc. IEEE Int. Symp. Circuits and Systems, Orlando, FL, June 1999.
  6. D. L. Ingram, D. I. Stones, D. W. Huang, M. Nishimoto, H. Wang, H. Wang, M. Siddiqui, D. Tamura, J. Elliott, R. Lai, M. Biedenbender, H. C. Yen and B. Allen, "6 Watt Ka -band MMIC power module using MMIC power amplifiers", in IEEE Int. Microwave Symp. Dig., Orlando, FL, June 1997, pp.  1183-1186. 
  7. P. Rigoland, M. Drissi, C. Terret and P. Gadenne, "Wide-band planar arrays for radar applications", in IEEE Int. Symp. Phased Array Syst. Tech., Oct. 1996, pp.  163-167. 
  8. H. Gruchala and A. Rutkowski, "Frequency detector with power combiner dividers", IEEE Microwave Guided Wave Lett., vol. 8, pp.  179-181, May  1998.
  9. L. Fan and K. Chang, "Uniplanar power dividers using coupled CPW and asymmetrical CPS for MIC's and MMIC's", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2411-2419, Dec.  1996.
  10. K.-K. M. Cheng, "Analysis and synthesis of coplanar coupled lines on substrates of finite thickness", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  636-639, Apr.  1996.
  11. "Sonnet Suite User's Manual", Liverpool, NY, Apr. 1999.
  12. C. Tomovich, "MOSIS-A gateway to silicon", IEEE Circuits Devices Mag., vol. 4, no. 2, 1988.