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A Statistical Algorithm for 3-D Capacitance
Extraction

Angelo Brambilla and Paolo Maffezzoni

Abstract—This letter deals with the problem of parasitic capac- There is another aspect for which FRW based on spheres is
itance extraction in deep submicron layouts having general geome- worth to be reconsidered: as it will be shown in the sequel, the
Eir::?isl}lg zgnhgegnp(;gfnew;i ‘;@Lﬁﬂ%‘ T:gmgﬁoisbﬁgﬁga%ﬁ‘etgzﬁé?“S‘ probability function derived from spherical Green functions is
ical Green function that, in a charge free region, relates the elec- directly invertible while those ones of cubes dc_) not. AS acon-
trical field in the sphere center to the surface electrical potential. ~ S€dquence the FRW method based on sphere is straightforward

. _ ensuring high robustness and minimal memory occupation.
Index Terms—Capacitance measurement, Laplace equation.

Il. M ATHEMATICAL FOUNDATION

I. INTRODUCTION . . .
obucTio Let consider the 3-D solution of Laplace’s equation for the

HE determination of static electrical capacitances @flectrical potentiafb subjected to the boundary Dirichlet con-
conductors embedded in a three dimensional electrodtions on the surface of a sphere. The problem is suitable for a
arrangement is an important and recurrent task for modelifigscription in spherical coordinates wheris the radiusé the
modern ultra large scale integration (ULSI) circuits. In sulpolar angle ang the azimuth angle. The general expression of
micron layouts the parasitic capacitance of interconnects witiie electrical potential in the interior of the sphere is
respect to the substrate (ground plane) and neighboring conduc- o m

tors is one of the main causes that affect the signal delay ang, g, ¢) = Z Z Con™[An cos (nd) + By, sin(ng)]
clock skew. ’ ’ ’

m=0n=0

The extraction of the electrostatic capacitance is a well known - P™(cos 6) 1)
problem that involves the solution of Laplace’s equation for the ) )
electrical potential. where P (cos #) are the Legendre polynomials [5]. It is pos-

Among the possible techniques for solving the Laplacefébk? to evaluate the partial derivative of the potential along the
equation, statistical methods based on the floating random wéd@dial direction in the sphere center
(FRW) are particularly promising since they can efficiently 9% _
haRdIe vir)ll complex geom;etrri]es: ] f |, =A,C1 cos(0) + A1 Cy cos(¢) sin(6)

careful investigation of the influence of geometry com- = . .

plexity on the CPng time and memory occu%ation o}; FRW +C1By sin(¢) sin(6). 2)
methods has beenrecently presentedin[2] and compared to tt®gemploying spherical to rectangular coordinate transforma-
of conventionalfinite-elementand boundary elementmethodstions x = 7 sin(f) cos(¢), ¥y = 7 sin(f) sin(¢) and z =

FRW was originally introduced by Royer for computing the cos(6) and the derivative chain rule, it is easy to show that
electrical potential in a 3-D geometry [3] and was based on the 9%

employment of spherical surfaces. Iverson and Le Coz extended ACL = — = ¢,(0) = —E,(0)
this method to the determination of the parasitic capacitance of 9z |,—o

an interconnect, basing it.on the.usage of gubic surfaces [4]. OB, = o® — ,(0) = —E,(0)
The advantage of employing cubic surfaces is that they better Y |,—o

conform to the contour of Manhattan geometries, largely found 9P

in ICs layout. 4,01 = S $.(0) = —E.(0)

As far as we know, a capacitance extraction method based
on spherical Green function for the electrical field was nevéthereE;(0) is the electrical field component along tith axis.
investigated before and constitutes the subject of this paper. Thite coefficients in (1) are found by imposing the potential on
choice is based on the fact that ICs manufacturing technolod@ spherical surface of radiug be equal to a knowi’ (6, ¢)
is evolving toward non regular Manhattan shapes. The supertential distribution. Exploiting the orthogonality properties of
conform ability of cubes is greatly lost for these structures ah@gendre polynomials and sinusoidal functions, we find

there is no reason to approximate them with Manhattan ones if @ w )
. . . . . le} :
an efficient capacitance extraction method can be applied. / d¢ /0 (R, 6, $)(I7)" sin(d) df
T ™ ™
2 .
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By substitutingP} = cos(6#) we obtain a weighted summationwhere N, is the number of random walks performed by the al-
of the potential on the boundary gorithm. The statistical evaluation of the above integral is com-
3 1 = posed of the following steps.
2.(0) = 2R / 9 de / V(6, ¢) cos(8) sin(6)db (4) » Randomly select a point on the G surface with uniform
o o 0 _ probability.
Similar e_xpre/ssmns canbe fou_ndforthe other field components. , et 4 sphere that does not intersect electrodes, with the
If we define¢” = = — 6, the azimuth complementer angle, we  5yimum radiug?,..... and centered in the selected point.

