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An Iterative Algorithm for Reducing Dispersion Error
on Yee’s Mesh in Cylindrical Coordinates

Michał Rewieński and Michał Mrozowski, Member, IEEE

Abstract—This letter presents an iterative algorithm for re-
ducing the error due to numerical dispersion while using the finite
difference frequency domain (FDFD) scheme on Yee’s mesh in
cylindrical coordinates. It is shown that the algorithm allows one
to significantly enhance the accuracy of the results over a limited
frequency band. Consequently, the algorithm provides a cost
effective way of achieving high accuracy in the finite difference
numerical analysis of such problems as computing resonant
frequencies of empty and loaded resonators with cylindrical
symmetry.

Index Terms—FDFD, numerical dispersion, resonators, Yee’s
mesh.

I. INTRODUCTION

T HE PROBLEM of numerical dispersion inevitably arises
while applying finite difference (FD) schemes to approxi-

mate differential operators. In electromagnetic modeling, one of
the well known effects of numerical dispersion is the anisotropy
of the phase velocity of the simulated wave modes propagating
in an FD mesh, which models, for example, a homogeneous
medium [1]. The phase velocity of the modes varies with the
wavelength and the direction of propagation with respect to the
mesh resulting in the phase error which accumulates along the
propagation direction. Consequently, in electromagnetic struc-
tures whose geometrical dimensions are significantly larger than
the wavelength, the numerical dispersion is the main source of
error [2], [3].

One approach toward reducing the effects of numerical dis-
persion is to refine the finite difference mesh. This has a disad-
vantage of increasing the size of the solved numerical problem.
Consequently, particularly for electrically large electromagnetic
systems, both memory and computational costs may become
unacceptable. A different approach is based on introducing a
correction which annihilates or reduces the dispersion error di-
rectly into the discrete operator equations. The idea is based on
replacing, for example, the standard central difference operator
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with a modified operator

(2)

where ( 1) is a certain constant number. This approach has
been developed in [1] for the finite difference time domain
(FDTD) method applied to solving Maxwell’s equations
in rectangular coordinate system. One disadvantage of this
approach is that it is frequency selective i.e., the error can be
reduced over a limited frequency band. Somewhat different
schemes toward reducing numerical dispersion, also referring
to rectangular coordinate system and FDTD method, may be
found in [3] and [4]. In this letter we derive a modified FDFD
scheme on Yee’s mesh defined in cylindrical coordinate system
based on the simple idea presented above. We also show how
it may be used in an iterative algorithm, which allows one to
enhance the accuracy of the obtained numerical results. The
approach proposed in this letter is particularly attractive for
the applications where high accuracy is required at a specific
frequency such as the FDFD analysis of large resonators with
cylindrical symmetry.

II. I TERATIVE COMPUTING OF THECORRECTIONFACTOR

Assuming we consider a cylindrical TE wave in a homoge-
neous region, we obtain the following expression for the fields
[the factor was omitted for clarity]:

where denotes an appropriate Bessel function. Applica-
tion of the modified FD scheme [analogous to (2)] to Maxwell’s
curl equations and substitution of the above fields into appro-
priate discrete equations results in the following dispersion re-
lation in (3), shown at the bottom of the next page, where

(4)

and denotes the index for the discretization along thecoor-
dinate. In the limit ( ) the above relation reduces
to Bessel equation satisfied iff . The
above dispersion relation may be used to computefor given
values of , , , and . If , the value of com-
puted in this way will differ (will be larger) from its theoretical
value , where and is the
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angle of wave propagation with respect to the mesh. Still, one
may optimize the value of , so that the difference between
computed using the above relation and the theoretical value of
this wavenumber ( ) is minimal for a given angle or a given
range of angles of wave propagation with respect to the mesh.

The procedure proposed above allows one to obtain a cor-
rected FDFD scheme, provided the mode frequency( ) and
wavenumber are known. However, in many practical situa-
tions, the eigenfrequency of a given mode in a modeled electro-
magnetic system is unknown and has to be found, for example,
by solving an operator eigenproblem. In this case, we may still
use the above optimization procedure within the following iter-
ative scheme. In the first step we find the approximate eigenfre-
quency by solving the problem for . In the next step,
we use to find the optimized value of . This step may be
repeated to obtain better approximations of the eigenfrequency

.

III. M ODELING HEMISPHERICAL RESONATORS—NUMERICAL

RESULTS

The iterative scheme presented above has been applied
to compute numerically the resonant frequency of
the quasi- mode (Gaussian beam notation) in a
hemispherical resonator shown in Fig. 1. Both homogeneous
(no dielectric sample) and inhomogeneous structure has been
considered with mirror separation of 51.3 mm and the spherical
mirror radius of 76.2 mm. In this letter, we give only the results
for the homogeneous case. One may note that the length of the
modeled structure equals .

The resonant frequency of the quasi- in a homo-
geneous structure has been computed for various mesh sizes
using the FDFD solver described in [2], [5]. In the first series
of tests, the standard FDFD scheme has been used ( ).
The results are shown in Table I. The error is computed relative
to the analytical value of obtained from paraxial approx-
imation.

Table II presents the reduction of the error of computing the
desired resonant frequency using the proposed iterative scheme.
It is apparent that just after three iterations the error due to
numerical dispersion has been substantially reduced. The effi-
ciency of the iterative scheme is assessed in Table I. The last row
shows the execution time for the two iterations of the FDFD
solver with dispersion correction. One may note that by ap-
plying the iterative scheme we obtain a significantly more ac-

Fig. 1. Open resonator structure loaded with a dielectric disc.

TABLE I
COMPARISON OF EXECUTION TIMES FOR

THE FDFD ALGORTIHM, FOR DIFFERENTPROBLEM SIZES. THE LAST ROW

SHOWS DATA FOR THE TWO REPETITIONS OF THEFDFD ALGORITHM,
PERFORMED INORDER TOREDUCE THEDISPERSIONERROR. THE TESTS HAVE

BEEN PERFORMED IN THECRAY T3E SYSTEM USING FOUR PROCESSORS

TABLE II
ITERATIVE REDUCTION OF THEERRORDUE TO NUMERICAL DISPERSION

FOR THE HOMOGENEOUSRESONATORPROBLEM. THE RESONANT

FREQUENCIES FOR THEQUASI-TEM MODE COMPUTED IN ONE

STEP ARE USED IN THE NEXT STEP TO FIND THE OPTIMIZED VALUE
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curate result than by grid refinement. Moreover, a considerable
gain both in computation time and memory cost (directly pro-
portional to the problem size) is observed.

IV. CONCLUSIONS

In this letter, we have presented an iterative algorithm which
allows one to reduce the error due to numerical dispersion on
Yee’s mesh in cylindrical coordinates. We have shown that this
method may be effectively applied to improve the accuracy of
the computed resonant frequencies of high order modes in elec-
trically large resonators. The obtained performance results indi-
cate that the proposed algorithm is very cost-efficient.
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