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Dispersion of Time Domain Wavelet Galerkin Method
Based on Daubechies’ Compactly Supported Scaling
Functions with Three and Four Vanishing Moments

Masafumi Fujii and Wolfgang J. R. Hoefer

Abstract—The wavelet-Galerkin method for time-domain
electromagnetic field modeling based on Daubechies’ compactly
supported wavelets proposed by Cheonget al.has been extended
to the use of the scaling functions with three and four vanishing
wavelet moments together with the approximate shifted interpola-
tion property. The numerical dispersion properties of the methods
are precisely investigated and compared with those of other
wavelet-based and finite-difference methods. It was found that
Daubechies’ scaling functions with larger number of vanishing
moments generally give higher accuracy while maintaining the
comparable computational expenditure.

Index Terms—Daubechies’ compactly supported wavelets, elec-
tromagnetic field analysis, time domain, wavelet-Galerkin method.

I. INTRODUCTION

T HE WAVELET-GALERKIN scheme based on
Daubechies’ compactly supported wavelets with two

vanishing moments proposed by Cheonget al. [1] demon-
strates, by virtue of the shifted interpolation property of
Daubechies’ wavelets, high versatility and simplicity when
applied to time-domain electromagnetic problems with inho-
mogeneous media.

As a single-channel approach where only the scaling func-
tions are used as basis functions, Cheong’s scheme [1] has ad-
vantages over the previously reported wavelet-based time-do-
main analysis techniques such as S-MRTD [2]; the formula-
tion is similar to Yee’s FDTD scheme [3] even for inhomoge-
neous media; and it does not require the incorporation of the
constitutive equations of Maxwell’s equations. This results in
a simple algorithm despite the large support and asymmetry of
Daubechies’ scaling functions.

However, the improvement in accuracy and efficiency
through the use of Daubechies’ scaling functions has not
been fully clarified. Moreover, it is expected that Daubechies’
wavelets with larger number of the vanishing moments yield
more effective algorithms.

In this paper, the time-domain wavelet-Galerkin method
based on Daubechies’ compactly supported scaling functions
with two, three, and four vanishing moments (denoted as D,
D , and D , respectively) has been investigated, and the effi-
ciency of those schemes is compared with respect to accuracy
and computational expenditure.
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II. FORMULATION

Maxwell’s equations for the two-dimensional (2-D) TE
polarization

(1)

(2)

(3)

are discretized on the standard Yee grid. Following the theory in
[1], the field values are first expanded in Daubechies’ compactly
supported scaling functions[4], which approximately satisfy
the shifted interpolation property [5]

(4)

for integer, where is the first-order
moment of the scaling function andthe Kronecker delta func-
tion. This property yields a simple algorithm for inhomogeneous
problems through the local sampling of the field values regard-
less of the complexity of the inhomogeneity [1].

The standard Galerkin’s procedure leads to a system of up-
dating equations similar to the S-MRTD method [2] as

(5)

where denotes the effective support size of the basis func-
tions, that is, the stencil size or the number of connection co-
efficients per side practically included in the update equations.
Equations for and are obtained similarly. The coeffi-
cients connecting the scaling functions and their derivatives are
obtained by evaluating the inner products numerically in the
Fourier domain

(6)
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TABLE I
CONNECTIONCOEFFICIENTSa(l), THE FIRST-ORDERMOMENTSM AND THE

STABILITY FACTOR FOR THETWO-DIMENSIONAL SQUARE-GRID CASESs.
PARAMETERS FORD AND BATTLE–LEMARIÉ CUBIC SPLINE SCALING

FUNCTIONS ARESHOWN FOR THEPURPOSE OFCOMPARISION

where denotes the Fourier transform of. is listed in
Table I together with the first-order moment and the stability
factor for the 2-D square-grid case . It is
interesting to note that, althoughis not symmetric,

for holds analytically.

III. D ISPERSIONPROPERTIES

The numerical dispersion for the time-domain wavelet-
Galerkin methods based on D, D , and D is investigated and
compared to that of the standard FDTD, S-MRTD based on
Battle–Lemarié wavelets [2] and some high-order finite-dif-
ference schemes [6]. Preliminary experiments showed that,
for those wavelet-based schemes, the smaller stability factor

gives a smaller dispersion error as in S-MRTD, while for
FDTD, the maximum stability limit gives the smallest dis-
persion error. In Figs. 1 and 2, the frequency deviation from
the linear dispersion relation is plotted as a function of the
normalized wavenumber , where
and is the wave vector. The dispersion relation was obtained
by substituting a time-harmonic trial solution into the update
equations and numerically solving the resulting nonlinear
equation [7]

(7)

where is the speed of light, the normalized fre-
quency, and the angle of propagation.

