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Dispersion of Time Domain Wavelet Galerkin Method
Based on Daubechies’ Compactly Supported Scaling
Functions with Three and Four Vanishing Moments

Masafumi Fujii and Wolfgang J. R. Hoefer

Abstract—The wavelet-Galerkin method for time-domain Il. FORMULATION
electromagnetic field modeling based on Daubechies’ compactly , . . .
supported wavelets proposed by Cheongt alhas been extended ~Maxwell's equations for the two-dimensional (2-D) TE
to the use of the scaling functions with three and four vanishing polarization
wavelet moments together with the approximate shifted interpola-

tion property. The numerical dispersion properties of the methods JH, oF,

are precisely investigated and compared with those of other —H It == 9z 1)
wavelet-based and finite-difference methods. It was found that oH. OFE

Daubechies’ scaling functions with larger number of vanishing — =" (2)
moments generally give higher accuracy while maintaining the 88Et aaﬁ OH

comparable computational expenditure. Jy+0E, +¢ v _ z z 3)

Index Terms—baubechies’ compactly supported wavelets, elec- It 9z O

tromagnetic field analysis, time domain, wavelet-Galerkin method. are discretized on the standard Yee grid. Following the theory in

[1], the field values are first expanded in Daubechies’ compactly
I. INTRODUCTION supported scaling functions[4], which approximately satisfy

HE WAVELET-GALERKIN scheme based on e Shifted interpolation property [5]

Daubechies’ compactly supported wavelets with two
vanishing moments proposed by Cheoeigal. [1] demon-
strates, by virtue of the shifted interpolation property oF:O . +oo . i
Daubechies’ wavelets, high versatility and simplicity whefP! * Integer, wherel/, = J-o. w¢(x)dx is the first-order

applied to time-domain electromagnetic problems with inhdnoment of the scaling function aidhe Kronecker delta func-

mogeneous media. tion. This property yields a simple algorithm forinhomogeneous
As a single-channel approach where only the scaling funoblems through the local sgmpling of th'e field values regard-

tions are used as basis functions, Cheong’s scheme [1] has!§8 ©f the complexity of the inhomogeneity [1].

vantages over the previously reported wavelet-based time-doJ he standard Galerkin’s procedure leads to a system of up-

main analysis techniques such as S-MRTD [2]; the formul42ting equations similar to the S-MRTD method [2] as

tion is similar to Yee's FDTD scheme [3] even for inhomoge- % — oAt

neous media; and it does not require the incorporation of thﬁji ond1/2 =5 g 357 kono1/2

constitutive equations of Maxwell’'s equations. This results in =~~~ 2et ot v

¢(k + M1) = 6x,0 @

a simple algorithm despite the large support and asymmetry of 1 et Hf,i,k+z+1/z,n
Daubechies’ scaling functions. + 2¢ + oAt Z a(l) Az

However, the improvement in accuracy and efficiency 5 ==L
through the use of Daubechies’ scaling functions has not Hz,i+l+1/2,k,n> & ] 5
been fully clarified. Moreover, it is expected that Daubechies’ N Az T Yy kn ®)
wavelets with larger number of the vanishing moments yield
more effective algorithms. where L, denotes the effective support size of the basis func-

In this paper, the time-domain wavelet-Galerkin methoghns, that is, the stencil size or the number of connection co-
based on Daubechies’ compactly supported scaling functiofificients per side practically included in the update equations.
with two, three, and four vanishing moments (denoted &s D-quations forH, and H. are obtained similarly. The coeffi-
D3, and D, respectively) has been investigated, and the efflients connecting the scaling functions and their derivatives are
ciency of those schemes is compared with respect to accurggained by evaluating the inner products numerically in the

and computational expenditure. Fourier domain
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TABLE | 8 ; ' ; ' ' '
CONNECTION COEFFICIENTSa(!), THE FIRST-ORDER MOMENTS Ay AND THE
STABILITY FACTOR FOR THETWO-DIMENSIONAL SQUARE-GRID CASES s.
PARAMETERS FORD;5 AND BATTLE-LEMARIE CUBIC SPLINE SCALING
FUNCTIONS ARE SHOWN FOR THEPURPOSE OFCOMPARISION