have  Pick a point on this sphere accordingly to the procedure
®.(0 3 T 1 7/2 Vi 0 sin(8) d described in the previous section and store the factor
/2 » From the last point start with a floating random walk until

_ Ve 0" sin(@) do' | d 5 an electrode is reached [3]. An electrode is considered
/0 (6", ¢) cos(®) sin(¢) ) ¢ © touched when the walking point is at a distafiaghich is

. . . very small when compared with the electrode dimensions.
e ety o o The POl f e eached locade s mlipled b e
the potential in thge sphgre center, while potentials on the ot erFVIOUS%"S/RmaX. factor and storeq n memory. .

. : S : Some information on the extension to multidielectric struc-
half-sphere give a negative contribution. The numerical eval'“hu_res can be found in [7]
tion of the integral can be done with a statistical procedure: the '
weighting factor is the probability density function #éfand¢

variables. If the electrical field along a generic directibis de- IV. NUMERICAL RESULTS

sired, alocal rectangular coordinate frame of reference is choserlh the first part of this section, we investigate the advantages
with thez direction oriented ag&. In this reference the angle is and the drawbacks of the propo’sed FRW method by comparing
distributed uniformly in the intervd0, 2=] while 8 and its com- it to the cubic based approach. We refer to very simple two—di-
plemented’ are distributed ith0, 7 /2] with the probability den- mensional (2-D) examples that the reader can verify by him-
sity GE*") = sin(6) cos(9), which is related to the cumulative self. TheGS*™ Green function of the circle is a constant and

probability functionl /2 S (9.) that is S”_mp'e and |nvert_|b|e._ a‘([j‘)oint selection on it is done with uniform probability. For the
As a consequence the statistical evaluation of the electrical fie (Cube) L . :
uare, the7, function is reported in [4] and we have im-

;an:b;a 73,0[8 el?.y: |(r)?c9tlly:ge£li§§|ng(tp[g alz]|)m vl;Lhe?:.(Tj[([)) Oll?rigngpefemented it in a one-dimensional look-up table. In all the ex-

a random number uniformly distributed between 0 and 1. Nof’flémjles“5 ~ .0'001 pm 1S the tolerance chosen.for.the c.|rcle'

thaté angle or its complementer are selected with equal proB plementation while for the square each edge is discretized in
00 pieces. With this choice, for an average square edge of

bility. The electrical potential of the corresponding point on th1 the di tizati troduced i ble to th
spherical surface is multiplied by the fac®f2R, taken nega- cirlélrg toleéralr?(c:(rae Ization error introduced IS comparable to the

tive if § < «/2 or positive if¢’ < = /2, and stored in memory. . . .
Repeating many times this procedure and averaging results, thEI'St: et us consider the 2-D symmetric Manhattan geometry

I h

statistical estimation of the electrical field is obtained. of Fig. (%(Ii)ﬁ)a”d compute the average number of H&pS”")
We note that the Green functions relating the electric field adgd 7*~"*’ that are required to reach one of the two elec-
the potential in the center of a cube to its surface potential df§odes starting from the point A ar;d}by moving on mg:l;es andon

tribution, here referred to ag{“"*” andG{“"*”, have much Sauares, respectively. It resul§(5P*) = 10 and W (Cube) =

more complicated expressions and in 3-D they require doute: Snowing thatin aregular Manhattan geometry, squares per-

infinite series summations. Therefore the corresponding culffitM about two times better than circles.

cumulative probability functions are not directly invertible. Let us now consider the non symmetric Manhattan geometry
shown in Fig. 1(b). Starting from poit, we obtaini¥ (5?7 =

14 andW(€ube) = 25 while starting from CW(*?") = 12 and
W (Cube) = 10. The better conform ability of square is largely
The structure we refer to is formed By electrical conductors |ost for walks starting between not aligned conductors (B) and
of possible different shapes in a 3-D domain. To determine tReonly partially regained starting near the large electrode (C).
genericC;; is necessary to compute the chargenduced on  From this example it follows that also in Manhattan geometries
theith electrode when the potential of t}ith electrode is raised the more or less conform ability of square with respect to circles
to one volt and the other electrodes are grounded. The indugrgbends on the particular Gaussian surface from which the FRW
charge is derived from the Gauss’ law by evaluating the flux @ started.

