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A Statistical Algorithm for 3-D Capacitance
Extraction

Angelo Brambilla and Paolo Maffezzoni

Abstract—This letter deals with the problem of parasitic capac-
itance extraction in deep submicron layouts having general geome-
tries. The here presented extraction method is based on the statis-
tical floating random walk algorithm. It employs a suitable spher-
ical Green function that, in a charge free region, relates the elec-
trical field in the sphere center to the surface electrical potential.

Index Terms—Capacitance measurement, Laplace equation.

I. INTRODUCTION

T HE determination of static electrical capacitances of
conductors embedded in a three dimensional electrodes

arrangement is an important and recurrent task for modeling
modern ultra large scale integration (ULSI) circuits. In sub-
micron layouts the parasitic capacitance of interconnects with
respect to the substrate (ground plane) and neighboring conduc-
tors is one of the main causes that affect the signal delay and
clock skew.

The extraction of the electrostatic capacitance is a well known
problem that involves the solution of Laplace’s equation for the
electrical potential.

Among the possible techniques for solving the Laplace’s
equation, statistical methods based on the floating random walk
(FRW) are particularly promising since they can efficiently
handle very complex geometries.

A careful investigation of the influence of geometry com-
plexity on the CPU time and memory occupation of FRW
methodshasbeenrecentlypresented in [2]andcompared to those
of conventional finite-elementandboundaryelementmethods.

FRW was originally introduced by Royer for computing the
electrical potential in a 3-D geometry [3] and was based on the
employment of spherical surfaces. Iverson and Le Coz extended
this method to the determination of the parasitic capacitance of
an interconnect, basing it on the usage of cubic surfaces [4].
The advantage of employing cubic surfaces is that they better
conform to the contour of Manhattan geometries, largely found
in ICs layout.

As far as we know, a capacitance extraction method based
on spherical Green function for the electrical field was never
investigated before and constitutes the subject of this paper. This
choice is based on the fact that ICs manufacturing technology
is evolving toward non regular Manhattan shapes. The superior
conform ability of cubes is greatly lost for these structures and
there is no reason to approximate them with Manhattan ones if
an efficient capacitance extraction method can be applied.
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There is another aspect for which FRW based on spheres is
worth to be reconsidered: as it will be shown in the sequel, the
probability function derived from spherical Green functions is
directly invertible while those ones of cubes do not. As a con-
sequence the FRW method based on sphere is straightforward
ensuring high robustness and minimal memory occupation.

II. M ATHEMATICAL FOUNDATION

Let consider the 3-D solution of Laplace’s equation for the
electrical potential subjected to the boundary Dirichlet con-
ditions on the surface of a sphere. The problem is suitable for a
description in spherical coordinates whereis the radius, the
polar angle and the azimuth angle. The general expression of
the electrical potential in the interior of the sphere is

(1)

where are the Legendre polynomials [5]. It is pos-
sible to evaluate the partial derivative of the potential along the
radial direction in the sphere center

(2)

By employing spherical to rectangular coordinate transforma-
tions , and

and the derivative chain rule, it is easy to show that

where is the electrical field component along theth axis.
The coefficients in (1) are found by imposing the potential on
the spherical surface of radiusbe equal to a known
potential distribution. Exploiting the orthogonality properties of
Legendre polynomials and sinusoidal functions, we find

(3)
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By substituting we obtain a weighted summation
of the potential on the boundary

(4)

Similar expressions can be found for the other field components.
If we define , the azimuth complementer angle, we
have

(5)

which shows that potentials on the half-sphere surface with pos-
itive z coordinate give a positive contribution to the derivative of
the potential in the sphere center, while potentials on the other
half-sphere give a negative contribution. The numerical evalua-
tion of the integral can be done with a statistical procedure: the
weighting factor is the probability density function ofand
variables. If the electrical field along a generic directionis de-
sired, a local rectangular coordinate frame of reference is chosen
with the direction oriented as. In this reference the angle is
distributed uniformly in the interval while and its com-
plementer are distributed in with the probability den-
sity , which is related to the cumulative
probability function that is simple and invertible.
As a consequence the statistical evaluation of the electrical field
can be done by directly generating the azimuth and polar angles

; or where is
a random number uniformly distributed between 0 and 1. Note
that angle or its complementer are selected with equal proba-
bility. The electrical potential of the corresponding point on the
spherical surface is multiplied by the factor , taken nega-
tive if or positive if , and stored in memory.
Repeating many times this procedure and averaging results, the
statistical estimation of the electrical field is obtained.

We note that the Green functions relating the electric field and
the potential in the center of a cube to its surface potential dis-
tribution, here referred to as and , have much
more complicated expressions and in 3-D they require double
infinite series summations. Therefore the corresponding cubic
cumulative probability functions are not directly invertible.