Figs. 1 and 2 show that the dispersion error is largest for axial
propagation and smallest for diagonal propagation. From these
figures, it is found that a scaling function with a larger number
of vanishing moments gives a smaller dispersion error. Note
that, by virtue of the minimum support of Daubechies’ com-
pactly supported scaling functions, the connection coefficients

Fig. 1. Numerical dispersion relation for diagonal propagation at 45with
respect to the main axes. The stability factor iss = 0:1 for all the schemes
except for FDTD wheres = 1:0=

p
2.L denotes the stencil size or the number

of connection coefficients in the update equations. HFD stands for high-order
finite-difference scheme.

Fig. 2. Numerical dispersion relation for propagation along the main axes.

concentrate on smaller, resulting in a smaller number of
coefficients in the update equations; for D, only the first four
coefficients, and for D, only the first five coefficients give re-
sults with negligible errors, while for Battle–Lemarié scaling
functions with , the dispersion relation does not con-
verge as the wavenumber tends to zero.

IV. NUMERICAL RESULTS

Resonator structures depicted in Fig. 3 were analyzed with
the wavelet-Galerkin method based on D, D , and D scaling
functions as well as with the standard FDTD method. The sta-
bility factor for D , D , and D was chosen to be while
for FDTD, it was the maximum Courant limit to
obtain the best accuracy. The length of the time-series was 100
for resonators a and b, and 1000 for resonator c. The perfect
electric/magnetic conductor (PEC/PMC) conditions were im-
plemented using the mirror principle. The results are shown in
Table II. Although D , D , and D are not symmetric, through
the shifted interpolation property, it is possible to mirror the field
coefficients with respect to the boundary to yield a symmetric
boundary conditions only at integer points.
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(a)

(b)

(c)

Fig. 3. (a) An air-filled infinitely large parallel plate resonator. (b) An
infinitely large parallel plate resonator partially filled with a dielectric material.
(c) A rectangular cavity with a centered dielectric slab.

For axial propagation in a homogeneous medium (resonator
a), D , D , and D give much more accurate results than FDTD.
These results are consistent with the dispersion relation shown
in Fig. 2. With inhomogeneous dielectric media (resonator b),
those scaling functions still give better results than FDTD, but
the accuracy degrades compared to the homogeneous case.

For the cavity resonator with a centered dielectric slab, the
standard FDTD is more accurate than the wavelet-Galerkin
method; this is expected from the dispersion relation (Fig. 1)
because, for this resonant mode, the diagonal propagation is
dominant over the axial propagation and FDTD has much less
numerical dispersion than the wavelet-Galerkin method. It
was also found that, for the given examples, Dgives better
accuracy than D. Another advantage of Dover D is that
reconstructed field distributions are smoother; see, in Fig. 4, the

distribution of resonator c where the structure is discretized
with Yee cells and the field is sampled with times
higher density.

The wavelet-Galerkin method requires more CPU time
than FDTD with the same number of grids mainly because
the time step is approximately seven times smaller.
However, for electrically large three-dimensional structures
where FDTD is computationally too expensive to use,
reduction of CPU time and memory requirement compared
to FDTD is expected.

TABLE II
DOMINANT RESONANTFREQUENCIESF , NUMBER OFTIME STEPSN AND

CPU TIME FOR THE ANALYSIS OF THE RESONATORS. THE THEORETICAL

RESONANT FREQUENCIES OF THERESONATORSa, b,AND c ARE 1.0,
0.805 737,AND 0.052 21, RESPECTIVELY

Fig. 4. E distribution of the resonator c in Fig. 3. The structure is discretized
with 8� 12 Yee cells and the field is sampled with4� 4 times higher density.

V. CONCLUSION

The time-domain wavelet-Galerkin method based on
Daubechies’ compactly supported scaling functions with two,
three, and four vanishing moments has been investigated. The
minimum support property of Daubechies’ scaling functions
results in a smaller number of stencil size than is expected
from the theoretical support size. It was found that the shifted
interpolation property is applicable to Dand D , and that,
in particular for the axial propagation in an homogeneous
medium, D gives much higher accuracy than Dand FDTD.
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