D, D; D, Dy B.L.
1.2291666667 | 1.2018129281 | 1.3110340773 | 1.3033236013 | 1.2918462114
-0.0937500000 | -0.1371343465 | -0.1560100710 | -0.1636941766 | -0.1560760696
0.0104166667 | 0.0287617723 | 0.04109957460 | 0.0616127747 | 0.0506390461
-0.0034701413 | -0.0086543236 | -0.0265749940 | -0.0293098737
0.0000080265 | 0.0008308695 | 0.0104549954 | 0.0153715666
0.0000108999 | -0.0034151723 | -0.0081892221
-0.0000000041 | 0.0008675397 | 0.0043787661
-0.0001583521 | -0.0023432839
0.0000179275 | 0.0012542425 2
-0.0000007829 | -0.0006713627

-0.0000000260 | 0.0003593662 )
-0.0000000072 | -0.0001923616 4 . . . . .
0.0000000014 | 0.0001029674 0 05 ] 15 >
0.0000000001 | -0.0000551164 normalized wavenumber (rad)
0.0000000000 | 0.0000205027

My | 06330743121 | 0.8174005815 | 1.0053023835 — —

s 0.5303 0.4839 0.4657 0.4504 0.4508 Fig. 1. Numerical dispersion relation for diagonal propagation &t wkh
respect to the main axes. The stability factosis= 0.1 for all the schemes
except for FDTD where = 1.0/+/2. L, denotes the stencil size or the number
of connection coefficients in the update equations. HFD stands for high-order
finite-difference scheme.
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where¢ denotes the Fourier transform ¢f a(l) is listed in
Table | together with the first-order momel#t; and the stability

factor for the 2-D square-grid case= 1/(v/23", |a(l)|). Itis 8 - ' ~ - T -
interesting to note that, althoughis not symmetrica(—1) = D5 {[e4: 5001y —
—a(l—1)forl =1, 2, --- holds analytically. 61 g{,ﬁtg:g' 33015 """"
Battle-Lemarie gli__s=9: 8=0.1) =~
FDTD (8=0.707) ---
IIl. DISPERSIONPROPERTIES g 4T A o'
. . . . . & D3
The numerical dispersion for the time-domain wavelet- & | °
Galerkin methods based on, D3, and D, is investigated and § BL
compared to that of the standard FDTD, S-MRTD based on & | ™.
Battle—Lemarié wavelets [2] and some high-order finite-dif-
ference schemes [6]. Preliminary experiments showed that, | _ ‘ " . \pz | i
for _those Wavelet-bf_;lsed s_chemes, the_ smaller stab|I|ty factor FDTB»\ HFDE;“\ HFD‘*-.\‘ \,‘\
s gives a smaller dispersion error as in S-MRTD, while for “ . L Lo 10 A

FDTD, the maximum stability limit gives the smallest dis- 0 05 normalized wavenumber tad) 8
persion error. In Figs. 1 and 2, the frequency deviation from

the linear dispersion relation is plotted as a function of thHeg. 2. Numerical dispersion relation for propagation along the main axes.
normalized wavenumbey = |k|Al, whereAl = Az = Az

andk is the wave vector. The dispersion relation was obtaingd!) concentrate on smalléy resulting in a smaller number of
by substituting a time-harmonic trial solution into the updatecefficients in the update equations; fog,nly the first four
equations and numerically solving the resulting nonline&eefficients, and for [, only the first five coefficients give re-

equation [7] sults with negligible errors, while for Battle—Lemarié scaling
functions with L, = 9, the dispersion relation does not con-
ALN? 5 Q2 verge as the wavenumber tends to zero.
L._1 ) 2 IV. NUMERICAL RESULTS
= Z a(l) sin [X(Sin 0) <l + 5)} Resonator structures depicted in Fig. 3 were analyzed with
=0 the wavelet-Galerkin method based op, D3, and D, scaling
sl 1 2 functions as well as with the standard FDTD method. The sta-
+ Z a(l) sin [X(COS 0) <l + 5)} ) bility factor for D», D3, and D, was chosen to be = 0.1 while