III. CAPACITANCE COMPUTATION

The structure we refer to is formed byelectrical conductors
of possible different shapes in a 3-D domain. To determine the
generic is necessary to compute the chargeinduced on
the th electrode when the potential of theth electrode is raised
to one volt and the other electrodes are grounded. The induced
charge is derived from the Gauss’ law by evaluating the flux of
the electrical displacement vector through a Gaussian surface
that surrounds the electrode . By means of
the previously developed equations, we have

(6)

where is the number of random walks performed by the al-
gorithm. The statistical evaluation of the above integral is com-
posed of the following steps.

• Randomly select a point on the G surface with uniform
probability.

• Get a sphere that does not intersect electrodes, with the
maximum radius and centered in the selected point.

• Pick a point on this sphere accordingly to the procedure
described in the previous section and store the factor

.
• From the last point start with a floating random walk until

an electrode is reached [3]. An electrode is considered
touched when the walking point is at a distancewhich is
very small when compared with the electrode dimensions.

The potential of the reached electrode is multiplied by the
previous factor and stored in memory.

Some information on the extension to multidielectric struc-
tures can be found in [7].

IV. NUMERICAL RESULTS

In the first part of this section, we investigate the advantages
and the drawbacks of the proposed FRW method by comparing
it to the cubic based approach. We refer to very simple two–di-
mensional (2–D) examples that the reader can verify by him-
self. The Green function of the circle is a constant and
a point selection on it is done with uniform probability. For the
square, the function is reported in [4] and we have im-
plemented it in a one-dimensional look-up table. In all the ex-
amples m is the tolerance chosen for the circle
implementation while for the square each edge is discretized in
1000 pieces. With this choice, for an average square edge of

m the discretization error introduced is comparable to the
circle tolerance.

First, let us consider the 2-D symmetric Manhattan geometry
of Fig. 1(a) and compute the average number of hops
and that are required to reach one of the two elec-
trodes starting from the point A and by moving on circles and on
squares, respectively. It results and

, showing that in a regular Manhattan geometry, squares per-
form about two times better than circles.

Let us now consider the non symmetric Manhattan geometry
shown in Fig. 1(b). Starting from point, we obtain

and , while starting from C, and
. The better conform ability of square is largely

lost for walks starting between not aligned conductors (B) and
is only partially regained starting near the large electrode (C).
From this example it follows that also in Manhattan geometries
the more or less conform ability of square with respect to circles
depends on the particular Gaussian surface from which the FRW
is started.

Fig. 1(c) shows a non Manhattan geometry with non rect-
angular electrodes. In this case we obtain and

, starting from point D, and
, starting from E. Squares need the introduction

of a tolerance in touching an electrode, similar to that of cir-
cles. While the average number of hops needed by circles is al-
most equal to those of previous cases, squares need much more
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(a)

(b)

(c)

Fig. 1. (a) The 2-D symmetric Manhattan structure employed as benchmark,
(b) the 2-D non symmetric Manhattan structure employed as benchmark, and
(c) the 2-D non Manhattan structure employed as benchmark.

hopes to reach an electrode. Similar results are obtained if 3-D
geometries are considered.

On our computer for the irregular geometries of industrial lay-
outs, the proposed algorithm does 5000 walks/second in average
and in general 1000–2000 walks are enough to estimate the ca-
pacitance of an interconnect with 5% relative error. Our experi-
ence with QuickCap [9] shows that it does less walks/second on
the same layouts, but we are unable to definitely attribute this to
the employment of cubes and not to a different structure of the
program. To summarize our opinion is that an efficient FRW can
be obtained in practice only through a careful choice of the Green
function that governs hops and of the “clipping” algorithm that
selects the maximum allowed step.

In the second part of this section, we compare the proposed
FRW to FASTCAP that is based on the multi-pole acceleration
algorithm [6].

Fig. 2 shows an interconnect with trapezoidal cross section on
a ground plane in a uniform dielectric ( ). We extracted
the total parasitic capacitance for several valuesof the inter-
connect length with FASTCAP and with the here proposed FRW
method ( nm). Table I shows the capacitance values eval-

Fig. 2. Cross section with lengths of the interconnect.

TABLE I
CAPACITANCE VALUES EVALUATED BY FASTCAP (CF) AND BY FRW (CFRW)

uated by FASTCAP (CF) and by FRW (CFRW) with a chosen
relative accuracy error of 1% and the corresponding CPU time,
(time-F) and (time-FRW) respectively. All simulations were
done on a PENTIUM III 500 Mhz.
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