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Iterative Application of Boundary Conditions in the
Parallel Implementation of the FDFD Method

Michat Rewierski and Michat MrozowskiMember, IEEE

Abstract—This letter presents an implementation of the
finite difference frequency domain (FDFD) algorithm, based
on extending the problem domain and iterative application of
boundary conditions, which allows efficient parallel solution of the
electromagnetic problems defined over irregular computational
domains. The proposed approach applied jointly with implicit
representation of the operator matrix and spectral transfor-
mations has been used to develop a parallel solver for the open
resonator problem, characterized by a nearly optimal speedup of
computations.

Index Terms—Boundary conditions, FDFD, parallel computa-
tion, resonators.

I. INTRODUCTION

ODELING of large or complex electromagnetic struc-
tures in the frequency domain often involves solvingig. 1. Pattern of distribution of nonzero elements in the operator matrix for
sparse matrix problems with the number of unknowns as hidjte standard FDFD algorithm.
as 10-1C°. To this end, iterative techniques based on Krylov

subspace concept are applied [1]-{3]. These iterative techniqygit,ng are a priori included in the matrix, e.g., by eliminating

are very attractive as they are also well suited for application#bm the matrix representation the elements corresponding to
scalable parallel systems which offer multiple processor powgtishing field components located on the boundaries. As a re-
and memory resources. Still, in order to obtain good speedip the operator matrix looses its purely diagonal structure and
in computations, a parallel algorithm has to satisfy the two k@, comes a banded matrix. This in turn implies that the paral-
requirements: lelization efficiency is frequently deteriorated, due to the in-
1) assure workload balancing among the processors, anttreased amount of inter-processor communication and prob-
2) minimize the data communication across the processolsms with workload balancing.
Whether these requirements may be easily satisfied or not deA typical example of such a situation is the problem of mod-
pends largely on the properties of the involved operator matrixing of a hemispherical resonator [4], [5]. For this problem the
One of the simplest and yet very powerful algorithm whicFDFD projection gives an operator matrix, whose nonzero ele-
is easy to implement on a parallel system is the finite diffements are basically located on 11 diagonals. This regular struc-
ence frequency domain (FDFD) method. The standard FDR@Xe of the matrix is however spoiled by the boundary conditions
algorithm gives a matrix with a highly regular structure. That the hemispherical part of the boundary (see Fig. 3 for the ge-
basic operator can be represented by a few diagonals whicloisetry) because the nodes located inside the metal are removed.
extremely advantageous in the context of parallelization, as eThis reduces the number of unknowns, but at the same time it
it allows one to maintain almost a perfect workload balancingisturbs the regular structure. The nonzero elements move to-
and extremely low inter-processor communication while peward the main diagonal and the matrix receives a banded struc-
forming calculations. ture (cf. Fig. 1). There are still 11 nonzero elements in a row but
A regular structure of the matrix is spoiled when irregular dahey are located at various distances from the main diagonal. In
mains have to be considered. This is because the boundary aha-example considered, the upper mirror is spherical, so the ma-
trix becomes very tapered as one moves toward the upper mirror,
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and 2) and boundary conditions are applied at each iteration of
the solution process.

The proposed scheme may be illustrated for a simplified ex-
ample of a two-dimensional (2-D) Laplace’s operator. Eet
R? be an irregular computational domain for our problem. We
denote bys’ some regular (e.g., rectangular) domain which con-
tains.S. Suppose we define a regular FD grid ov#rand dis-
cretize both the fields and the Laplace operator using this grid. If
we apply e.g., a Krylov subspace method, then the information
on the problem is passed to the algorithm by repeatedly com-
puting the matrix vector produdtv, whereL is the projected
Laplace’s operator angd= [v;,] is a given vector containing the
iterates of the values of fields at the grid points. In the proposed
scheme, assuming homogeneous boundary conditions, the ma-

trix-vector product is computed in the following steps: _ N _ ,
Fig. 2. Pattern of distribution of nonzero elements in the operator matrix for

Step 1) For(é, j) € {(k, 1): (xx, w1) € (S' — S)} We zero  the FDFD algorithm with an extended computational domain.
the elements;; of the input vector.
Step 2) We computes = Lv by implicitly representing

Speedup in a single Arnoldi iteration

the discrete operatd, i.e., we computev by per- 24— ,
forming linear operations on vectodetermined by ol | EXCTRNON Spr::irrircoarl
the formula Al /ﬁ_\/\/
s — Vil T U1 = 2 4 Yiitt F Vo1 T 2vi; (1) ni \\ /
13
AxQ Ay2 i \ / Sample
Step 3) We zero the elemenis; of vectorw for (¢, j) € 14k Lo Planar
mirror
{(k, D): (wr 1) € (5" = 5)}. =

peedup

In steps 1) and 3), we impose the correct boundary conditions | &

simply zeroing the appropriate vector components, which is du "
to the particularly simple form of the operator. In case of real ¢
istic electromagnetic operators the proposed method of iterati ¢} ’ .
application of boundary conditions is more involved. In fact the

