2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Microwave and Guided Wave Letters
Volume 10 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Characterization of Complex Permittivity Properties of Materials in Rectangular Waveguides Using a Hybrid Iterative Method

H. Esteban, J. M. Catala-Civera, S. Cogollos and V. E. Boria

Page 186.

Abstract:

In many microwave applications, an accurate knowledge of the complex permittivity properties of materials is usually required. A new procedure for the accurate determination of these properties is presented, based on an optimization algorithm that makes use of measured scattering parameters and simulated results of a cylindrical rod of dielectric material passing completely through a rectangular waveguide. The simulation tool employed consists of a very accurate hybrid iterative method. Results for the permittivity properties of ethanol (high-loss liquid material) are presented and validated with results from the literature.

References

  1. G. T. Voelker, G. W. Lei and B. K. Gilbert, "Determination of complex permittivity of low-loss dielectrics", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1955-1960, Oct.  1997.
  2. B. Oswald, D. Erni, H. R. Benedickter and W. Batchtold, "Dielectric properties of natural materials", in Proc. IEEE AP-S Int. Symp., vol. 4, June, pp.  2002-2005. 
  3. A. Parkash, J. K. Vaid and A. Mansingh, "Measurement of dielectric parameters at microwave frequencies by cavity perturbation technique", IEEE Trans. Microwave Theory Tech., vol. 27, pp.  791-795, Sept.  1979.
  4. A. H. Boughriet, C. Legrand and A. Chapton, "Noniterative stable transmission/reflection method for low-loss material complex permitivity determination", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  52-57, Jan.  1997.
  5. R. F. Harrington, Field Computation by Moment Methods, New York: MacMillan, 1968.
  6. M. O. Kolawole, "Scattering from dielectric cilinders having radially layered permitivity", J. Electromagn. Waves Applicat., vol. 6, no. 2, pp.  235-239, 1992.
  7. H. Esteban, V. E. Boria, M. Baquero and M. Ferrando, "Generalized iterative method for solving 2d multiscattering problems using spectral techniques", Proc. Inst. Elect. Eng. Microwave, Antennas and Propagation, vol. 144, no. 2, pp.  73-80, Apr.  1997.
  8. N. Marcuvitz, "IEE electromagnetic wave series 21,"in Waveguide Handbook, London: U.K.: Inst. Elect. Eng., 1986.
  9. J. A. Nelder and R. Mead, "A simplex method for function minimization", Comput. J., vol. 7, pp.  308-313, Jan.  1965.
  10. J. Barker-Jarvis, E. Vanzura and W. Kissick, "Improved technique for determining complex permittivity with the transmission reflection method", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  571-577, Aug.  1990 .
  11. S. Jenkins, T. E. Hodgetts, R. N. Clarke and A. W. Preece, "Dielectric measurements on reference liquids using automatic network analyzers and calculable geometries", Meas. Sci. Technol., vol. 1, pp.  691-702, Feb.  1990.
  12. S. Roberts and A. Von Hippel, "A new method for measuring dielectric constant and loss in the range of centimeter waves", J. Appl. Phys., vol. 17, pp.  610-616, 1946.