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Frequency-Domain PML Layer Based on the
Complex Mapping of Space Boundary Condition

Treatment
H. A. Jamid

Abstract—Mapping of real space into a complex one is done in
order absorb the radiative field. The boundary condition which en-
sures reflectionless incidence at the vacuum/PML interface is es-
tablished. The application of this boundary condition results in a
modified finite-difference approximation of the second derivative
of the field. This approach, which is valid only for frequency-do-
main methods is applied using the Method of Lines. Comparison
of theory and numerical simulation establishes the validity of the
approach.

Index Terms—Finite-difference methods, method of lines, per-
fectly-matched layer.

I. INTRODUCTION

T HE recent interest in highly effective absorbers for termi-
nating the computational window has been stimulated by

Berenger’s work [1]. This work is based on a non-Maxwellian
approach in which the electromagnetic field is split prior to im-
posing appropriate conditions for reflectionless absorption. A
Maxwellian version of the perfectly-matched layer (PML) was
later introduced [2]. This approach relies on the introduction of
a lossy uniaxial absorbing medium inside the PML. The uni-
axial approach was later shown to be equivalent to Berenger’s
method [3]. Other PML implementations includes its modifi-
cation to enhance the attenuation rate of evanescent modes [4]
and also to terminate conductive media [5]. Though the initial
applications of the PML have been made within the finite-differ-
ence time-domain (FDTD) modeling scheme, extension to the
frequency-domain methods has also been made [6]–[10]. The
particular feature of interest in this later work is the mapping
of real space into a complex one in order to absorb the radiative
field. The advantage of this approach is its conceptual simplicity
and ease of implementation. It also does not demand material
absorption in the PML, which makes it independent of field po-
larization and material properties.

If the PML region is made sufficiently wide, only negli-
gible reflections at the extreme edges of the computational
window may occur. However, significant numerical reflection
may occur at the inner wall of the PML [9]. Assuming the
computational window is positioned normal to the-direction,
the distance within it is mapped into the complex-domain and

Manuscript received May 15, 2000; revised July 5, 2000. This work was sup-
ported by King Fahd University of Petroleum and Minerals.

The author is with the Electrical Engineering Department, King Fahd
University of Petroleum and Minerals, Dhaharan, Saudi Arabia (e-mail:
hajamed@kfupm.edu.sa).

Publisher Item Identifier S 1051-8207(00)08794-8.

Fig. 1. (a) Plane wave incident from vacuum onto the PML. (b) Discretized
field around the vacuum/PML interface.

expressed as . Where denotes the
resulting complex space, and are the mapping
functions from the real space, into the real and imaginary
parts of the complex space, respectively. Thus, inside the PML,
the radiative field in the -direction, is mapped into

, which appears to attenuate in
the -direction if the mapping function . It is our
purpose here to establish the interface conditions that allow the
application of sufficiently large values of loss within the PML,
while satisfying the requirement of reflectionless incidence at
the inner wall of the PML.

II. THEORY

First, we unify the description of space in both vacuum and
the PML using the single variable, where in vacuum
(self mapping) and in the PML. The
time-harmonic electromagnetic field , is then mapped
into by replacing by throughout the problem
space. Thus, the field in vacuum remains unchanged due to this
mapping (i.e., ). However, inside the PML, .

Assuming a radiative field is incident from vacuum onto the
PML as shown in Fig. 1(a). The incident, reflected and trans-
mitted fields can be described by a discrete superposition of
plane waves. Without loss of generality, we will only consider
the -variation of the field in the discussion to follow. Assuming

variation, the mapped field in vacuum and in the
PML is respectively given by

(1)

(2)

where is the -component of the wave vector associated
with the th plane wave, , and are respectively, the
amplitude, the reflection and transmission coefficients of the

th incident plane wave. Because no material discontinuity is
present in this case, retains the same value in both regions.
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Using the above equations, we obtain, for each region, an ex-
pression for , the th derivative of with respect to .
Imposing continuity of at , we have

