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On the Accuracy of Haar-Based Multiresolution
Time-Domain Schemes

S. Grivet-Talocia

Abstract—We discuss in this paper the numerical accuracy of Il. HAAR-BASED MRTD SCHEMES
multiresolution time-domain (MRTD) schemes based on Haar . , . .
scaling functions and wavelets. It has been noted that when the L€t us consider the Maxwell's equations in a homogeneous
first resolution of wavelets is included in the schemes, the discrete medium
difference equations arising from the Maxwell's system do not 1 OE Zy OH
couple the scaling and wavelet coefficients except at boundary and VxH= Tc Ot VXE=-— ot
excitation points. This fact is proved to be a serious drawback, . o .
since both a dispersion analysis and numerical tests for terminated Where Zo is the wave impedance andthe propagation ve-
and nonterminated schemes show that the addition of wavelets locity. Each field component is expanded into scaling functions
does not improve significantly the numerical accuracy of the ¢, (s) = ¢(s/As — u) and wavelets),(s) = ¢ (s/As — p),

underlying coarse-grid FDTD scheme. where¢ is equal to one within the unit intervéd, 1) and van-
ishing elsewhere, and(s) = ¢(2s) —$(2s—1). Expansion and
|. INTRODUCTION testing is performed for each spatial coordinate {z, v, z}

ith corresponding discretization indices = {k, [, m}, as

ell as for time with rectangular pulsés,(¢). In compact no-
tions, the x-directed electric field component in the staggered
ge grid of sizeAx, Ay, Az is represented as

AVELET-based discretizations for Maxwell’s equationgv
Whave received much attention in the very recent litera-
ture, since they seem very promising for the reduction of t
computational cost of more standard time-domain methods lik

FDTD [1]. Examples are provided by the so-called multireso- E.(r,t) :Z ZZ Z’;E,fflm Lm
lution time-domain (MRTD) schemes based on Battle-Lemarié n kim (né
[3] and Haar wavelets [4]. The main point lies in the intrinsic “h (B)Cgr/2(2)mi(y)ém (2) (1)

capability of wavelets to add higher spatial frequency contribwh
tions in the representation of the fields. This can be achieVﬁg
locally by adding details only where the solution has fast vari-
ations [6]. This procedure leads naturally to multigrid schemessé € {¢¢¢, ¢Pip, b, gpibih, Y, i, b, z/ﬂ/ﬂ/)}(-z)

[71, [8].

This paper focuses on Haar-based MRTD schemes. It is wele representation of the other field components is easily de-
known that these reduce to the standard FDTD scheme whigd through permutation of the indices and follows the same
no resolutions of wavelets are used in the representation"8e as for standard FDTD scheme [2]. Inserting the above ex-
the fields. Conversely, when only one resolution of waveleR§€SSions into the first Maxwell's equation and performing a
is added, the resulting difference equations do not couple $F@!erkin test procedure leads [4] to the following expressions
scaling and wavelet coefficients except at boundary and excitdl the field coefficients within each cefk, I, m}:

ere the summation ovér¢ includes eight terms stemming
m all the permutations of scaling functions and wavelets

tion points [4]. We show in the following that this decoupling TESIE T ESTE — ZocAt

does not represent an advantage but a serious drawback of the 2 fSmE _ s g€y grsmE _ v pring
Haar-MRTD scheme. Both theoretical arguments and numerical WTRRO M Tpdo | RTTROR T jol 3)
experiments will show that addition of one resolution of wavelets Ay Az

