356 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 10, NO. 9, SEPTEMBER 2000

Frequency-Domain PML Layer Based on the
Complex Mapping of Space Boundary Condition
Treatment

H. A. Jamid
Abstract—Mapping of real space into a complex one is done in \\IZ// ¥z B
order absorb the radiative field. The boundary condition which en- 5 ) ° %,
sures reflectionless incidence at the vacuum/PML interface is €S- vacuum % .
tablished. The application of this boundary condition results in a PML . ‘ . X
modified finite-difference approximation of the second derivative @ Vacuum ! 2
of the field. This approach, which is valid only for frequency-do- ®)

main methods is applied using the Method of Lines. Comparison

of theory and numerical simulation establishes the validity of the Fig. 1. (a) Plane wave incident from vacuum onto the PML. (b) Discretized
approach. field around the vacuum/PML interface.

Index Terms—Finite-difference methods, method of lines, per- .
fectly-matched layer. expressed as(x) = o.(x) + io;(x). Wherex denotes the

resulting complex spaces,.(z) and o;(z) are the mapping
functions from the real space, into the real and imaginary
parts of the complex space, respectively. Thus, inside the PML,
HE recent interest in highly effective absorbers for termthe radiative field in the:-direction,exp(ik,z) is mapped into
nating the computational window has been stimulated lexp[ik.o ()] exp[—k,o:(x)], which appears to attenuate in
Berenger’s work [1]. This work is based on a non-Maxwelliathe z-direction if the mapping functiow; () > 0. It is our
approach in which the electromagnetic field is split prior to impurpose here to establish the interface conditions that allow the
posing appropriate conditions for reflectionless absorption. @pplication of sufficiently large values of loss within the PML,
Maxwellian version of the perfectly-matched layer (PML) wawhile satisfying the requirement of reflectionless incidence at
later introduced [2]. This approach relies on the introduction tifie inner wall of the PML.
a lossy uniaxial absorbing medium inside the PML. The uni-
axial approach was later shown to be equivalent to Berenger’s Il. THEORY
method [3]. Other PML implementations includes its modifi-
cation to enhanc_e the attenuaf[ion rate_ of evanescent mo_dg_ PML using the single variabie wherez(x) = = in vacuum
and also to terminate conductive media [5]. Though the initi . - p :
o o L elf mapping) and(z) = o,.(z) + ioy(z) in the PML. The
appllcgtlons of th.e PML have beeq made within the f|n|§e—d|ffe ime-harmonic electromagnetic fiefel, v, #), is then mapped
ence time-domain (FDTD) modeling scheme, extension to t

. o ¥(T, y, #) by replacingz by T throughout the problem
freq_uency-domam m_ethods has "?"50 been ma_de [6]_[10]'_ ace. Thus, the field in vacuum remains unchanged due to this
particular feature of interest in this later work is the mappin

apping (i.e.z> = 7). However, inside the PMLzp # 1.

of real space into a complex one in order to absorb the rad'at'veAssuming a radiative field is incident from vacuum onto the

field. The advantage of this approach is its conceptual simplicill_;;iw_ as shown in Fig. 1(a). The incident, reflected and trans-

and ease of implementation. It also does not demand mateﬂﬁ{ted fields can be described by a discrete superposition of

absorption in the PML, which makes itindependent of field pop'lane waves. Without loss of generality, we will only consider

Iarllfzz;ltt_:onpall\r/lwﬁ mat_ena! propzrtles.ﬁ_ ently wid | i thez-variation of the field in the discussion to follow. Assuming
ol eﬂ r reglzt)nthls ma; € su |(<j:|en yfwt'he’ only nte?_ " oot variation, the mapped fielg/(Z) in vacuum and in the
gible reflections at the extreme edges of the computationg|, s respectively given by

window may occur. However, significant numerical reflection e o
may occur at the inner wall of the PML [9]. Assuming the ~ ¥(T) = Y _ anc™®"® + > rpane™™% <0 (1)
computational window is positioned normal to thelirection, n n

the distance within it is mapped into the complex-domain and #(z) = Ztnanei’“”f, >0 2

I. INTRODUCTION

irst, we unify the description of space in both vacuum and
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Using the above equations, we obtain, for each region, an exEquation (6), reg)resents theequired finite-difference
pression for@ , the mth derivative ofi) with respect taz. approximation ofi»;~". When no mesh size discontinuity is
Imposing continuity ofp " atT = 0, we have present (i.e.h; = hy = h), (6) red(t;g:es to the well-knoween-
m m m tral-difference approximation af, . Due to the approximate
Z n(ken )" [1 4+ (=1)"rn] = Z an(ken)™ 1 +72]- (3) nature of (6), it sa(ltis)fies the necessary conditions that require
" , " continuity of all 4 " up tom = 2 only, since higher order
The left- hand and the right-hand terms of the above €A48tms have been ignored. However, it satisfies one sufficient