(3)

The left-hand and the right-hand terms of the above equa-
tion represent on the vacuum side and the PML side of
the interface, respectively. In arriving at (3), the relationship:

has been used. Also, in arriving at (3), we have
set at the interface. This means that the mapping func-
tions used in the PML should satisfy the condition:

. This condition demands the continuity of
both mapping functions at the interface, or equivalently, con-
tinuity of at . Equation (3) leads to the condition:

. If , this condition is satisfied for all

values of . Hence, implies continuity of all .
Thus, continuity ofall at is anecessarycondition
for reflectionless incidence. For even values of, the same con-
dition is satisfied by arbitrary values of and it does not im-
pose any particular value on . However, for any odd value of

, this condition requires . We thus conclude that conti-
nuity of anyodd derivative of at the inner wall of the PML is a
sufficientcondition for reflectionless incidence. This establishes
the necessary and sufficient conditions for zero reflection at the
vacuum/PML interface. These conditions are valid, whether the
PML is lossy ) or lossless . They only es-
tablish the requirements that guarantee reflectionless incidence
when space is mapped in acontinuousmanner.

We next derive a finite-difference approximation to the
second derivative of the field that takes into account the above
conditions at the vacuum/PML interface. Fig. 1(b) shows the
discretized field around the vacuum/PML interface, assumed
to be located at . Using Taylor series expansion of the
field in terms of :

(4)

(5)

where the minus and plus signs refer to quantities in vacuum and
in the PML, respectively. The parameters and represent
the mesh size on the vacuum and the PML sides of the interface,
respectively ( and ).
For a lossy PML, , since is real and is com-
plex. Obviously, there exits a discontinuity in the mesh size at
the vacuum/PML interface when the PML is lossy. In order to
achieve reflectionless incidence at the vacuum/PML interface,
we impose the required conditions discussed above, by using

in (4) and (5). Eliminating from

the resulting equations and ignoring terms higher than, we
have

(6)

Equation (6), represents therequired finite-difference
approximation of . When no mesh size discontinuity is
present (i.e., ), (6) reduces to the well-knowncen-

tral-difference approximation of . Due to the approximate
nature of (6), it satisfies the necessary conditions that require
continuity of all up to only, since higher order
terms have been ignored. However, it satisfies one sufficient
condition for reflectionless incidence, namely, continuity of

. Thus, when implanting (6), some numerical reflection
from the vacuum/PML interface is expected. The level of
reflection is related to the truncation error in (6). There exists a
number of ways to reduce these errors in order to improve the
performance of the PML. This can be done for instance by a
good choice of mapping functions or by increasing the order of
the finite-difference approximation of in (6), to account
for higher order terms. In this work, we will consider only the
linear mapping functions: and . By
varying the positive parameter, one can control the strength
of absorption inside the PML. The complex spacein this case
is given by and the mesh size takes theuniform
value throughout the PML.

The sum of the two leading error terms in (6) associated with
the th plane wave is given by

(7)

where has been normalized with respect to .
The decay factor within the PML for the th plane is given by

(8)
where is the total number of mesh points inside the PML.
Equations (7) and (8) are useful in the design of the PML. The
following discussion assumes that the PML will be used to ab-
sorb a wide range of as-
sociated with the incident wave in order for the PML to have
a broad-band feature. The angleof the th incident plane is
defined according to Fig. 1(a). The errorhas to be kept small
to reduce reflection from the PML andmust also be kept small
in order to prevent the decaying radiative waves within the PML
from reaching the extreme walls of the problem space. If we in-
sure that is small for the largest value of associated with
the incident wave, namely , then we insure that it
is also small for all other values of . Thus in using (7), we
replace by , before error analysis is made. The parameter

is then chosen such that the real parts of the two error terms in
cancel each other. In this manner, the first leading error term

in disappears. This value ofis given approximately by

(9)

Consideration (8), however, is best done by first substituting
the minimum value of of the incident wave, namely,

