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Inverse of Exact Solution by Synthetic
Asymptote—An Example of Stripline

Wan C. Tang and Y. Leonard Chow

Abstract—The novel techniquesynthetic asymptoteis a useful
tool in deriving the inverse formula of an exact solution for CAD
purposes. As an example, the inverse formula of stripline is derived
in this paper. The average error is less than 1%.

Index Terms—Stripline, synthetic asymptote.

I. INTRODUCTION

A NALYSIS in electromagnetics gives the response of a de-
vice with a given structure. It is normally quite difficult to

find its inverse, that is: to design a suitable structure with a spec-
ified response. An inverse formula is convenient. It is found that
the novel technique ofsynthetic asymptote[1] can derive the in-
verse formula with little difficulty and with high accuracy. The
ease applies even when the exact analytical solution is known.
The stripline is chosen as the illustration.

Assume that an unknown function has known asymptotes at
the two limits of a parameter of interest. The synthetic asymp-
tote then is a formula that is constructed so that it converges into
the known asymptotes. This formula approximates the original
function well (maximum error 10%) if the function is mono-
tonically increasing or decreasing.

The maximum error naturally occurs at somepoint between
the two known asymptotes. If the synthetic asymptote is simply
adjusted to include one or two extra numerical data somewhat
close to thispoint, the maximum error may easily be reduced
to 1 to 2%. The two extra data points can be obtained from 2
simple runsof existing numerical software.

Regular asymptotes are frequently simple analytical func-
tions. As a result a regular asymptote can easily be inverted,
by exchanging its dependent and independent variables. The
synthetic asymptote constructed from the inverted asymptotes
is the inverse of the original analysis function. This paper
constructs a formula of the characteristic impedance with a
given structure of stripline with different substrate dielectrics.
Then the inverse of the formula is constructed. The average
error of the inverse formula is less than 1%.
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Fig. 1. Cross section of stripline.

II. DERIVATION OF THE INVERSEFORMULA OF STRIPLINE BY

SYNTHETIC ASYMPTOTE

For the stripline shown in Fig. 1, Cohn [2] gave the exact
analysis formula by conformal mapping method, that is

(1)

where

(2)

and .
After the distributed capacitance is obtained, the character-

istic impedance of stripline is

(3)

where and are the distributed capacitances with dielectric
and air substrates, respectively.

Equation (1) is an exact solution in the complete elliptic in-
tegral of the first kind. The complexity of the elliptic integral
makes its inverse difficult. On the other hand, if the elliptic inte-
gral is separated into two simpler asymptotes, i.e., two simpler
analytical functions, we can invert the two asymptotes. Using
the two inverted asymptotes, the inverse synthetic asymptote can
be obtained. In addition, the asymptotes should give good phys-
ical insight.

A. Derivation of the Inverse Near Asymptote

When , i.e., , we can expand the ratio of the
elliptic integral of the first kind in (1) by the-series [3], [4].
Taking the first term, we get thenearasymptote

(4)

Also, the asymptote of (when ) can be obtained from
(2). After some manipulations, it is

(5)
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Substituting (4) and (5) into (1), we obtain thenearasymptote
of the distributed capacitance

(6)

When , the second term in (6) represents the parallel plate
capacitance and it is more dominant than the first term. There-
fore, we can rewrite (6) as that of two parallel plate capacitors,
from the strip to the top and the bottom ground plates

(7)

By defining , we get the inversenearasymptote of
from this asymptote of capacitance (7) and (3):

(8)

which is the inversenearasymptote of characteristic impedance
.

B. Derivation of the Inverse Far Asymptote

When , i.e., , the ratio for the complete elliptic
integrals of the first kind in (1) can also be expanded by-series
[3], [4]. Taking the first term, we now have

(9)

From (2) and (9), and after some manipulations, we get theother
asymptote of as

(10)

Substituting (9) and (10) into (1), we can get thefar asymptote
of the distributed capacitance

(11)
Like the parallel plate interpretation of (7), the near asymptote,
there is an interpretation of (11), the far asymptote. That is, the
infinite series of images of the strip (from the top and the bottom
ground plates) is equivalent to just two equivalent images (each
of half the negative charge and at the same distance, above
or below the strip).

From (11) and (3), we get the inversefar asymptote of

(12)

Synthetic asymptote is frequently constructed by summing
the regular asymptotes at the two parameter’s limits. This re-
quires an “asymptote consistency condition.” The condition is
that thefar asymptote will approach zero or a small number at
the near parameter limit and vice versa for thenearasymptote.

Under this condition, the inversefar asymptote (12) reduces
to at the near limit of . Still, this is too

large for the inversenear asymptote (8) of zero at .
The inversefar asymptote would have to drop to zero. Without
disturbing its value at the far limit, we may modify the inverse
far asymptote (12) to

(13)
which is the inversefar asymptote of characteristic impedance

.

C. Derivation of the Inverse Synthetic Asymptote

As mentioned earlier, the inverse synthetic asymptote can be
simply the sum of the inversenearandfar asymptotes (8) and
(13). We get the inverse synthetic asymptote

(14)
With , the inverse synthetic asymptote converges
smoothly at the two limit of , but still has a maximum error
of 10% at the intermediate values of. A match withone data
point with numerical computation at an arbitrary , enables
us to set the exponent

(15)

This match reduces the maximum error to 1.5%.

III. RESULTS

Fig. 2 shows and compares the results calculated by (14) and
Cohn’s exact formula (1) from [2] for , 12.9, and 24.0.
The average error is less than 1%. As expected, the maximum
error is 1.5% at the middle range of characteristic impedance.
The curves cover thepractical range of dielectric constant and
the shape ratio W/h of stripline.

IV. CONCLUSION

Synthetic asymptote is a useful CAD tool in deriving inverse
formula for practical structure of MIC lines, even those with
exact solutions like the stripline of this paper. The synthetic
asymptote formulas are simple and provide good physical in-
sight unlike other curve fitted formulas with many arbitrary
constants. The synthetic asymptote, from the regular asymp-
totes which may be exact, is naturally accurate at the asymptote
limits. However, it may not be accurate at some midpoints in
between, where the maximum error can be up to 10% and be-
yond. If one or more arbitrary constant in the middle is used to
found the power in the form of the “root of sum of powers” as
in (14), the error may be reduced to about 2%. Also, we can use
the synthetic asymptote to derive the inverse formula of exact
solution for other practical structures, such as coplanar wave-
guide with infinite substrate (CPW). It is easy to see that similar
inverse formula can also be derived for approximate solutions.
An example of ours is that for the microstrip line [5].
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Fig. 2. Comparison of theW=h versus the characteristic impedanceZ of
stripline calculated by inverse synthetic asymptote formula (15) and S. B.
Cohn’s formula [2] with" = 2:55, 12.9, and 24.

Formulas of more complicated cases of crosstalk (coupling)
between strip lines and between microstrip lines were given
by Rainal [6]. They were derived through simplification of
grounded substrate effects to just one image per source, with

obvious error. We believe that such drastic simplifications
are not necessary with synthetic asymptote. As a start, we
have just derived the analysis formula for the coupling of two
microstrip lines. Unlike the one isolated line case of this paper,
for coupling lines we have to apply the synthetic asymptote
technique twice, once for the substrate thickness and once for
the separation between the lines. The details and the inverse
formula will be submitted as a separate paper.
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