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An lterative Algorithm for Reducing Dispersion Error
on Yee’'s Mesh in Cylindrical Coordinates

Michat Rewierski and Michat MrozowskiMember, IEEE

Abstract—This letter presents an iterative algorithm for re-  with a modified operator
ducing the error due to numerical dispersion while using the finite
difference frequency domain (FDFD) scheme on Yee’'s mesh in DF(z) = AF(UU + Az/2) — Fz — Az/2) )
cylindrical coordinates. It is shown that the algorithm allows one - Ax
to significantly enhance the accuracy of the results over a limited

frequency band. Consequently, the algorithm provides a cost WhereA (#1) is a certain constant number. This approach has

effective way of achieving high accuracy in the finite difference been developed in [1] for the finite difference time domain

numerical analysis of such problems as computing resonant (FDTD) method applied to solving Maxwell's equations
frequencies of empty and loaded resonators with cylindrical j, rectangular coordinate system. One disadvantage of this
symmetry. approach is that it is frequency selective i.e., the error can be
Index Terms—FDFD, numerical dispersion, resonators, Yee’s reduced over a limited frequency band. Somewhat different
mesh. schemes toward reducing numerical dispersion, also referring
to rectangular coordinate system and FDTD method, may be

|. INTRODUCTION found in [3] and [4]. In this letter we derive a modified FDFD

scheme on Yee’s mesh defined in cylindrical coordinate system

T HE PROBLEM of numerical dispersion inevitably ariseg;seq on the simple idea presented above. We also show how
while applying finite difference (FD) schemes to approxiy may be used in an iterative algorithm, which allows one to

mate differential operators. In electromagnetic modeling, one gfhance the accuracy of the obtained numerical results. The

_ : a homogeneoys, iency such as the FDFD analysis of large resonators with
medium [1]. The phase velocity of the modes varies with thﬁ/lindrical symmetry.

wavelength and the direction of propagation with respect to the
mesh resulting in the phase error which accumulates along the“_
propagation direction. Consequently, in electromagnetic struc-
tures whose geometrical dimensions are significantly larger thanAssuming we consider a cylindrical TE wave in a homoge-
the wavelength, the numerical dispersion is the main source¥§fous region, we obtain the following expression for the fields
error [2], [3]. [the exp(jn¢ + jk.z) factor was omitted for clarity]:

One approach toward reducing the effects of numerical dis- Hayo
persion is to refine the finite difference mesh. This has a disad- H» =jHr B, (k1) Hg = ——
vantage of increasi.ng the size of tht_a solved numerical problem. H, = H.oB, (k)
Consequently, particularly for electrically large electromagnetic
systems, both memory and computational costs may become E: = Eqo
unacceptable. A different approach is based on introducing a
correction which annihilates or reduces the dispersion error #hereB(k.r) denotes an appropriate Bessel function. Applica-
rectly into the discrete operator equations. The idea is basedtgh of the modified FD scheme [analogous to (2)] to Maxwell's

replacing, for example, the standard central difference operaféf! €quations and substitution of the above fields into appro-
priate discrete equations results in the following dispersion re-

Flz+ Az/2) — F(z — Az /2) ) lation in (3), shown at the bottom of the next page, where
Ax

| TERATIVE COMPUTING OF THECORRECTIONFACTOR

B, (k.r)

1
Bu(kwr) Ey=jEsBl (ko) E.=0

T

DF(z) =

a=k(I+1/2)Ar, B=k.(—-1/2)Ar,
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Excitation

angle of wave propagation with respect to the mesh. Still, one
may optimize the value aofl, so that the difference betweén
computed using the above relation and the theoretical value o
this wavenumberk(,,) is minimal for a given angle or a given
range of angle8 of wave propagation with respect to the mesh.
The procedure proposed above allows one to obtain a cor
rected FDFD scheme, provided the mode frequendy) and
wavenumbetl, are known. However, in many practical situa-
tions, the eigenfrequency of a given mode in a modeled electro
magnetic system is unknown and has to be found, for example
by solving an operator eigenproblem. In this case, we may still
use the above optimization procedure within the following iter-
ative scheme. In the first step we find the approximate eigenfre-
guencywq by solving the problem forl = 1. In the next step,
we usew to find the optimized value ofi. This step may be
Lepeated to obtain better approximations of the elgenfrequer&%{ 1. Open resonator structure loaded with a dielectric disc.
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I1l. M ODELING HEMISPHERICAL RESONATORS—NUMERICAL
RESULTS

