2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Microwave and Guided Wave Letters
Volume 10 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

An Anti-Reflection Coating for Silicon Optics at Terahertz Frequencies

A. J. Gatesman, J. Waldman, M. Ji, C. Musante and S. Yngvesson

Page 264.

Abstract:

A method for reducing the reflections from silicon optics at terahertz frequencies has been investigated. In this study, we used thin films of parylene as an anti-reflection (AR) layer for silicon optics and show low-loss behavior well above 1 THz. Transmittance spectra are acquired on double-sided-parylene-coated,high-resistivity, single-crystal silicon etalons between 0.45 THz and 2.8 THz. Modeling the optical behavior of the three-layer system allowed for the determination of the refractive index and absorption coefficient of parylene at these frequencies. Our data indicate a refractive index, N, of 1.62 for parylene C and parylene D, and a reasonably modest absorption coefficient make these materials a suitable AR coating for silicon at terahertz frequencies. Coatings sufficiently thick for AR performance reduced the average transmittance of the three-layer system by <10% compared to a lossless AR coating with an ideal refractive index.

References

  1. N. G. Ugras, J. Zmuidzinas and H. G. LeDuc, "Quasioptical SIS mixer with a silicon lens for submillimeter astronomy", in Proc. 5th Int. Symp. Space Terahertz Technology., 1994, p.  125. 
  2. J. W. Lamb, "Miscellaneous data on materials for millimeter and submillimeter optics", Int. J. Inf. Millim. Waves, vol. 17, no. 12, p.  1997,  Dec.  1996.
  3. C. R. Englert, M. Birk and H. Maurer, "Antireflection coated, wedged, single crystal silicon aircraft window for the far-infrared", IEEE Trans. Geosci. Remote Sensing, vol. 37, p.  1997,  July  1999.
  4. J. Schubert, , private communication,
  5. E. Gerecht, C. F. Musante, Y. Zhuang, K. S. Yngvesson, T. Goyette, J. Dickinson, J. Waldman, P. A. Yagoubov, G. N. Gol'tsman, B. M. Voronov and E. M. Gershenzon, "NbN hot electron bolometric mixers-A new technology for low-noise THz receivers", IEEE Trans. Microwave Theory Tech., vol. 47, p.  2519,  Dec.  1999.
  6. M. J. M. van der Vorst, "Integrated lens antennas for submillimeter-wave applications", Ph.D. dissertation, Tech. University Eindhoven, The Netherlands, 1999.
  7. P. G. J. Irwin, P. A. R. Ade, S. B. Calcutt, F. W. Taylor, J. S. Seeley, R. Hunneman and L. Walton, "Investigation of the dielectric spaced resonant mesh filter designs for PMIRR", Inf. Phys., vol. 34, no.  6, pp.  549-563, 1993.
  8. P. A. Chen, "The performance of dielectric coated mesh filter", J. Inf. Millim. Waves, vol. 8, no. 1, p.  29, Jan.  1987.
  9. A. J. Gatesman, R. H. Giles and J. Waldman, "High-precision reflectometer for submillimeter wavelengths", J. Opt. Soc. Amer. B, vol. 12, no. 2, p.  212, February  1995.
  10. A. J. Gatesman, "A high precision reflectometer for the study of optical properties of materials in the submillimeter", Ph.D. dissertation, Univ. Massachusetts, Lowell, 1993.
  11. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, Amsterdam: The Netherlands: North-Holland, 1977 .