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Perfectly Matched Layer Media for an
Unconditionally Stable Three-Dimensional

ADI-FDTD Method
Gang Liu and Stephen D. Gedney

Abstract—A split field perfectly matched layer (PML) medium
is introduced for the three-dimensional (3–D) alternating direction
implicit (ADI) formulation of the finite–difference time-domain
(FDTD) method. It is demonstrated that the ADI-FDTD method
remains unconditionally stable with the inclusion of the PML. The
effectiveness of the absorbing medium as a function of the time
step is also demonstrated.

Index Terms—Alternating direction implicit (ADI) method,
FDTD method, perfectly matched layer (PML).

I. INTRODUCTION

RECENTLY, an unconditionally stable three-dimensional
(3-D) alternating direction implicit (ADI) scheme was in-

troduced for the finite–difference time-domain (FDTD) method
[1]. The successful implementation of this scheme has the
potential to significantly impact the application of the FDTD
method to problems where very fine meshing is necessary over
large geometric areas. For the ADI-FDTD method to have a
true impact on the field of computational electromagnetics
an accurate and efficient absorbing boundary condition must
be developed to emulate electromagnetic interaction in an
unbounded space. The perfectly matched layer (PML) ab-
sorbing medium is an ideal candidate for the ADI-FDTD grid
termination due to its broad band absorption characteristics and
application to general media [2]–[4]. Furthermore, it does not
corrupt the unconditional stability of the ADI-FDTD scheme.

In this letter, a split field PML based on Berenger’s original
formulation [2] is employed within the ADI-FDTD formula-
tion. It is shown that the method remains unconditionally stable.
The accuracy of the PML as a function of the time step is also
demonstrated through example.

II. FORMULATIONS

The ADI-FDTD formulation derived herein is based on
Berenger’s original split field representation of Maxwell’s
equations [2]–[4]. For example, consider the-projection of
Ampere’s law

(1a)
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(1b)

and the -projection of Faraday’s law

(2a)

(2b)

where is the free-space wave impedance.
The 3-D space is discretized using a staggered grid, as for the

standard Yee-scheme. Then, following the ADI method intro-
duced by [1], the discrete forms of (1a) and (1b) at time-step

are expressed as

(3a)

(3b)

and discrete forms of (2a) and (2b) at time-step are
expressed as

(4a)

(4b)
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where

(5)
where is the speed of light in free space, and , or

and , or . Note that the discrete time differencing
is assumed over an interval of . The fields have also been
normalized using

(6)

The remaining projections of Ampere’s and Faraday’s laws are
similarly discretized.

A set of implicit equations can now be formulated. To this
end, and (4b) are combined with (3a), leading to

(7)

where

(8a)

(8b)

(8c)

Equation (7) combined with (8a)–(8c) provides the implicit
update expression for the electric field component at the
( ) time-step. The implicit equation requires the solu-
tion of a tri-diagonal matrix that couples along the -axis
only. This is efficiently solved in operations [5], where

Fig. 1. Relative error at point A as a function of time for different CFL
numbers.

is the number of cells along the-direction. Similar proce-
dures can be used for other field components at the
and time-step, respectively.

Following a Von Neumann analysis by assuming a homoge-
neous PML medium, it can be shown that this scheme is uncon-
ditionally stable. Due to space limitations, this is not done here
and is left to a future publication.

III. N UMERICAL RESULTS

To illustrate the PML termination of the ADI-FDTD lattice,
a simulation of a small electric current source radiating in free-
space was studied. To this end, a uniform mesh with cell spacing

mm and lattice dimension of
was used. PML layers that were ten cells thick terminated all six
sides of the lattice. Within the PML, the conductivity was scaled
using polynomial scaling [2], [4]

(9)

where is the interface, is the depth of the PML, and is
the order of the polynomial.

A choice for that will minimize reflection is expressed
as [4]

(10)

where is the grid spacing along the normal axis.
The reflection error due to the PML was studied by exciting

a small electric dipole at the center of the grid. The time depen-
dence of the source was a differentiated Gaussian pulse with
a half-bandwidth of 3.175 GHz (note that at 3.175 GHz, the
ratio of the wavelength to the grid cell size mm
is ). The reflection error was computed at two
points in the grid. Point A corresponds to an electric field co-po-
larized with the source one cell from the PML interface and in
the same plane as the source. Point B corresponds to an elec-
tric field co-polarized with the source one cell diagonally from
a corner of the PML interface. A reference solution based on an
extended lattice was computed for each CFLN in order to isolate
the error due to the PML from grid dispersion error. The rela-
tive error was then computed as ,
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Fig. 2. Maximum relative error of the ADI-PML and Berenger’s PML as the
function of the CFLN.

Fig. 3. Maximum relative error versus� =� over a 1000 ps observation
period for various CFLN’s.

where is the maximum value of the electric field at that
point over the 1000 ps time interval.

The results are also compared to an FDTD simulation em-
ploying Berenger’s split field PML. The FDTD simulation is
bound by the Courant, Friedrichs, and Lewy (CFL) limit

(11)

where is the speed of light within the host medium. Defining
the ratio of to be the CFL number (CFLN), the
FDTD simulation is bound to a CFLN 1. Whereas, the ADI
solution is not bound and can support a CFLN1.

Fig. 1 illustrates the relative reflection error computed
at point A as a function of time for the ADI method with
different CFLN’s, and for the FDTD method with a CFLN

( ps). In all cases, the PML parameters were
scaled according to (9), with [(10)] and .
Characteristically, the FDTD exhibits reflection errors that are
small in the early time, and grow to a maximum asymptotic

limit in the late time [3], [4], which is better than 80 dB.
Interestingly, the ADI-PML exhibits its largest error in the early
time and then relaxes to an asymptotic limit in the late time. It
is also apparent that as the CFLN is increased, the reflection
error increases.

Fig. 2 illustrates the maximum relative error at points A
and point B as a function of the CFLN. As expected, the error
at point A, which is predominately due to normally incident
waves, is less than the error at point B. From Fig. 2, it is
observed that when the CFLN , the reflection error is the
same level as the error realized by the FDTD terminated with
Berenger’s PML. However, increasing the CFLN increases the
reflection error. To verify that this is not directly related to the
choice of and , a number of simulations were done to
compute the error versus these parameters. As with the FDTD
method, choosing is optimal and one sees little
variance in the error within this range. Furthermore, even for
larger CFLN’s, choosing from (10) will give
close to the minimum error. This is illustrated in Fig. 3.

IV. CONCLUSION

A 3-D alternating direction implicit (ADI) FDTD method
employing the Berenger split-field PML equations was pre-
sented. It was found that the technique is unconditionally stable
and supported time steps greater the CFL limit. Numerical
example demonstrated that the ADI-PML does indeed provide
wideband absorption of impinging electromagnetic waves.
However, it was found that the reflection error increases
when the CFL number is increased beyond one. In general,
it was found that given a cubical spatial cell size of , if

CFLN , the ADI-PML method based on the
split field-PML has good reflection properties. The one caveat
is that the PML performance will degrade for low frequency
excitations and long time exposures with the PML interface
[3]. It is anticipated that this will ultimately be circumvented
by alternative choices of constitutive parameters for the PML
[6] as this technique continues to mature.
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