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An Algorithm with Error Bounds for Calculating
Intermodulation Products

Irwin W. Sandberg, Life Fellow, IEEE,and Gideon J. J. van Zyl

Abstract—We make use of newly obtained theoretical results
concerning systems driven by asymptotically almost periodic in-
puts to obtain a useful algorithm with error bounds for calculating
intermodulation products. The method is applicable to systems de-
scribed by Volterra integral equations of the second kind that meet
the circle criterion and satisfy some additional constraints. In this
paper we show that an interesting family of circuits of practical in-
terest can be analyzed using the algorithm.

Index Terms—Almost periodic inputs, circle criterion, error
bounds, intermodulation products.

I. INTRODUCTION

A FUNCTION given by

(1)

in which the sum is finite and the , and are real con-
stants, is called atrigonometric polynomial(because of its expo-
nential-form representation). In (1) the frequencies need
not be integrally related. The set of real-valuedalmost periodic
functionsconsists of these trigonometric polynomials together
with all limits, with respects to the usual uniform norm, of se-
quences of trigonometric polynomials.

Asymptotically almost periodic functions(AAP) are defined
only for . They are sums of the restriction to of
an almost periodic function and a continuous function that ap-
proaches zero as .

The calculation of intermodulation products ordinarily re-
quires the calculation of the spectral coefficients of the output
of systems driven by AAP inputs. Here we give an analytical
basis for evaluating the spectral coefficients using a convergent
iterative process and we give bounds on the errors incurred in
truncating the process.

II. DEFINITIONS AND KNOWN RESULTS

In the following, denotes the real numbers,stands for the
set of all integers, and denotes . We use for

.
denotes the space of bounded (Lebesgue) measur-

able real-valued functions defined on and for
stands for the space of-valued -th power inte-

grable functions defined on .
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For an AP function the spectral coefficient at frequency
is defined by

It is known that this is well defined for and that it is
nonzero for only a countable number of frequencies[1].1

We define the module of by
.

We use to denote where
is an enumeration of all the nonzero spec-

tral coefficients of . Using material in [1], it follows that this
defines a norm on AP. For AAP we define to be the
corresponding spectral coefficient of its AP part.

III. T HEOREMS

Many systems of practical interest are described by integral
equations of the form

(2)

where denotes time, is the input (or a modified input that
takes into account initial conditions) andis the output. We are
interested in the case where where is the restric-
tion to of an AP function and takes into account the
initial conditions.

In connection with questions concerning the long-time re-
sponse of systems governed by (2), one is often not interested
in transients and it is natural to consider the integral equation

(3)

We make the following assumptions.

i) and .
ii) given by belongs to

for .
iii) and there exists positive constantsand

such that

for all .

1For other references concerning almost periodic functions, see e.g., [2] and
[3].
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Fig. 1. Simple amplifier circuit.

The Fourier transform of is defined by

We assume that satisfies thecircle criterion, by which we
mean that the locus of for all avoids the disk in the
complex plane centered on the real axis of the complex plane at

with radius and does
not encircle it.

Let denote and define

If satisfies the circle criterion then . This fact is used in
connection with Theorem 2, below.

Our first result, Theorem 1 below, establishes an important
connection between (2) and (3).

Theorem 1: Let the conditions indicated be met, and let
AP. Then

a) there is a unique AP such that

(4)

and
b) with the restriction to of , and the solution

of

(5)

we have

Our next theorem leads directly to an algorithm for numer-
ically evaluating the spectral coefficients (i.e., Fourier coeffi-
cients) of , where is the AP solution of (4) corresponding to
a given AP.

In our theorem, stands for the space of-valued bounded
continuous functions on, denotes the identity operator on,
and and are defined by

and

Theorem 2: Under the conditions described, is an
invertible map of onto itself, and for any AP and any
AP satisfying the sequence given by

belongs to AP and satisfies

as well as for , where is the associate of
via (4).

Theorems 1 and 2 are proved in [4].2

IV. EXAMPLE OF AN APPLICATION

Consider the model of a simple amplifier shown in Fig. 1, and
assume zero initial conditions.

The equations governing this circuit may be cast in the form

(6)

in which is the gate-source voltage,, and are convo-
lutions and and are the time functions corresponding to
the Thévenin equivalent sources on the left and right.

In the case where (over its domain of interest) is a polyno-
mial our algorithm for finding reduces to algebraic manipula-
tion of the sum of complex exponentials.

We use as the initial estimate for and then run the algo-
rithm

a number of times, each time constraining the order3 of the in-
termodulation products to keep the algorithm efficient.

We then perform one last iteration in which we keep inter-
modulation products of all orders. We know that the-norm of
the error is less than

where is the final (unconstrained) iterate andis the last
constrained iterate.

Once we have our estimate of , we can obtain an es-
timate of the drain voltage by applying linear operators to

, and . The dependence of on (which is approx-
imated by ) leads directly to a bound on the error in esti-
mating the spectral coefficients of .

To give an indication of the numbers involved, consider the
model shown in Fig. 1 with parameters
MHz, MHz, V,

, k , fF, fF, fF,
fF, fF, and A.

One can verify that all conditions for applying Theorem 2 are

2For related background material in the context of feedback systems, see [5].
3In this case, where the input consists of two sinusoids of frequenciesf and

f , we define the order of the intermodulation product at frequencymf +nf

as jmj + jnj. To constrain the order we simply discard all terms with order
greater than the set limit after applying the operator(	� c I) to y .
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(a)

(b)

Fig. 2. Some of the spectral coefficients of the drain voltage.

met with these values if one assumes that the gate-source voltage
never exceeds 10 V.

Using 20 eighth-order iterations before the unconstrained it-
eration we find that, with the exact solution to (6),

V.

This means that we can calculate intermodulation products
for down to dB V. These figures take into account
possible numerical errors. (It also means e.g., that an intermod-
ulation product calculated to be at a level of e.g., dB V
must be within dB of dB V. At realistic levels of

dB V the error is totally insignificant.)
Errors in this sort of range are at any rate of little practical

interest. The entire calculation on a 300 MHz processor takes
about 8 seconds. Some of the calculated intermodulation prod-
ucts are shown in Fig. 2.

V. CONCLUSION

We have given a convergent iterative process that can be
used to calculate intermodulation products. Since bounds on
the errors incurred in truncating the process are also given, this
method should be useful in comparing results obtained with
techniques that typically do not provide error bounds (e.g.,
harmonic balance) to determine how well these methods truly
perform.
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