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Iterative Application of Boundary Conditions in the
Parallel Implementation of the FDFD Method

Michał Rewieński and Michał Mrozowski, Member, IEEE

Abstract—This letter presents an implementation of the
finite difference frequency domain (FDFD) algorithm, based
on extending the problem domain and iterative application of
boundary conditions, which allows efficient parallel solution of the
electromagnetic problems defined over irregular computational
domains. The proposed approach applied jointly with implicit
representation of the operator matrix and spectral transfor-
mations has been used to develop a parallel solver for the open
resonator problem, characterized by a nearly optimal speedup of
computations.

Index Terms—Boundary conditions, FDFD, parallel computa-
tion, resonators.

I. INTRODUCTION

M ODELING of large or complex electromagnetic struc-
tures in the frequency domain often involves solving

sparse matrix problems with the number of unknowns as high
as 10–10 . To this end, iterative techniques based on Krylov
subspace concept are applied [1]–[3]. These iterative techniques
are very attractive as they are also well suited for application in
scalable parallel systems which offer multiple processor power
and memory resources. Still, in order to obtain good speedup
in computations, a parallel algorithm has to satisfy the two key
requirements:

1) assure workload balancing among the processors, and
2) minimize the data communication across the processors.

Whether these requirements may be easily satisfied or not de-
pends largely on the properties of the involved operator matrix.

One of the simplest and yet very powerful algorithm which
is easy to implement on a parallel system is the finite differ-
ence frequency domain (FDFD) method. The standard FDFD
algorithm gives a matrix with a highly regular structure. The
basic operator can be represented by a few diagonals which is
extremely advantageous in the context of parallelization, as e.g.,
it allows one to maintain almost a perfect workload balancing
and extremely low inter-processor communication while per-
forming calculations.

A regular structure of the matrix is spoiled when irregular do-
mains have to be considered. This is because the boundary con-
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Fig. 1. Pattern of distribution of nonzero elements in the operator matrix for
the standard FDFD algorithm.

ditions are a priori included in the matrix, e.g., by eliminating
from the matrix representation the elements corresponding to
vanishing field components located on the boundaries. As a re-
sult the operator matrix looses its purely diagonal structure and
becomes a banded matrix. This in turn implies that the paral-
lelization efficiency is frequently deteriorated, due to the in-
creased amount of inter-processor communication and prob-
lems with workload balancing.

A typical example of such a situation is the problem of mod-
eling of a hemispherical resonator [4], [5]. For this problem the
FDFD projection gives an operator matrix, whose nonzero ele-
ments are basically located on 11 diagonals. This regular struc-
ture of the matrix is however spoiled by the boundary conditions
at the hemispherical part of the boundary (see Fig. 3 for the ge-
ometry) because the nodes located inside the metal are removed.
This reduces the number of unknowns, but at the same time it
disturbs the regular structure. The nonzero elements move to-
ward the main diagonal and the matrix receives a banded struc-
ture (cf. Fig. 1). There are still 11 nonzero elements in a row but
they are located at various distances from the main diagonal. In
the example considered, the upper mirror is spherical, so the ma-
trix becomes very tapered as one moves toward the upper mirror,
which deteriorates parallel performance of the numerical solver.

II. I TERATIVE APPLICATION OFBOUNDARY CONDITIONS

The difficulties associated with parallel performance may be
overcome if the computational domain is regularized and the
Krylov space iterations characteristic of the sparse solvers used
in the FDFD method are implemented so that 1) the operator
matrix is not explicitly constructed but rather created on-the-fly
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and 2) and boundary conditions are applied at each iteration of
the solution process.

The proposed scheme may be illustrated for a simplified ex-
ample of a two-dimensional (2-D) Laplace’s operator. Let

be an irregular computational domain for our problem. We
denote by some regular (e.g., rectangular) domain which con-
tains . Suppose we define a regular FD grid overand dis-
cretize both the fields and the Laplace operator using this grid. If
we apply e.g., a Krylov subspace method, then the information
on the problem is passed to the algorithm by repeatedly com-
puting the matrix vector product , where is the projected
Laplace’s operator and is a given vector containing the
iterates of the values of fields at the grid points. In the proposed
scheme, assuming homogeneous boundary conditions, the ma-
trix-vector product is computed in the following steps:

Step 1) For we zero
the elements of the input vector.

Step 2) We compute by implicitly representing
the discrete operator, i.e., we compute by per-
forming linear operations on vectordetermined by
the formula

(1)

Step 3) We zero the elements of vector for
.

In steps 1) and 3), we impose the correct boundary conditions by
simply zeroing the appropriate vector components, which is due
to the particularly simple form of the operator. In case of real-
istic electromagnetic operators the proposed method of iterative
application of boundary conditions is more involved. In fact the
FDFD iterations for electromagnetic problems are implemented
in a way analogous to the marching-in-time algorithm of the
FDTD method [6].

As an example let us present the technique for the problem of
the open hemispherical resonator. For the considered structure,
assuming the variation of the fields in the direc-
tion, the eigenproblem being solved yields the following form
[7]:

(2)

where , ,
is the unknown eigenfunction consisting of

two electric flux components and is the unknown resonant
frequency. Let us consider the discrete version of the problem
given above, which may be written as follows:

(3)

where , and are appropriate finite difference oper-
ators. Vector contains values of the two electric field compo-
nents and ordered in the following way:

(4)

where and denote the number of grid points inand
directions, respectively. If , then the above indexing

Fig. 2. Pattern of distribution of nonzero elements in the operator matrix for
the FDFD algorithm with an extended computational domain.

