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The Determination of the Effective Radius of a
Filamentary Source in the FDTD Mesh

G. Waldschmidt and A. Tafloye~ellow, IEEE

Abstract—This paper proposes a rigorous method for deter- wherec is the speed of light in the given medium. This equation
mining the effective radius, r.«, of a single axial field component, s valid for either a TM or TE. mode, where: is substituted
E. or H,,inatwo-dimensional (2-D) TM, or TE, FDTD grid, re- 1,y i» ¢ [ respectively. Given a Dirac delta function in time

spectively. The method is based upon matching FDTD results for s .
a filamentary field source with the analytical Green’s function in as the excitation pulse, the solution can be shown to be the fol-

two dimensions. We find thatr.z = 0.2 grid cells over a wide lowing 2-D time-domain Green'’s functiotssp
range of grid resolutions. Further, our findings vividly demonstrate o )
the nondissipative nature of the Yee algorithm even for very coarse cl/(ct —r
P 9 Y w(r,t) = Gap(rt) = —— 2 )

grid resolutions. 2V 22 —r?

wherer is the radial distance from the source and the unit step
function/ is defined as

Index Terms—Effective radius, FDTD, filamentary source.

I. INTRODUCTION

WO-DIMENSIONAL (2-D) TM., or TE, FDTD solvers Ulet =)= ol o o ©)
often use a single axial field compone#t.(or H., respec-
tively) to source a radially outgoing wave. The effective radius, Note thatG.p(r, t) — oo at the leading edge of the outgoing
rot, Of Such a filamentary source has been subject to some camve sincer = c¢t. Any numerical solver is unable to model a
jecture. Knowledge of.¢ can be important in certain three-di-wave with infinite amplitude. However in the frequency domain
mensional modeling problems, for example in calculating thhis is easily resolved. Therefore it is instructive to analyze the
driving-point impedance of an antenna comprised of such a fi-D frequency-domain Green’s function
ament, or in specifying the wire gauge that would yield the same
fields as the filament. FHP (kr)
Accurate, effective subcell models of thin wires [1] are used u(r,w) = Gap(r,w) = 4
in FDTD grids to precisely mesh fine geometrical features
which are a fraction of a grid cell in size. Such models havehereH.” is the Hankel function of the second kind ahds
often been used in antenna modeling and design [2], [3ne free space wave numberat= 27 f.
However, this letter does not use a subcell model. Rather, &72p is also unbounded in the frequency domain, but only
filamentary hard source is excited and its effective radiys atr = 0 due to the singularity of the Hankel function. This, in
is determined. It is shown thatg ~ 0.2k whereh is the grid fact, does not present a problem since the singularity is naturally
resolution. avoided. A line source in the FDTD grid has been known to
In order to verify the accuracy of a given technique, the réave some measurable radius, an effective radius, althoughithas
sults are commonly compared to a known analytical solutionever been quantified. The excitation field in the grid radiates
We discuss one of the most basic tests of this type for the Y&em the edges of this filament just as an antenna in a physical
algorithm, namely the response of the space lattice to an impsy-stem. Therefore, a finite distance exists from the geometrical
sive source located at its center. We will focus on the frequeneégnter of the source to the location where the wave is actually
domain Green'’s function for the 2-D Yee grid, and the genereadiating. As a result, the Hankel function is no longer infinite

(4)

tion of comparable FDTD data. and is in fact easily handled by the FDTD mesh. Numerical
experiments discussed below demonstrate ¢haf(r,w) can
Il. GREEN'S EUNCTION be calculated very accurately by an FDTD model which excites

, . . ) : i __asingleE, or H, field.
Maxwell's equations in two dimensions yield the following

scalar wave equation
q I1l. M ETHODOLOGY FORFINDING THE EFFECTIVE SOURCE

2w 82w 1 8%u RADIUS
— = 1 .
bx2  by? 2 6t2 @ FDTD frequency-domain data may be gathered by per-
forming a discrete Fourier transform concurrently with time
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Fig. 1. |H.(kr)| with scaled and unscaled FDTD values along:thexis for 0.9r
Ao /5 grid resolution. o8k
: — Exact Hankel Function
. o . 07k — — Scaled FDTD Values
Consider for example the hard-source excitation of exciting &
. . . N
a singleH. field component at the center of a 2-D TErid. T 06/
We assume that the equivalent radius of the excited filamentaryé 0.5¢
source is given by.r = f*h whereh is the grid-cell size and £ o4
/* is a decimal fraction that we call the effective source radius. é’
A step-by-step process for determinifit follows: 03y
1) Runthe FDTD simulation for a given grid resolution with 0.2r
a unity excitation amplitude of the hard-sourdéd. 0.1r
2) Graph the FDTD-calculated sinusoidal steady-state 0 , ‘ ‘ ,
values ofH . versus radial distance from the source. 0 5 10 15 20 25
3) Apply a constant multiplying facto€ to the graphed kr
FDTD data to generate the best fit in the norm sense (b)
relative to the analytical frequency-domain Green’s func- 1
tion. 0.9+
4) By our basic assumption concerning the effective source
i i iné* 0.8 " Exact Hankel Functi
radius of the excitedd, component we determing xact Hankel Function
from the following: 0.7- ~ — Scaled FDTD Values
. =