tion represent; " on the vacuum side and the PML side ofondition for reflectionless incidence, namely, continuity of
the interface, respectively. In arriving at (3), the relatlonshuz(l) Thus, when implanting (6), some numerical reflection

tn - i" +1 Eas_ beefn use_lt_jk.].AIso, in ar;wma at (3), we rf1av om the vacuum/PML interface is expected. The level of
setz = 0 at the Interface. This means that the mapping fUnzfecion is related to the truncation error in (6). There exists a

tions usgd in the PMIT shoul(_i_satlsfy the CO”d'“‘Z'_'@) — _number of ways to reduce these errors in order to improve the
o,+(0) 4+ i5,(0) = 0. This condition demands the continuity of

both ina f : he interf alentl erformance of the PML. This can be done for instance by a
oth mapping unctions at the interface, or equivalently, Cogbod choice of mapping functions or by increasing the order of
tinuity of z(z) at= = 0. Equation (3) leads to the condition:

(=1)™r, = r,. If r, = 0, this condition is satisfied for all the f@nite-difference approxi_matiom02 of i_n ©), to account

o . —(m) for higher order terms. In this work, we will consider only the
values ofm. Hence 7n = 0 implies continuity of allz) linear mapping functionss,.(z) = = ando;(z) = ~z. By
Thus, continuity ofll ™ atz = 0 is anecessargondition varying the positive parameter, one can control the strength
for reflectionless incidence. For even valuesgtthe same con- of absorption inside the PML. The complex spade this case
dition is satisfied by arbitrary values of, and it does not im- g given byz = z + iy and the mesh sizie, takes thauniform
pose any particular value or). However, for any odd value of yajueh, = A7 = Az + iyAz throughout the PML.

m, this condition requires,, = 0. We thus conclude that conti-  The sum of the two leading error terms in (6) associated with
nuity of anyodd derivative of) at the inner wall of the PML is a the nth plane wave is glven by

sufficientcondition for reflectionless incidence. This establishes 5= _g ATk + L LI(42 —1) — i’Y](Aw)Qkfm @)
the necessary and sufficient conditions for zero reflection at the ) ) _ —_
vacuum/PML interface. These conditions are valid, whether th1€7€6 has been normalized with respeciiy” = —k2, %o,
PML is lossy(o;(z) > 0) or losslesgo;(z) = 0). They only es- The decay factof within the PML for thenth plane is g|ven by
tablish the requirements that guarantee reflectionless incidence § =TT (8)
when space is mapped ircantinuousmanner. where NV is the total number of mesh points inside the PML.
We next derive a finite-difference approximation to th&quations (7) and (8) are useful in the design of the PML. The
second derivative of the field that takes into account the aboi@lowing discussion assumes that the PML will be used to ab-
conditions at the vacuum/PML interface. Fig. 1(b) shows ti&orb a wide range of,, = ko cos 6, = (27/A) cos 6, as-
discretized field) around the vacuum/PML interface, assumesgociated with the incident wave in order for the PML to have
to be located af = 0. Using Taylor series expansion of thea broad-band feature. The andle of thenth incident plane is

field 3 in terms 0@“"): defined according to Fig. 1(a). The er@®has to be kept small
) 4 to reduce reflection from the PML arfdnust also be kept small
Gy =5 — hﬁél) + hi @6(2) _n 53) + hy @6(4) 4 ... inorderto preventthe decaying radiative waves within the PML
- 2 6 4

from reaching the extreme walls of the problem space. If we in-
. (4) sure that is small for the largest value d@f.,, associated with
Pp1 = 1/)+ + hoth (j) + z/ (f) L2 3 z/ (f’) + h_ 2y (f) 1. the incident wave, namely,. ... = ko, then we insure that it

is also small for all other values @&f.,,. Thus in using (7), we
®) replacek,.,, by ko, before error analysis is made. The parameter

where the minus and plus signs refer to quantities in vacuum ant then chosen such that the real parts of the two error terms in
in the PML, respectively. The parametérs and /., represent ¢ cancel each other. In this manner, the first leading error term
the mesh size on the vacuum and the PML sides of the interfalée¢ disappears. This value O/fls given approximately by
respectively 1 = A7 = Az andhy = A2 = Ao, + iAoy;). v k 9)
For a lossy PMLh; # ho, sinceh is real andh, is com- . ) TR . o
plex. Obviously, there exits a discontinuity in the mesh size tConngra‘uon (8), however, is be?'t d_one by first substituting
the vacuum/PML interface when the PML is lossy. In order t € mmt;mum va:]ue tor:k““’l" of tthe llnc@etr;]t. wave, Zamelv,
achieve reflectionless incidence at the vacuum/PML interfa ,‘El;:' ecau%t{ikas det;':lrges Viue_'SAx;S C_ajs\,e' Silimmg
we impose the required conditions discussed above, by us e min = 0.1Kg, and thakmax = ¢ ~e

m m —(m) . L .= have
z/i ) = z/é ) = z/é "in (4) and (5). Ellmlnatmg/;(l) from v 4 40
Lhaev(raesultlng equations and ignoring terms higher ‘rzhéu% we VAT, mm ATk (10)

