2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Microwave and Guided Wave Letters
Volume 10 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

On the Splitting Parameter in the Ewald Method

Alp Kustepeli and Anthony Q. Martin

Page 168.

Abstract:

An investigation of the Ewald method is presented. The method involves a splitting parameter that is theoretically an arbitrary number. An analysis is presented to show why the splitting parameter cannot always be treated as arbitrary in calculations and how this parameter should be chosen for all periodic spacing of a structure.

References

  1. P. P. Ewald, "Die berechnung optischer und electrostatischer gitterpotentiale", Ann. Phys. , vol. 64, pp.  253-287, 1921.
  2. K. E. Jordan, G. R. Richter and P. Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures", J. Comp. Phys., vol. 63, pp.  222-235, 1986.
  3. T. F. Eibert, J. L. Volakis, D. R. Wilton and D. R. Jackson, "Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPID formulation accelerated by the Ewald transformation", IEEE Trans. Antennas Propagat., vol. 45, pp.  843-850,  May  1999.
  4. M. J. Park, J. Park and S. Nam, "Efficient calculation of the Green's function for the rectangular cavity", IEEE Microwave Guided Wave Lett., vol. 8, pp.  124-126, March  1998.
  5. S. Singh, W. F. Richards, J. R. Zinecker and D. R. Wilton, "Accelerating the convergence of series representing the free space periodic Green's function", IEEE Trans. Antennas Propagat., vol. 38, pp.  1958-1962, December  1990.
  6. P. Wynn, "On a device for computing the e_m(S_n) transformation", Math. Tables Aids Comput., vol. 10, pp.  91-96, 1956.
  7. M. J. Park and S. Nam, "Efficient calculation of the Green's function in rectangular waveguides", in Proc. IEEE Antennas Propagat. Soc. Int. Symp., Montreal, P.Q., Canada,July 1997, pp.  2354-2357. 
  8. M. J. Park and S. Nam, "Rapid summation of the Green's for the rectangular waveguide", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2164 -2166, December  1998.
  9. M. J. Park and S. Nam, "Rapid calculation of the Green's function in the shielded planar structures", IEEE Microwave Guided Wave Lett., vol. 7, pp.  326-328,  October  1997.
  10. M. J. Park and S. Nam, "Efficient calculation of the Green's function for multilayered planar periodic structures", IEEE Trans. Antennas Propagat., vol. 46, pp.  1582-1583, October  1998.
  11. A. Kustepeli, "Analysis and implementation of the Ewald method for waveguide and cavity structures", Ph.D. dissertation, Clemson University, Clemson, SC, December 1999.
  12. G. P. M. Poppe and C. M. J. Wijers, "More efficient computation of the complex error function", ACM Trans. Math. Softw., vol. 16, pp.  38-46, 1990.
  13. G. P. M. Poppe and C. M. J. Wijers, "Algorithm 680-More efficient computation of the complex error function", ACM Trans. Math. Softw., vol. 16, p.  47, 1990.