improves the sampling of the fields but not the accuracy @here {0, b, o, 1} denote, respectively{y, yu + 1/2, yu —
which the new sgmples are computed. In ord_er to achieve h.igfj?Z ju+1} for eachy = {k, I, m, n}. Similar expressions are
accuracy, coupling between different scales is needed. This egfiained for the other field coefficients. This set of discretized
be achieved through addition of higher resolution wavelets (thggyations matches the FDTD scheme when only the scaling
also improving treatment of the boundary conditions [9]). Howpefficients are considered, i.6.= 1 = &€ = ¢. We will refer
ever, |t W|” be ShOWI’] that the |aSt reso|uti0n Of added WaVelqté this scheme as Coarse_grid FDTD scheme. However, the
is always wasted since it leads to no accuracy improvement wiime relations are found for any other combinatiod,of, &
respect to the coarser resolutions. involving at least one wavelet in any direction. There is no
coupling between the eight different sets of equations corre-
sponding to the various permutations of (2). This immediately
leads to the conclusion that the stability criterion constrains the
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[l. DISPERSIONANALYSIS E(21)
1.2 T T T .
We perform now a dispersion analysis of the Haar-MRTD ° ﬁ%q%e\;igtﬁd V\Zﬂ&s
scheme with one resolution of wavelets. Each field component T — Exact 1
I is taken as a plane wave: I - = Fine-grid FDTD

F(r,t)=Fy iwteikem =ikyy o=ik:2
wheref is the numerical wave vector. This expression is pro-
jected onto the discretization scheme through a standard proce-
dure, not reported here. Obviously, since the numerical scheme
(3) is coincident with the coarse-grid FDTD scheme any fixed
choice of¢, n, £, the analysis leads to the well-known FDTD
dispersion relation

sin? Q _ sin? K, n sin? K, n sin? K,

A2 Az? Ay? A2

whereQ? = wAt/2 andK,, = k,Apu/2. Note that the disper-

sion relation published in [5] is not correct. This explains Why,ye heen obtained through simple interpolation at the end of the
the numerical experiments in [5] did not agree with analytic@}, ation. In summary, the Haar-MRTD with only one resolu-
resu_lts. The above_ expression contr_o_ls the accuracy of the Ry of wavelets is equivalent to the coarse-grid FDTD scheme
merical scheme. Slnc_e all field coefficients, including those 'S far as the overall accuracy is concerned, and is not equivalent
lated to wavelet functions, are affected by the same nume”?@'the fine-grid FDTD. The latter has the same number of un-

dispersion that applies to the scaling functions coefficients, al?ﬁowns of Haar-MRTD, requires twice its computing time, but
since the scheme with scaling coefficients only is fully equivl-S far more accurate

alent to the coarse-grid FDTD scheme, no improvement is ObWe look now at the behavior of the Haar-MRTD scheme

talne_d by add'”g WaVEIGtS'_Add'“on qf_wavelets corresponds_,aﬂder another perspective. Without loss of generality we restrict
a refme_zd sgmpllng of the field quantities by a factor of two "Bur attention to the TEM case illustrated above. We take the sum
each cprecuon, but the added sar_nples are affected by the SaNg difference of (5)—(7), as well as of (6)~(8). It is well known
numerical errors O_f the c.:oarse—g.rld ones. , that taking the sum and the difference of scaling and wavelet co-
The above considerations are illustrated through a simple Nificients leads to the expansion coefficients into the two scaling
merlca}l test. we conS|der_a one-dimensional propagation alofg -(ions at the next refinement level, corresponding to a double
the» direction of a normalized TEM moderg = 1 c=1,an sampling rate of the fields. These two scaling functions have
z € [0, 1]). The Haar-MRTD equations for scaling and wavelel, oot “respectively, in the left and right half of the consid-
coeflicients are, respectively ered cell. We label the corresponding coefficients with the su-
”fEff _ B:ESS _ ZocAt ¢ Hf _ ;;LH%S) (5) perscriptsl. and R, respectively. We get the following decou-

0 . .
(4) :

Fig. 1. Dispersion test for Haar-MRTD with one resolution wavelets.

Az P pled equations:
Yo _ypge _ cAt zpd oz z L 2 L ZocAt L )
nHy = H, ZOAZ(OEI o) (6) TEy =By — e ( H; — }yLHﬁ) 9)
and , , AR —
, A , nHy = LHy — m(tjE{ ~ 5 Ep) (10)
By = By — (i Hy — LHY) ) i
Az A and
vt _ v _ OB wpi  wpy epR _zpr  S0CAt Ry R
hHh - ﬁHh Z()AZ (OEI OEO ) (8) 1E0 = EO - W(%Hh — ZHE) (11)
To avoid any perturbat!on due.to truncations of thg computa- YR _vgR cAt (R 2ER) 12)
tional domain we consider periodic boundary conditions. The e Y v Ut B U

initial conditions are set to This means that addition of wavelets leads to two equivalent