_ _ _ where (9) has been used to arrive at the above relation. It is im-
—@  hiy = (hy +ha)g+ hotp_y portant to note that in practice, (9) should be treated as an upper
Yo 050 -~ ® imiton the val B hen'is i d beyond thi
Shiho(hy + ha) imit on the value ofy. Because, when is increased beyond this
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obtained using 60 points in the 1 wide vacuum, resulting in
Az = 0.2 pm.Theothervaluesusedinthis caseare 3.2
andN = 10assuggested by (9) and (10), respectively. Itis seen
thatthe value of the loss parametarsed in this case is relatively
large, whichresultsinarelatively smallvalugef This value ofy
causesalargediscontinuityinthe meshsize attheinnerPMLwalls
andthis explainsthereasonforthe failure ofthe central-difference
approximation there. If the PML loss parametgis made very
small(hy = Az + ivAx ~ Az = hy),thediscontinuityinthe
mesh size is greatly reduced and the central-difference approxi-
mationmaythenbe effectively usedatthe vacuum/PML interface.
However, as suggested by (18)hastobe madelargeinthiscase,
whichresultsinaveryinefficientimplementation ofthe PML.
A similar argument to the above can be made for a PML

. . . . having a graded loss profile. Numerical experiments done by
Fig. 2. Theoretical and calculated Gaussian beam propagation in vacuum.the author show that for a PML having a graded loss profile, Sig-
njficant enhancement of the efficiency of the PML is seen when
?t{: is used in place of the central-difference approximation. Due
to the limited space in this letter however, these results will not
Pe presented here. Hence, using (6) instead of the central-differ-
ence approximation significantly enhances the efficiency of the
PML implementation, whether the PML is uniform or graded in
nature. This shows the importance of the present approach.

T
calculated with
central-difference

calculated
with eqn. (6)

Field Amplitude

L L L
-8 -6 -4 -2 o 2 4 6 8
Transverse Distance in Micrometers

value, the real part of the second error term starts to domin
§ and at some point becomes proportional t§?, leading to
rapid growth both in the error and in the numerical reflectio
from the inner wall of the PML. Therefore, if very low reflec-
tion from the PML is requiredy should be reduced below the
value suggested by (9) and in that ca®ehas to bancreased
accordingly.

lIl. RESULTS AND DISCUSSION V.- CONCLUSIONS

The approach discussed above is potentially valid for all fi- Foran eﬁigientimplementgtion of areflectionless PML based
nite-difference frequency-domain methods based on the use®Bftransforming real space into the complex domain, one must
the second derivative of the field. The method of lines (MOLJroperly account for the resulting mesh size discontinuity in this
[11], which fits into this category, has been chosen to demogase. This makes it possible to introduce a PML layer having a
strate the validity of the present approach. Equation (6) can igéatively large loss, while maintaining small reflection at the
incorporated into the MOL in a straight forward manner. As willnner wall of the PML.

be seen later, using (6) to approxim&tg) atthe vacuum/PML,
very small reflection develop there. However, it will also be seen

that when central-difference is used to approxim_a% at the
inner wall of the PML, strong reflection occur there. The cen-

tral-difference approximation @(2), does not account prop-
erly for the mesh size discontinuity present at the inner wall of
the PML, and hence, it also does not satisfy the necessary or thE!
sufficient conditions for zero reflection.

The propagation of a two-dimensional Gaussian beam inf4]
vacuumissimulatedusingthe MOL. The Gaussianbgam 2),
which propagates in thedirection, is placed in the center of the
problemspace and expressegés, » = 0) = exp(—z?/w?)at
theinputplane = 0. The spotsize ofthe input Gaussian beam,
w = 2 pmandthe operatingwavelength= 1 xm.Vacuum
in this case occupies the regide| < 6 pm). Two identical
PML layers are placedtotherightandthe leftofthe problem spacgz)
occupying theregions| > 6 um.Fig.2 shows the theoretical based on anistropic lossy mapping of spa¢EEE Microwave Guided
and calculated Gaussian beam propagation. The beam progress i? é\’amt';gtg‘r’]%'-j' glé-kge?jf’AZ'n"eﬂvav“-l 01(3?; the perfectly matched laver
shownat = 0_' 20,40, and G_Qm' reSpeCtlvely' The deVI_duaI (F;ML) concepts. for thé reflectionless absor?)tion o¥ electromagr)(etic
curves were shifted successively upwards by 0.4 for clarity. Two

waves,”|IEEE Microwave Guided Wave Lettol. 5, pp. 84—86, 1995.
sets of calculated results are shown in Fig. 2. In one case (6) waf] W. C. Chew and J. M. Jin, “Perfectly matched layers in the discretized

L (2 . . : lysis and optimizatioEfect ticsvol. 16, no. 4,
usedtoapproxmaﬁﬁ( )atthevacuum/PMLmterface,andmthe Space; an analysis and oplimizatioRRctromagnetics/o ne
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