FDFD iterations for electromagnetic problems are implemente - |deal speedup

in a way analogous to the marching-in-time algorithm of the 20, . . . . . . . ., ]
2 4 ] 8 10 12 14 16 18 20 22 24

FDTD method [6]. Number of processors

As an example let us present the technique for the problem or
the open hemispherical resonator. For the conside[ed structefg, 3. Speedup in the computations for the parallel solver of the open
assuming thexp(—jn¢) variation of the fields in the direc- hemispherical resonator problem in the Cray T3E system. Matrix size
. . . . . N = 165 100.
tion, the eigenproblem being solved yields the following form
7]
] scheme gives a matrix with the narrowest bandwidth, which
ATV x 171V x Ct <HD _ </>£ v. D) — 2D () r_ninimizes the ir_lter—processorcommunication during computa-
n tion of the matrix-vector product. In the proposed method, we
assume that the problem is defined on Yee’s mesh and the el-
D = [D,. D.J" is the unknown eigenfunction consisting Oementary finite difference operators are t.he same throughout
- L P . fthe extended, regular computational domain, which includes the
two electric flux compqnents aru_JI is the unk_nown resonant o5 |ocated inside the metal in the upper mirror. The elemen-
fr_equency. Let us consider the_ discrete version of the problqg}y discrete divergence and rotation operators are identical as
given above, which may be written as follows: those of FDTD. During the computation of the Krylov vectors
elementary operators are applied successively from right to left

to 2-D discrete fieldD. This corresponds to a sequence of linear
whereL , L, andL_, are appropriate finite difference oper-field transformations

ators. VectorD contains vglues of the Fwo electric field compo- D— E— wH— oD, )
nentsD, andD. ordered in the following way: e

L L L

) —he =dh

V\!here]._‘[AT, A¢a AZ] = [Ara Az]y H[Ara Az] = [Ara 0, AZ]1

-
édhéheéedQ =w Q (3)

Q = [D11‘17 Dilv Tty Di\{l? Déw:Lv T D1]*WN7 DiWN] (4)
The boundary conditions are applied at appropriate stages

whereM and NV denote the number of grid points inand> of these transformations. All electric field components inside
directions, respectively. I < N, then the above indexing metal are zeroed and the electric and magnetic fields for Yee’s
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puting the Krylov subspace (matrix-vector products), character-
ized by nearly optimal workload balancing and parallel data dis-
tribution requiring minimal inter-processor communication. It-
erative application of spectral transformations and efficient par-
allel implementation of the Arnoldi method resulted in a scal-
able parallel numerical solver for the resonator problem fea-
turing a nearly linear (optimal) speedup, as shown in Fig. 3.
The achieved efficiency of the solver, computedtas: 100% -

nT, /11, wheren is the number of applied processors ahd

is the computation time oh processors, is also very high (cf.
Fig. 4). Consequently, the solution time for the open hemispher-
ical resonator problem has been reduced from around 10 h to
approximately 20 min.
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V. CONCLUSIONS

]
o

Number of processors In this letter we have proposed a parallel implementation of

the FDFD algorithm, based on iterative application of oper-
Fig. 4. Efficiency of the parallel solver in the Cray T3E system. Matrix sizgytors of boundary conditions, implicit operator representation
N = 165100. .

and spectral transformations. Results of performance tests ob-

tained for the problem of modeling of an open hemispherical
cells crossing the boundary are computed at an appropriatersonator indicate that the proposed technique may be applied
termediate transformation stage using a conformal algorithm io-develop scalable parallel electromagnetic solvers.
troduced in [6].

During the computation of Krylov subspace, the matrix oper-

ator and the operators of boundary conditions are representeﬁihe authors are grateful to A vikta and J. Mielewski for

implicitly, i.e., the matrix is never constructed. Neverthele?,roviding sequential code of the FDFD solver. All numerical

we tmaﬁ con3|dter thehgiu;:/ aletr)lt matrr|]x exp]m:i_forr; c_}]‘hthe di ests presented in this letter have been carried out at the facilities
cretized operator, which has been shown in Fig. 2. The equ VE/ICM in Warsaw and TASK in Gdask.

alent matrix obtained using the proposed method has a sligh
larger size than the explicit matrix obtained with the standard,
sequential algorithm still, unlike the other one, it has a regular |
11_-d_|agonal structure. Thisin turn. enables one to develop h|gth[ mission lines using Krylov subspace order-reduction techniqUEEE
efficient parallel code of computing the Krylov vectors char- Trans. Computer-Aided Desigwol. 16, pp. 485-496, May 1997.

acterized by nearly optimal workload balancing and very low [2] T. Cwik, D. S. Katz, C. Zuffada, and V. Jamnejad, “The application of
; _ it scalable distributed memory computers to the finite element modeling
inter-processor data communication. of electromagnetic scatteringyit. J. Numer. Methods Engrol. 41, pp.
759-776, 1998.
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