=0 for FDTD, it was the maximum Courant limi = 1/+/2 to

wherec is the speed of light? = wAt the normalized fre- Obtain the best accuracy. The length of the time-series was 100
guency, and the angle of propagation. for resonators a and b, and 1000 for resonator c. The perfect
Figs. 1 and 2 show that the dispersion error is largest for axglpctric/magnetic conductor (PEC/PMC) conditions were im-
propagation and smallest for diagonal propagation. From thgdemented using the mirror principle. The results are shown in

figures, it is found that a scaling function with a larger numbékable Il. Although B, Ds, and D, are not symmetric, through
of vanishing moments gives a smaller dispersion error. Ndige shifted interpolation property, itis possible to mirror the field
that, by virtue of the minimum support of Daubechies’ comzoefficients with respect to the boundary to yield a symmetric
pactly supported scaling functions, the connection coefficiedtsundary conditions only at integer points.
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o TABLE I

DOMINANT RESONANT FREQUENCIESF., NUMBER OF TIME STEPS Ny, 0x AND

CPU TIME FOR THE ANALYSIS OF THE RESONATORS THE THEORETICAL
PEC PEC RESONANT FREQUENCIES OF THERESONATORSa, b,AND ¢ ARE 1.0,
0.805737AND 0.052 21, RSPECTIVELY

Resonator | No. of Yee cells | Conditions | FDTD [ Dy (Ls =3) | D3 (L. =4) [ Ds{L, =5)
x Noaz 2828 20000 20000 20000
MG 10x10 F, 0.99793 | 1.000076 | 0.999979 | 0.999959
error (%) | -0.207 | +0.0076 | -0.0021 -0.0041
. CPU time (s) | 05 32 36 42
a Non = 5060 000 3000
@ s F, — 1.00203 1.00077 1.00030
pPMC x error (%) —_ +0.203 +0.077 +0.03
CPU time (s) — 1.0 1.0 1.1
ez 000 78285 78285 38285
Jox10 F, 080322 | 080644 | 0.80633 | 0.80633
0x error (%) | -0.31 | +0.087 +0.073 +0.073
N ) CPU time (s) | 0.6 40 47 5.5
PEC I\ &= 2 air PEC b - — 11314 11314 Ti3i4
F, — 0.8109 0.8100 0.8095
x4 error (%) — +0.64 +0.53 +0.47
CPU time (s) — 0.8 0.9 1.0
x N 7738 10364 19364 19364
" F, 005232 | 005272 | 0.05271 0.05271
PMC 8x eror (%) | 4021 | +0.98 +0.96 +0.96
CPU time (5) | 0.5 33 3.6 42
i 0.25 0.25 c Vs s 14744 414 JEREr]
a1z F. — 005316 | 0.05329 | 0.05307
b x error (%) — +1.88 +2.07 +1.65
( ) CPU time (s) — 1.3 1.5 1.8
€,=3.75
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Fig. 3. (a) An air-filled infinitely large parallel plate resonator. (b) An
infinitely large parallel plate resonator partially filled with a dielectric material
(c) A rectangular cavity with a centered dielectric slab.

Fig. 4. E, distribution of the resonator c in Fig. 3. The structure is discretized
with 8 x 12 Yee cells and the field is sampled withx 4 times higher density.

. Lo . V. CONCLUSION
For axial propagation in a homogeneous medium (resonator

a), Dy, D3, and D, give much more accurate results than FDTD. The time-domain wavelet-Galerkin method based on
These results are consistent with the dispersion relation sho@@ubechies’ compactly supported scaling functions with two,
in Fig. 2. With inhomogeneous dielectric media (resonator {I'¢€: and four vanishing moments has been investigated. The
those scaling functions still give better results than FDTD, p{ffiNimum support property of Daubechies’ scaling functions

the accuracy degrades compared to the homogeneous Caseresults in a smgller number _of stencil size than is expepted

! ) ; . from the theoretical support size. It was found that the shifted
For the cavity resonator with a centered dielectric slab, trilﬁeter olation property is applicable tosDand D,, and that
standard FDTD is more accurate than the wavelet-Galerkin P broperty PP 3 4 '

. . . . . In particular for the axial propagation in an homogeneous
method; this is expected from the dispersion relation (Fig. eF()jium D, gives much highper gcguracy than Bnd FD'IQ']D

because, for this resonant mode, the diagonal propagation is

dominant over the axial propagation and FDTD has much less

numerical dispersion than the wavelet-Galerkin method. It )
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