Ey(z,t=0) =exp {_W} Hy(z,t=0)=0 schemes operating, respectively, on the left half and on the right
20 half of each cell. As there is no coupling between the left and
with o = 0.05. These conditions correspond to a periodizedght parts, the overall scheme is exactly coincident to two su-
Gaussian pulse that splits into two equal waves propagatingp@erimposed coarse-grid schemes shifted half cell one from each
opposite direction. Simulation is performed up to the final timether. Obviously, the same considerations hold also in three di-
T = 8 usingAz = 0.025, with a stability factorcAt/Az = mensions, in which case there &= 8 interleaved schemes,
0.8. The results are shown in Fig. 1, together with the outconeach equivalent to the coarse-grid FDTD scheme, that operate
of the fine-grid FDTD obtained by setting thz/2 and At/2 independently one from each other.
the space and time steps, respectively. The results confirm thaThe same considerations hold when more resolutions of
addition of wavelets improves sampling of the fields but not theavelets are added to the fields representation. We give here a
accuracy. It is quite evident that this improved sampling couttbncise theoretical proof based on abstract formulations. Let us
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consider a coarse grid FDTD with cell size> applied to 1-D 10
problem. The field approximation can be thought to belong to
the space5, of piecewise constant functions on each cell. If we
add J resolutions of Haar wavelets we will get a hierarchical
representation of the space of piecewise constant functions
on intervals of siz& 7 Az. The following two representations
hold for this space

Zo- Fine—grid FDTD
-8- Coarse—grid FDTD
—+— Haar-MRTD

J-1
S;=8® @Wj =81 & Wi
=0

Relative frequency error

10

0 5 10 15 20
Number of coarse—grid cells

whereW; is the space spanned by the Haar wavelets at resolu-
tion j. Note thatS; is invariant under translations 77 Az, _ ,
while the spatial staggering of the coarse FDTD scheme is pa%zvég\c/iezgh i difsm’su;zovzn‘r’]”lzg‘%ﬁt | resonant frequency of a paralielplate
on a2~ 'Az displacement betwee® and H samples. This
means that one resolution of wavelets is sufficient to loose the
advantages of a staggered coarse-grid scheme. The last repre-
sentation on the right shows that a Haar-MRTD scheme Wwith  We have given both theoretical and numerical evidence that
resolutions of wavelets is equivalent to a Haar MRTD schera@ldition of one resolution of wavelets within a Haar-based
using scaling functions at level — 1 (i.e., to a FDTD scheme MRTD framework does not improve significantly the numerical
with cell size2~/*1 Az) plus one resolution of wavelets. Thereaccuracy of the underlying coarse-grid scheme. This holds for
fore, based on the considerations in the foregoing paragraphsth terminated and nonterminated schemes. Similar conclu-
the accuracy will be the same of the FDTD scheme without téons hold when an arbitrary number of wavelet resolutions are
last resolution of wavelets. included. A more effective strategy could be to resort to dif-
ferent (compactly supported) scaling and wavelet systems, such

as biorthogonal B-splines. For instance, the results published in
. . . [6], [10] showed how higher resolution wavelets can be added
We discuss now the influence of boundary conditions i : o . ; -

0 _the discretization in order to achieve dynamic adaptivity.

case of terminated schemes. A detailed treatment of boundaﬂ?sany case, the efficiency of the resulting schemes should be

based on Lagrange interpolation has been given in [4], and . i
: . . arefully assessed in terms of accuracy and computational cost.
will not be repeated here. Instead, we show with a S|mp?e

numerical test that the inherent coupling between scaling and
wavelet coefficients occurring at the boundaries may allow
some accuracy improvement with respect to the underlyingl!]
coarse-grid FDTD, but only when the number of discretization
points is very small. In such cases, the numerical solution of thef2]
field equations can be obtained very efficiently with standard
algorithms like FDTD, without need of more advanced MRTD 3,

V. CONCLUSION

IV. INFLUENCE OFBOUNDARY CONDITIONS
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