Fig. 3. Speedup in the computations for the parallel solver of the open
hemispherical resonator problem in the Cray T3E system. Matrix size
N = 165100.

scheme gives a matrix with the narrowest bandwidth, which
minimizes the inter-processor communication during computa-
tion of the matrix-vector product. In the proposed method, we
assume that the problem is defined on Yee’s mesh and the el-
ementary finite difference operators are the same throughout
the extended, regular computational domain, which includes the
cells located inside the metal in the upper mirror. The elemen-
tary discrete divergence and rotation operators are identical as
those of FDTD. During the computation of the Krylov vectors
elementary operators are applied successively from right to left
to 2-D discrete field . This corresponds to a sequence of linear
field transformations

(5)

The boundary conditions are applied at appropriate stages
of these transformations. All electric field components inside
metal are zeroed and the electric and magnetic fields for Yee’s
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Fig. 4. Efficiency of the parallel solver in the Cray T3E system. Matrix size
N = 165100.

cells crossing the boundary are computed at an appropriate in-
termediate transformation stage using a conformal algorithm in-
troduced in [6].

During the computation of Krylov subspace, the matrix oper-
ator and the operators of boundary conditions are represented
implicitly, i.e., the matrix is never constructed. Nevertheless,
we may consider the equivalent matrix explicit form of the dis-
cretized operator, which has been shown in Fig. 2. The equiv-
alent matrix obtained using the proposed method has a slightly
larger size than the explicit matrix obtained with the standard,
sequential algorithm still, unlike the other one, it has a regular
11-diagonal structure. This in turn enables one to develop highly
efficient parallel code of computing the Krylov vectors char-
acterized by nearly optimal workload balancing and very low
inter-processor data communication.

III. SPECTRAL TRANSFORMATIONS

The matrix operator obtained with the presented method of
treatment of boundary conditions has one disadvantage over
the original operator. By including the points located on the
boundary of the resonator in the computational domain, we in-
troduce zero eigenvalues to the spectrum of the discrete oper-
ator. This deteriorates the convergence of the iterative Krylov
subspace methods, such as Arnoldi algorithm, used to solve the
discrete eigenproblem. In order to retain fast convergence of the
algorithm, we apply spectral transformations, based Chebyshev
polynomials [5], [8] and polynomial filtration proposed in [9],
which eliminate the zero eigenvalues from the spectrum of the
operator.

IV. PERFORMANCERESULTS

The presented method of treatment of boundary conditions
enabled us to develop a highly efficient parallel code of com-

puting the Krylov subspace (matrix-vector products), character-
ized by nearly optimal workload balancing and parallel data dis-
tribution requiring minimal inter-processor communication. It-
erative application of spectral transformations and efficient par-
allel implementation of the Arnoldi method resulted in a scal-
able parallel numerical solver for the resonator problem fea-
turing a nearly linear (optimal) speedup, as shown in Fig. 3.
The achieved efficiency of the solver, computed as

, where is the number of applied processors and
is the computation time on processors, is also very high (cf.
Fig. 4). Consequently, the solution time for the open hemispher-
ical resonator problem has been reduced from around 10 h to
approximately 20 min.

V. CONCLUSIONS

In this letter we have proposed a parallel implementation of
the FDFD algorithm, based on iterative application of oper-
ators of boundary conditions, implicit operator representation
and spectral transformations. Results of performance tests ob-
tained for the problem of modeling of an open hemispherical
resonator indicate that the proposed technique may be applied
to develop scalable parallel electromagnetic solvers.

ACKNOWLEDGMENT

The authors are grateful to A. C´ wikła and J. Mielewski for
providing sequential code of the FDFD solver. All numerical
tests presented in this letter have been carried out at the facilities
of ICM in Warsaw and TASK in Gdan´sk.

REFERENCES

[1] M. Celik and A. C. Cangellaris, “Simulation of multiconductor trans-
mission lines using Krylov subspace order-reduction techniques,”IEEE
Trans. Computer-Aided Design, vol. 16, pp. 485–496, May 1997.

[2] T. Cwik, D. S. Katz, C. Zuffada, and V. Jamnejad, “The application of
scalable distributed memory computers to the finite element modeling
of electromagnetic scattering,”Int. J. Numer. Methods Eng., vol. 41, pp.
759–776, 1998.

[3] M. Clemens, T. Weiland, and U. van Rienen, “Comparison of
Krylov-type methods for complex linear systems applied to high-voltage
problems,” IEEE Trans. Magn., vol. 34, no. 5, pp. 3335–3338, Sep.
1998.

[4] T. E. Harrington, J. Wosik, and S. A. Long, “Open resonator mode pat-
terns for characterization of anisotropic dielectric substrates for HTS
thin films,” IEEE Trans. Appl. Superconduct., vol. 7, pp. 1861–1864,
Jun. 1997.
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[8] J. Mielewski, A. Ćwikła, and M. Mrozowski, “Accelerated FD analysis
of dielectric resonators,”IEEE Microwave Guided Wave Lett., vol. 8, pp.
375–377, Nov. 1998.

[9] D. C. Sorensen, “Implicit application of polynomial filters in a k-step
Arnoldi method,” Rice Univ., Dept. Math. Sci., Houston, TX, Tech. Rep.
TR90-27, 1990.