C = |Gap(f*h,w)| = HHSQ)(kf*h)‘. (5)

Upon substituting:, #, andC' into (5), we obtainf* by
using a table of Hankel function values generated by
MATLAB ™

IV. NUMERICAL RESULTS

Fig. 1 shows a comparison of the analytical Green’s function ° ° " kr * 2 %
with both raw and scaled FDTD results fdi. (k)| along the (©

r-axis of a coarse grid with resolution /5. The finite scaling Fig. 2. scatter diagram df . (k)| throughout the entire grid for three grid
factor to achieve a best fit between the exact and FDTD resufsolutions: (a)o/5; () Ao /10; (C) Ao/20.

is 1.252. From (5), this yieldg* = 0.247.

Fig. 2 is similar to Fig. 1 except that it compares the radiahultiplying factorC', which by (5) results in two corresponding
variation of the magnitude of the Green'’s function with scaledhlues of f*. (In Fig. 2, we show for clarity only the scaled
FDTD-calculated|H,(kr)| values as observed ail points upper envelope of the FDTD values.) These two values bound
within the grid. Our methodology is to scale the FDTD resultthe range off* observed for the particular grid resolution used.
so that the Green’s function forms: (a) the upper envelope ofFor Ay /5 resolution [Fig. 2(a)] there is a significant variation
the variation of FDTD values, and (b) the lower envelope af the FDTD-calculatedH (k)| values throughout the grid
the same variation of values. This yields two results for thehich yields a large range gf* between 0.149 and 0.247. As
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TABLE | C. While the coarse-grid FDTD data are known to have signifi-
EFFECTIVE FILAMENTARY SOURCERADIUS, f~ (FRACTION OFONE SPACE ¢t phase-velocity errors due to numerical dispersion, the am-
CELL) FORVARIOUS FDTD GRID RESOLUTIONS . .. . . . . .
plitude-distribution data show no evidence of either dissipation
or incorrect fall-off withr.

Resolution Range of f* Note that the fluctuations observed in the FDTD data seen in
Ao 0.149 — 0.247 Fig. 2 are due to the effectively noncircular shape of the source,
;’ i.e., 7o IS @ function of¢, and to the dependence of numer-
% 0.187 - 0.211 ical dispersion o [4]. As the resolution improves t&,/20,
A however, the numerical dispersion is greatly reducedapd
-~ 0.200 — 0.207 i
20 ’ : becomes nearly independentgaf
Ao
0 0.206 — 0.209

V. CONCLUSION

A filamentary HARD source in a 2-D Yee grid has been
the resolution improves ta, /10 [Fig. 2(b)], the variation of shown to have an effective radius of approximately 0.2 grid
the FDTD values decreases. This narrows the rangé td be- cells for a wide range of commonly-used grid resolutions. The
tween 0.187 and 0.211. Refining the resolution furthex®20 nondissipative nature of the Yee algorithm was indicated as
[Fig. 2(c)] causes the variation to markedly diminish, therelyart of this study.
tightening the range of* to between 0.200 and 0.207. Contin-
uing in this manner converges the spread of FDTD-calculated
|H.(kr)| values to the Green’s function, yielding a converged
value forf* of approximately 0.21. Table | summarizes the con- [1] A. Taflove, “Local subcell models of fine geometrical features,” in

. . . Computational Electrodynamics: The Finite-Difference Time-Domain
vergence properties ¢gf for grid resolutions betweek, /5 and Meth%d Norwood. M A:y Artech House. 1995. ch. 10.

)\0/40. [2] M. Douglas, M. Okoniewski, and M. A. Stuchly, “Accurate modeling
We see from Table | that.y ~ 0.2 grid cells over a wide of thin-wire antennas in the FDTD methodylicrowave Opt. Technol.

. . - Lett, vol. 21, pp. 261265, 1999.
range of resolutions. We make the following additional obser-3; 5 \atanabe and M. Taki, “An improved FDTD model for the feeding

vation from Fig. 2. Although a variation of FDTD values of gap of a thin-wire antennaJEEE Microwave Guided Wave Lettol.
|H. (kr)| exists throughout the grid, for any given cut at a fixed 8. pp. 152-154, 1998.

_ , . [4] A. Taflove and S. C. Hagness, “Numerical dispersion and stability,”
azimuth anglep the agreement between the Green’s function "~ i1 computational Electrodynamics: The Finite-Difference Time-Domain

and the FDTD values is excellent for an appropriate choice of  Method 2nd ed. Norwood, MA: Artech House, 2000, ch. 4.
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