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Abstract—The reflection coefficient at the dielectric interface
orthogonal to the Yee-lattice axis in the finite-difference time-do-
main scheme is explicitly obtained. In the expression, the effective
permittivities assigned to the nodes in the vicinity of the interface
are included as parameters. The suitable effective permittivities
for the accurate modeling of the interface are investigated theoret-
ically based on the reflection coefficient. Regardless of the angular
frequency, the incident angle, and the interface position relative to
the lattice, second-order accuracy is achieved by the use of effective
permittivies based on the weighted harmonic mean and arithmetic
mean of the material permittivities. The second-order accuracy is
demonstrated by numerical examples.

Index Terms—Electromagnetic fields, FDTD methods, numer-
ical analysis, time domain analysis.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) scheme has
been used extensively for electromagnetic field simulation

[1], [2]. In such a simulation, accurate modeling of the material
interface is an important issue. The standard FDTD scheme for
the homogeneous media is second-order accurate in space. The
accuracy may be degraded in applications to inhomogeneous
media. For the dielectric-PEC (perfect electric conductor)
interface, several methods, including a staircase approximation
[3], [4], and a local reformulation of the scheme [5], [6], have
been proposed. The error of the methods has been assessed
theoretically in [3], [7], in which the data concerning the
order of accuracy were presented. For the dielectric-dielectric
interface, the use of the effective permittivities assigned to the
nodes near the interface has been proposed [8], [9]. However,
the performance has not been analyzed theoretically.

In this letter, the reflection coefficient of the dielectric–dielec-
tric interface orthogonal to the Yee-lattice axis is derived explic-
itly considering the effective permittivities in the vicinity of the
interface. Based on the reflection coefficient, effective permit-
tivities suitable for second-order accuracy are obtained.
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II. FORMULATION

First, we explain the situation in which the incident plane
wave does not have a magnetic component orthogonal to the
interface. The starting point is the two-dimensional (2-D)
TE polarization case, and the analyzed plane is
shown in Fig. 1. The cell widths are and . The time
increment is . The material permittivity is for region

and for region , where is the offset
ratio ( ). We assume that, in the simulation, the
effective permittivities and are, respectively, assigned
to the and nodes nearest the interface. The incident,
transmitted, and reflected waves are time-harmonic plane
waves with numerical angular frequency. All wavevector
components in the direction are equal and expressed as.
The components of the incident and reflected waves are,
respectively, expressed as
and in region .
The component is positive and . The

component of the transmitted wave is expressed as
in region . The

incident and transmitted angles are, respectively, defined as
and . When

the expressions for the electric and magnetic components of
the waves are substituted into the FDTD equations for the
time-evolution of the component on the node, the
component on the node, and the component on the node
between the nodes, three equations including ,
and are obtained. By solving the equations, the reflection
coefficient is explicitly expressed as

(1)

(2)
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Fig. 1. Schematic drawing of the analyzedx � z plane for the reflection
coefficient calculation in the 2-D TEpolarization case.

(3)

(4)

(5)

(6)

where is the permeability. For the accuracy assessment,
the product of and , which account for
the phase shift owing to the change of interface position, is
compared to the Fresnel’s reflection coefficient [10]. If the
product is expanded in the power series of as

(7)

the coefficients of the first-order terms,and , are expressed
as

(8)

(9)

(10)

If and are given by

(11)

(12)

terms and vanish. Here, the following FDTD version of
“Snell’s law” is used in the manipulation of (9):

(13)

When and as expressed by (11) and (12) are used,ap-
proximates the exact reflection coefficient at the second-order
in for any angular frequency, any incident angle , and
any offset ratio in the range . The explicit ex-
pression for the reflection coefficient,, is also obtained for the
offset ratio out of that range. The suitable effective permittivi-
ties are examined based on the expression. In general, the effec-
tive permittivity for the second-order accuracy is the weighted
arithmetic mean of the material permittivities in the surrounding
cell for the node and the weighted harmonic mean for the

node. The accuracy increment by the effective permittivity
based on the weighted harmonic mean has been proposed [9].
Here, we have theoretically proved its second-order accuracy
for the first time.

The above calculations are extended straightforwardly to the
three-dimensional situation with the Yee lattice, whose section
at the plane is shown in Fig. 1. The interface is the plane ex-
pressed as . The components, , ,

, , and are considered. In this situation, all wavevector
components in the direction are also equal and expressed as

. When the definitions of , , and are modified as

(14)

(15)

the reflection coefficient for the magnetic components is also
expressed by (1)–(3). The effective permittivities for the second-
order accuracy are again expressed by (11) and (12).

For the incident plane wave without the electric-compo-
nent orthogonal to the interface, the reflection coefficient is
calculated similarly. The second-order accuracy is achieved
when the effective permittivity equal to the weighted arith-
metic mean of the material permittivities in the surrounding
cell is assigned to the electric-component nodes in the
vicinity of the interface.

III. N UMERICAL EXAMPLES

Here, two numerical examples in the 2-D TEpolarization
case are presented. First, the wave-propagation along the wave-
guide was simulated. The waveguide structure is illustrated in
Fig. 2. The offset ratio of one core-cladding interface was set
to 0 and the offset ratio of the other interface was changed
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Fig. 2. Phase velocity errors in the simulations of wave propagation in the
second- and fifth-mode of the waveguide. The waveguide supports six modes.
The incident angles are 61.4for the second mode and 22.1for the fifth mode.
d is the offset ratio at the core-cladding interface andm is the mode number. In
the inset,n is the refractive index.

in each simulation. The effective permittivities for the second
order accuracy were assigned to the and nodes in the
vicinity of the latter interface. The Courant–Friedrichs–Lewy
(CFL) number was 0.577. Fig. 2 shows the phase velocity errors
for the second and fifth modes as a function of the cell-number
per wavelength in the core. Second order accuracy is obtained
for both modes and all offset ratios.

Next, the waveguide-facet reflection was simulated. The
waveguide was truncated and the facet was coated with two
dielectric layers for anti-reflection. The whole simulated do-
main was surrounded by a 16-cell PML absorber [11], [12].
The domain is illustrated in Fig. 3. The cells were square
and was 0.0125, 0.006 25, or 0.003 125m in each sim-
ulation. All material interfaces were located on nodes of the
electric components whose directions were orthogonal to the
interfaces. Two cases of effective permittivity assignment for
the nodes at the interfaces were tested. One case was the har-
monic mean of the permittivities on both sides. The other
was the arithmetic mean. The analysis in the previous section
shows that the former case gives second-order accuracy and
the latter first-order accuracy. The wave in the 0th mode was
injected toward the facet and the reflected power was evalu-
ated by the single-precision numerical calculation. The CFL
number was 0.7. The extrapolated power reflectivity toward

was 0.015 448% for the former case and 0.015 457%
for the latter. Fig. 3 shows the reflectivity deviations from
the extrapolated values as a function of the cell-number per
wavelength in the core. Second-order accuracy in the use of
the harmonic mean is clearly obtained. The slope of the curve
for the arithmetic mean approaches that corresponding to the
first-order accuracy as the cell number increases.

Fig. 3. Deviations in the simulated power reflectivity at the coated facet from
its extrapolated value. In the inset, n is the refractive index and AR represents
the dielectric coatings. The refractive index and the thickness are 2.257 and
0.125�m for the first coating and 1.455 and 0.175�m for the second coating.
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