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A Practical Large-Signal Global Modeling
Simulation of a Microwave Amplifier Using
Artificial Neural Network

Sébastien Goasguen and Samir M. EI-Ghazaly

Abstract—We present a new technique to obtain large-signal
global modeling simulation of a MMIC amplifier. The active
device is modeled with a neural network trained with data
obtained from a full hydrodynamic model. This neural network
describes the nonlinearities of the equivalent circuit parameters
of a MESFET implemented in an extended Finite Difference vg — =
Time Domain (FDTD) mesh. We successfully represented the
transistor characteristics with a one-hidden-layer neural network
whose inputs are the gate voltagd/,., and the drain voltage V..
Small-signal simulation is performed and validated by comparison
with HP-Libra. Then, the large signal behavior is obtained, which
demonstrates the successful use of artificial neural network (ANN)
in the FDTD marching time algorithm.

Vgs ——————

Index Terms—Atrtificial neural network, extended-FDTD, global
modeling.

. INTRODUCTION

ICROWAVE circuits are becoming more and more inte- Input layer Hidden layer Oupur layer

grated. In the millimeter-wave band, the radiation anglg 1. Artificial neural network architecture.
the coupling effects can no longer be neglected. The aim of

the “Global Modeling” techniques is to unify both the elecé\ccurately and efficiently predicts the behavior of the simulated

gggsgtnhegfr alrjlsle%s;so ggtp;?:s“ﬁe;gc%ugsz|fgf tﬁgﬁsissiggc =SFET. The transistor is implemented in an extended finite
y phy ) dﬁ‘ference time domain (FDTD) [6] code to simulate an am-

\r/aetrggr:%Z fLetqouep;:C;?;, tLheebaeﬁgl\ioc:eo\?ZEbr? ;?Cerlorr:gtsérbea?eccqi]‘ier. The nonlinearities of the MESFET are predicted by the
9 P 9 N, which updates the circuit parameters values according to

vices. Alsunaidet al.[1] have used a full hydrodynamic model T
. X . . . . the electromagnetic field computed across the lumped elements
coupled with Maxwell's equations to predict the interactions

between the carriers and the propagating wave inside the H]és_erted in the FDTD mesh.
vice. Recently, this full hydrodynamic model has been used
to demonstrate the global modeling approach [2]. However, it
suffers from time consuming techniques such as nonuniformThe hydrodynamic model is based on the moments of the
meshing and time domain diakoptics. Boltzmanns transport equations obtained by integration over the
Artificial neural network (ANN) is a new trend in mil- momentum space. This model has been successfully used to ob-
limeter-wave CAD that dramatically reduces the computatidain a full wave analysis of the transistor [1], [2]. However, this
time of electromagnetic (EM) models, replacing the expensia@proach is computationally very expensive to be used in an it-
EM model with ANN trained by EM simulation results [3]. erative designh scheme. The training property of the ANN is used
This new approach has been successfully used [4] to motlekhccelerate the full wave analysis, in order to efficiently char-
passive devices. ANN’s have also been used to model the hagtterize the large signal behaviors of microwave circuits.
nonlinearities of transistors obtained by measurements [5]. A MESFET is simulated using the hydrodynamic equations.
In this letter, we propose to model the steady state solutionTfien, the intrinsic parameters are extracted from the results and
the hydrodynamic equations by an artificial neural network thaain be used to train the ANN. Physical dimensions as well as
doping profiles could also be used as inputs of the ANN, but
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Fig. 2. I-V characteristics of the simulated MESFET. Fig. 3. Small-signab-parameters of the MESFET.
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input layer multiplied by a set of weighting factors. The outpt T IE:Q}:?3
is given by a so-called activation function, which is a nonline:  o1f v = ’ ——  [Einj=15

function applied to the input in order to model our data.

A 3-D FDTD code is modified to include lumped element: o5
that describe the intrinsic parameters of the equivalent circi
of a unilateral transistor. These lumped elements are distribuz
across multiple FDTD cells. Ateach time step, thg; andVps £
voltages are computed from the electric field which are theg
fed back to the neural network to compute the new intrinsic p®
rameters. Hence, updating of the equivalent circuit paramet
is almost instantaneous and does not require the hydrodynau
model to be solved during the FDTD simulation.
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Ill. RESULTS
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A typical MESFET was simulated according to the hydrody Time fterations, ci=0.441e-12 s
namic model. Then, a three layer neural network was trained to ) ) )
model the nonlinearities aF,,,, Ry, Cys, Cyq andly,. Sixney- 194 Large-signal simulation results.
rons were used in the hidden layer. Fig. 2 showd tié charac-

teristics of the simulated MESFET and the results obtained afte® f: 12(; ms.' TE‘?T_.LGSUI_}_Sh arte cc;mpared ;V;h a simulation
training of the ANN. Four differenf—V" drain-voltage sweeps performed using HP-Libra. The trends 8, and ), are very

gose to the FDTD results.

were used for training using a total of 84 training points. Th Th | network has b d to take int t th
testing was performed for thrde-V drain-voltage sweeps (63 1€ heural network has been used 1o take into account the
gnlinearities of the intrinsic parameters. The structure is ex-

points), embedded in the ones used for training. We used a bad db . idal p i qf
propagation ANN using theevenberg—Marquardnethod for C'ted by a sinusoidal wave of amplitudg,,, and frequency

the optimization. The agreement between both sets of data ufeﬁ 10 GHz. Fig. 4 presents the output voltage for three dif-

for training-testing, and the hydrodynamic model initial data, §re_nt cases. As the ampll_tude of the _5|gnal IS m_cregsed, the
very good. evice approaches saturation, generating harmonics in the fre-

The accuracy is better than 1%. At a givién,, the drain cur- guency domain. This shows that the ANN can be used to de-

rent can be computed for the full rangelgf, almost instanta- scribe the nonlinearities of the MESFET.
neously. This has to be compared with the 45 min necessary to
compute 21 points using the hydrodynamic model on the same
computer. We simulated the transistor without any matchingMillimeter-wave CAD requires a full-wave analysis of
network to validate the method. Fig. 3 presents the small-sighdMIC’s to accurately predict wave-device interactions, and
S-parameters. the performance of new active devices inside a particular mi-
The dielectric constant of the substrate-js= 2.2, and the crowave topology. An ANN is used to model the non- linearities
height of the substrate i = 0.794 mm. The amplifier is as- of a MESFET based on a full-hydrodynamic model. This ANN
sumed to be biased &;s = —0.6 VandVps = 3 V. At is used to update the intrinsic parameter values of the transistor
this bias pointC,; = 0.5 pF, Oy, = 17 fF, Rg, = 1202 and implemented in the FDTD marching time algorithm as lumped

IV. CONCLUSIONS
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elements. The ANN reduces dramatically the computation[2]
time in comparison with a complete global modeling approach.
This approach provides an efficient and accurate first order[3]
large-signal global modeling approximation.
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