, because has the largest value in this case. Assuming
that , and that ,
we have

(10)

where (9) has been used to arrive at the above relation. It is im-
portant to note that in practice, (9) should be treated as an upper
limit on the value of . Because, when is increased beyond this
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Fig. 2. Theoretical and calculated Gaussian beam propagation in vacuum.

value, the real part of the second error term starts to dominate
and at some point becomes proportional to , leading to

rapid growth both in the error and in the numerical reflection
from the inner wall of the PML. Therefore, if very low reflec-
tion from the PML is required, should be reduced below the
value suggested by (9) and in that case,has to beincreased
accordingly.

III. RESULTS AND DISCUSSION

The approach discussed above is potentially valid for all fi-
nite-difference frequency-domain methods based on the use of
the second derivative of the field. The method of lines (MOL)
[11], which fits into this category, has been chosen to demon-
strate the validity of the present approach. Equation (6) can be
incorporated into the MOL in a straight forward manner. As will
be seen later, using (6) to approximate at the vacuum/PML,
very small reflection develop there. However, it will also be seen
that when central-difference is used to approximate at the
inner wall of the PML, strong reflection occur there. The cen-

tral-difference approximation of , does not account prop-
erly for the mesh size discontinuity present at the inner wall of
the PML, and hence, it also does not satisfy the necessary or the
sufficient conditions for zero reflection.

The propagation of a two-dimensional Gaussian beam in
vacuumissimulatedusingtheMOL.TheGaussianbeam ,
which propagates in the-direction, is placed in the center of the
problemspaceandexpressedas at
the input plane . The spot size of the input Gaussian beam,

m and the operating wavelength m. Vacuum
in this case occupies the region m). Two identical
PMLlayersareplacedtotherightandtheleftof theproblemspace
occupying the regions m. Fig. 2 shows the theoretical
andcalculatedGaussianbeampropagation.Thebeamprogress is
shown at , 20, 40, and 60m, respectively. The individual
curves were shifted successively upwards by 0.4 for clarity. Two
sets of calculated results are shown in Fig. 2. In one case (6) was
usedtoapproximate at thevacuum/PMLinterface,andin the
second case, central-difference approximation was used instead.
Good agreement between the theoretical and calculated fields
in vacuum is seen when (6) is used. However, strong reflections
are seen to develop at the vacuum/PML interface, when the cen-
tral-difference approximation is used. The above results were

obtained using 60 points in the 12m wide vacuum, resulting in
m. The other values used in this case are

and as suggested by (9) and (10), respectively. It is seen
that the value of the loss parameterused in this case is relatively
large,whichresults inarelativelysmallvalueof.Thisvalueof
causesalargediscontinuity inthemeshsizeattheinnerPMLwalls
andthisexplainsthereasonforthefailureofthecentral-difference
approximation there. If the PML loss parameteris made very
small , thediscontinuity in the
mesh size is greatly reduced and the central-difference approxi-
mationmaythenbeeffectivelyusedatthevacuum/PMLinterface.
However,assuggestedby(10),hastobemadelargein thiscase,
whichresults inaveryinefficient implementationof thePML.

A similar argument to the above can be made for a PML
having a graded loss profile. Numerical experiments done by
the author show that for a PML having a graded loss profile, sig-
nificant enhancement of the efficiency of the PML is seen when
(6) is used in place of the central-difference approximation. Due
to the limited space in this letter however, these results will not
be presented here. Hence, using (6) instead of the central-differ-
ence approximation significantly enhances the efficiency of the
PML implementation, whether the PML is uniform or graded in
nature. This shows the importance of the present approach.

IV. CONCLUSIONS

For an efficient implementation of a reflectionless PML based
on transforming real space into the complex domain, one must
properly account for the resulting mesh size discontinuity in this
case. This makes it possible to introduce a PML layer having a
relatively large loss, while maintaining small reflection at the
inner wall of the PML.
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