the electrical displacement vector through a Gaussian suface Fig. 1(c) shows a non Manhattan geometry with non rect-
that surrounds the electroge = ¢ [, E - iidG. By means of angular electrodes. In this case we obtHit*?") = 13 and
the previously developed equations, we have W(Cube) — 40, starting from point D,W (") = 13 and
o M . WCule) — 20, starting from E. Squares need the introduction
G =€ — Z </ — de; / V(6;, ¢i) cos(6;) sin(6;) d9i> of a § tolerance in touching an electrode, similar to that of cir-
N i=1 2m cles. While the average number of hops needed by circles is al-
(6) most equal to those of previous cases, squares need much more

I1l. CAPACITANCE COMPUTATION
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Fig. 2. Cross section with lengths of the interconnect.
(2.5,5) (3.5,5)

2.4 D 4.4 TABLE |

(6.:1,3;3 (5’(36'.56) 3 CAPACITANCE VALUES EVALUATED BY FASTCAP CF) ANDBY FRW (CFRW)

E@42 - (62) 1,2

(o,o;g)”______,,._——} @n L [z m] | CF [fF] | time-F [sec|] | CFRW [fF] | time-FRW [sec]
(8.0) 10 141 33 137 25
00 100 1241 44.0 12.25 2.47

© 200 24.48 116.0 24.6 2.55

C

Fig. 1. (a) The 2-D symmetric Manhattan structure employed as benchmark .
(b) the 2-D non symmetric Manhattan structure employed as benchmark, é’r@ted by FASTCAPQF) and by FRW CFRW) with a chosen

(c) the 2-D non Manhattan structure employed as benchmark. relative accuracy error of 1% and the corresponding CPU time,
(time-F) and time-FRW) respectively. All simulations were

hopes to reach an electrode. Similar results are obtained if 3ane on a PENTIUM 1l 500 Mhz.

geometries are considered.
On our computer for the irregular geometries of industrial lay-

outs, the proposed algorithm does 5000 walks/second in averadé] A. Brambilla and P. Mancini, “Accuracy analysis of layout parasitic ex-
traction based on Boolean methods,”|BCAS Monterey, CA, May

and in general 1000-2000 walks are enough to estimate the ca- 1" 3,ne 3 1998.
pacitance of an interconnect with 5% relative error. Our experi-[2] Y. L. Le Coz, H. J. Greub, and R. B. Iverson, “Performance of

ence with QuickCap [9] shows that it does less walks/second on rando’r,n-wgilk capacitance extractors for IC interconnects: A numerical
h | ts. but we are unable to definitelv attribute this t study,” Solid-State Electronvol. 42, no. 4, pp. 581_—588, 1998.
the same layouts, bu y 0[3] G. M. Royer, “A Monte Carlo procedure for potential theory problems,”

the employment of cubes and not to a different structure of the  IEEE Trans. Microwave Theory Techol. MTT-19, pp. 813-818, Oct.

program. To summarize our opinion is that an efficient FRW can__ 1971. ) _ , _
be obtained!i fi v throuah a careful choice of the Greer{4] Y. L. Le Coz and R. B. lverson, “A stochastic algorithm for high speed
€ obtained in practice only ug etul chol . capacitance extraction in integrated circuiSglid-State Electronvol.
function that governs hops and of the “clipping” algorithm that 35, no. 7, pp. 1005-1012, 1992.
selects the maximum allowed step. [5] R. I_Dlon_sey andR. E. Collimrinciples_ and Applications of Electromag-
In th d t of thi i th netic Fields New York: McGraw-Hill, 1961, ch. 4.
n the second part of this section, we compare the proposeqe] K. Nabors, S. Kim, and J. White, “Fast capacitance extraction of general

FRW to FASTCAP that is based on the multi-pole acceleration  three-dimensional structure$£EE Tran. Microwave Theory Teghvol.

algorithm [6]. 40, July 1992. _ .
Fig. 2 sh . ith idal . I’P] J. N. Jere and Y. L. Le Coz, “An improved floating-random-walk algo-
Ig. 2 shows an interconnect with trapezoidal cross section o rithm for solving the multi-dielectric Dirichlet problem/EEE Trans.

a ground plane in a uniform dielectrie.(= 4.2). We extracted Microwave Theory Techvol. 41, pp. 325-329, Feb. 1993.

the total parasitic capacitance for several valhesf the inter-  [8] M-N.O. Sadi:‘élé‘l‘EMTO“te Cégo metlhggs in a;‘;“tggdgcﬁ”if :g')%c”omag'
. . netic COUI’Se,Y rans. ug.vol. , PP. —ol, FeDn. .

connectlength with FASTCAP and with the here proposed I:R\N[Q] R. B. Iverson and Y. L. Le Coz, “User Guide for QuickCap™ Version

method ¢ = 0.1 nm). Table | shows the capacitance valueseval- ~ 3.0,” Random Logic Corporation, 1999.
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