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The Determination of the Effective Radius of a
Filamentary Source in the FDTD Mesh

G. Waldschmidt and A. Taflove, Fellow, IEEE

Abstract—This paper proposes a rigorous method for deter-
mining the effective radius, e� , of a single axial field component,

or , in a two-dimensional (2-D) TM or TE FDTD grid, re-
spectively. The method is based upon matching FDTD results for
a filamentary field source with the analytical Green’s function in
two dimensions. We find that e� 0 2 grid cells over a wide
range of grid resolutions. Further, our findings vividly demonstrate
the nondissipative nature of the Yee algorithm even for very coarse
grid resolutions.

Index Terms—Effective radius, FDTD, filamentary source.

I. INTRODUCTION

T WO-DIMENSIONAL (2-D) TM or TE FDTD solvers
often use a single axial field component (or , respec-

tively) to source a radially outgoing wave. The effective radius,
, of such a filamentary source has been subject to some con-

jecture. Knowledge of can be important in certain three-di-
mensional modeling problems, for example in calculating the
driving-point impedance of an antenna comprised of such a fil-
ament, or in specifying the wire gauge that would yield the same
fields as the filament.

Accurate, effective subcell models of thin wires [1] are used
in FDTD grids to precisely mesh fine geometrical features
which are a fraction of a grid cell in size. Such models have
often been used in antenna modeling and design [2], [3].
However, this letter does not use a subcell model. Rather, a
filamentary hard source is excited and its effective radius
is determined. It is shown that where is the grid
resolution.

In order to verify the accuracy of a given technique, the re-
sults are commonly compared to a known analytical solution.
We discuss one of the most basic tests of this type for the Yee
algorithm, namely the response of the space lattice to an impul-
sive source located at its center. We will focus on the frequency
domain Green’s function for the 2–D Yee grid, and the genera-
tion of comparable FDTD data.

II. GREEN’S FUNCTION

Maxwell’s equations in two dimensions yield the following
scalar wave equation

(1)
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where is the speed of light in the given medium. This equation
is valid for either a TM or TE mode, where is substituted
by or , respectively. Given a Dirac delta function in time
as the excitation pulse, the solution can be shown to be the fol-
lowing 2-D time-domain Green’s function,

(2)

where is the radial distance from the source and the unit step
function is defined as

(3)

Note that at the leading edge of the outgoing
wave since . Any numerical solver is unable to model a
wave with infinite amplitude. However in the frequency domain
this is easily resolved. Therefore it is instructive to analyze the
2-D frequency-domain Green’s function

(4)

where is the Hankel function of the second kind andis
the free space wave number at .

is also unbounded in the frequency domain, but only
at due to the singularity of the Hankel function. This, in
fact, does not present a problem since the singularity is naturally
avoided. A line source in the FDTD grid has been known to
have some measurable radius, an effective radius, although it has
never been quantified. The excitation field in the grid radiates
from the edges of this filament just as an antenna in a physical
system. Therefore, a finite distance exists from the geometrical
center of the source to the location where the wave is actually
radiating. As a result, the Hankel function is no longer infinite
and is in fact easily handled by the FDTD mesh. Numerical
experiments discussed below demonstrate that can
be calculated very accurately by an FDTD model which excites
a single or field.

III. M ETHODOLOGY FORFINDING THE EFFECTIVE SOURCE

RADIUS

FDTD frequency-domain data may be gathered by per-
forming a discrete Fourier transform concurrently with time
stepping. Alternatively, a time-harmonic source may be excited
and the envelope of the response collected after the high
frequency transients have dissipated. Using this latter approach,
we need only a simple peak detector to acquire the envelope.
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Fig. 1. jH (kr)j with scaled and unscaled FDTD values along thex axis for
� =5 grid resolution.

Consider for example the hard-source excitation of exciting
a single field component at the center of a 2-D TEgrid.
We assume that the equivalent radius of the excited filamentary
source is given by where is the grid-cell size and

is a decimal fraction that we call the effective source radius.
A step-by-step process for determining follows:

1) Run the FDTD simulation for a given grid resolution with
a unity excitation amplitude of the hard-sourced.

2) Graph the FDTD-calculated sinusoidal steady-state
values of versus radial distance from the source.

3) Apply a constant multiplying factor to the graphed
FDTD data to generate the best fit in the norm sense
relative to the analytical frequency-domain Green’s func-
tion.

4) By our basic assumption concerning the effective source
radius of the excited component we determine
from the following:

(5)

Upon substituting , and into (5), we obtain by
using a table of Hankel function values generated by
MATLAB .

IV. NUMERICAL RESULTS

Fig. 1 shows a comparison of the analytical Green’s function
with both raw and scaled FDTD results for along the

-axis of a coarse grid with resolution . The finite scaling
factor to achieve a best fit between the exact and FDTD results
is 1.252. From (5), this yields .

Fig. 2 is similar to Fig. 1 except that it compares the radial
variation of the magnitude of the Green’s function with scaled
FDTD-calculated values as observed atall points
within the grid. Our methodology is to scale the FDTD results
so that the Green’s function forms: (a) the upper envelope of
the variation of FDTD values, and (b) the lower envelope of
the same variation of values. This yields two results for the

(a)

(b)

(c)

Fig. 2. Scatter diagram ofjH (kr)j throughout the entire grid for three grid
resolutions: (a)� =5; (b) � =10; (c) � =20.

multiplying factor , which by (5) results in two corresponding
values of . (In Fig. 2, we show for clarity only the scaled
upper envelope of the FDTD values.) These two values bound
the range of observed for the particular grid resolution used.

For resolution [Fig. 2(a)] there is a significant variation
of the FDTD-calculated values throughout the grid
which yields a large range of between 0.149 and 0.247. As
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TABLE I
EFFECTIVE FILAMENTARY SOURCERADIUS, f (FRACTION OF ONE SPACE

CELL) FOR VARIOUS FDTD GRID RESOLUTIONS

the resolution improves to [Fig. 2(b)], the variation of
the FDTD values decreases. This narrows the range ofto be-
tween 0.187 and 0.211. Refining the resolution further to
[Fig. 2(c)] causes the variation to markedly diminish, thereby
tightening the range of to between 0.200 and 0.207. Contin-
uing in this manner converges the spread of FDTD-calculated

values to the Green’s function, yielding a converged
value for of approximately 0.21. Table I summarizes the con-
vergence properties of for grid resolutions between and

.
We see from Table I that grid cells over a wide

range of resolutions. We make the following additional obser-
vation from Fig. 2. Although a variation of FDTD values of

exists throughout the grid, for any given cut at a fixed
azimuth angle the agreement between the Green’s function
and the FDTD values is excellent for an appropriate choice of

. While the coarse-grid FDTD data are known to have signifi-
cant phase-velocity errors due to numerical dispersion, the am-
plitude-distribution data show no evidence of either dissipation
or incorrect fall-off with .

Note that the fluctuations observed in the FDTD data seen in
Fig. 2 are due to the effectively noncircular shape of the source,
i.e., is a function of , and to the dependence of numer-
ical dispersion on [4]. As the resolution improves to ,
however, the numerical dispersion is greatly reduced and
becomes nearly independent of.

V. CONCLUSION

A filamentary HARD source in a 2-D Yee grid has been
shown to have an effective radius of approximately 0.2 grid
cells for a wide range of commonly-used grid resolutions. The
nondissipative nature of the Yee algorithm was indicated as
part of this study.
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