TABLE |
COMPARISON OF EXECUTION TIMES FOR
THE FDFD ALGORTIHM, FOR DIFFERENT PROBLEM SIZES. THE LAST Row
The iterative scheme presented above has been appliedHows DATA FOR THE TWO REPETITIONS OF THEFDFD ALGORITHM,
to compute numerically the resonant frequenf@yQ 50 Of PERFORMED INORDER TOREDUCE THE DISPERSIONERROR THE TESTS HAVE

. . : . BEEN PERFORMED IN THECRAY T3E SrSTEM USING FOUR PROCESSORS
the quasi’EMy ¢ 20 mode (Gaussian beam notation) in a

hemispherical resonator shown in Fig. 1. Both homogeneous Problem | Grid | Execu- | Resonant | Relative

(no dielectric sample) and inhomogeneous structure has been size N | size | tion frequency | error

considered with mirror separation of 51.3 mm and the spherical - e time [s ggﬁ%ms g.%b]oo

mirror radius of 76.2 mm. In this letter, we give only the results 32770 | A/15 | 1091.43 | 58.913500 | -0.777

for the homogeneous case. One may note that the length of the 73780 A/20 | 4690.47 | 59.168571 | -0.348

modeled structure equadsi 0. 165100 A/30 | 8884.84 | 59.266262 | -0.183
The resonant frequency of the quagiM, o, 20 in @ homo- 32770 | A/15 | 2197.78 | 59.386013 | 0.018

geneous structure has been computed for various mesh sizes 2iter

using the FDFD solver described in [2], [5]. In the first series

of tests, the standard FDFD scheme has been u4esd (1).

The results are shown in Table I. The error is computed relative TABLE I

to the analytical value ofy ¢, 29 Obtained from paraxial approx-

imation.

It is apparent that just after three iterations the error due to

ITERATIVE REDUCTION OF THEERROR DUE TO NUMERICAL DISPERSION
FOR THE HOMOGENEOUSRESONATOR PROBLEM. THE RESONANT

) ] FREQUENCIES FOR THEQUASI-TEMg, ¢,290 MODE COMPUTED IN ONE
Table Il presents the reduction of the error of computing the Srep AREUSED IN THE NEXT STEP TOFIND THE OPTIMIZED VALUE

desired resonant frequency using the proposed iterative scheme.

OFA.Ar = Az = A/15 (N = 32770)

) ) . . . Optimizati R t | Relati
numerical dispersion has been substantially reduced. The effi- fré)q:lffcay o Value of A fr:?;:zy ererfr e
ciency of the iterative scheme is assessed in Table I. The last row [GHzZ] [GHz] [%]
shows the execution time for the two iterations of the FDFD - 1.00000000 | 58.913500 | -0.777
solver with dispersion correction. One may note that by ap- 58.913500 | 1.00814384 | 59.386013 | 0.018
. . . : T 59.386013 1.00800627 | 59.378032 | 0.005
plying the iterative scheme we obtain a significantly more ac-
—wp 0 0 0 24sin(AkiAz/2)
0 o 0 24 blng/A/./Q) 0
—nB,(a) A[B,(v)(I+1)— B, (6)I]
0 0 B (« —
wiBn () (T+1/2)Ar)? (I+1/2)Ar
0 24 sm(AkiAz/Z) N e 0
2 A ! - Ar) <) [ A~ /° - ’ ) — fa
B 2AB,, (k. IA7)sin(k.Az/2) 0 4 B, (a) — B,.(3) 0 weB' (k IAT)
Az Ar

=0
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curate result than by grid refinement. Moreover, a consideralmeethod of reducing the numerical dispersion error. All numer-
gain both in computation time and memory cost (directly praeal tests have been carried out at the facilities of the Academic

portional to the problem size) is observed. Computer Centre TASK in Gdak and the Interdisciplinary
Centre for Mathematical and Computational Modeling of the
IV. CONCLUSIONS University of Warsaw.
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