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An Efficient Full-Wave Method for Analysis of
Dielectric Resonators Possessing Separable
Geometries Immersed in Inhomogeneous
Environments

Shu-Li Lin and George W. HanspB&enior Member, IEEE

Abstract—in this paper, dielectric resonators possessing sepa- When DR’s are utilized in microwave or millimeter-wave ap-
rable-coordinate geometries immersed in planarly-inhomogeneous plications, itis important to determine their resonant frequencies
media are analyzed using a volume electric-field integral-equation and quality factors@-factors). In the previous literature, there

(IE)/Galerkin’s technique. A three-dimensional complete entire- th tical and . tal i fioati f tf
domain basis function set is utilized in numerically solving the IE. are theoretical and experimental investgations of resonant fre-

It is shown that a few terms of one physically significant subset gquencies and)-factors of isolated DR’s [2]-[6]. Theoretically
of basis functions are usually sufficient for the accurate determi- exact methods exist to obtain characteristics of spherical DR’s
nation of complex resonant frequencies of cylindrical and rectan- jn homogeneous environments [7]. Cylindrical DR’s may be
gular resonators immersed in homogeneous and planarly inhomo- gna1y7ed by efficient body of revolution integral-equation (IE)
geneous environments. The results using a few basis functions show .
good agreement with the previous literature, and new results are methods, but there have been few rigorous meth_O(_js presented
presented for some rectangu|ar resonator geometries_ fOI’ the Study Of rectangular resonators Other than f|n|te elements
or finite-difference techniques [8], [9], although several papers
have presented measurement results [10].

In this paper, a volume electric-field integral equation (EFIE)
formulation in conjunction with an entire-domain Galerkin's
. INTRODUCTION method-of-moments (MoM) solution is proposed to study the

IELECTRIC resonators (DR’s) are important elements dgsonant frequencies angifactors of bo'gh cyIinQricaI and reqt—

D microwave integrated circuits (MIC's), and are also use@dhgular DR’s and coupled resonators in multilayered media. A
as millimeter-wave resonators and DR antennas. DR’s are usdflige-dimensional (3-D) complete entire-domain basis function
due to their small size, mechanical simplicity, relatively largget is utilized in numerically solving the integral equation (IE).
bandwidth, and their absence of conduction loss [1]. They afbe basis set contains as subsets the perfect magnetic conductor
also easily coupled to a wide variety of transmission lines atgMC) and perfect electric conductor (PEC) cavity modes, and
waveguides. There are two major differences in the use of DFPEIer terms that are also observed to have physical meaning. It
for resonator and antenna applications: their background strifgShown that a few terms of the PMC modes are usually suf-
tures and typical permittivity values. For resonator applicatiorféient for the accurate determination of complex resonant fre-
often a shielded structure is utilized, but for antenna applicatiofidencies for a very wide range of permittivity values due to the
the resonator must be placed in an open environment. In adgcorporation of these modes into the theoretically exact EFIE.
tion, for antenna applications the permittivity is often fairly low! he use of PMC models has been considered previously for
to provide sufficient impedance bandwidth, while for resonatétR’'S immersed in homogeneous environments [11], and it is
applications the permittivity is high so that the physical size dfell known that such approximate techniques yield fairly inac-
the resonator is small. In the following, the term “resonator” jgurate results. The method presented here yields accurate results
used to denote both resonator and antenna applications. for resonators immersed in either homogeneous or inhomoge-

The analysis method proposed in this paper is applicable8OUS bac.kground environment.s principallly due tq the _effect
any resonator possessing a separable coordinate geometryPh@focessinghe modes as basis and testing functions in the
the most common shapes are a sphere, finite cylinder, or re®@ct IE, which is shown to result in a stationary implicit equa-
angular parallelepiped. Among those three, the cylindrical rdian for the complex resonance frequencies. Results using a few
onator is probably the most popular, although the rectanguRﬁSiS functions show good agreement with the previous liter-

one is sometimes considered easier to fabricate, and it car@¢®, and new results are presented for some rectangular res-
constructed to avoid mode degeneracies. onator geometries. Since typically only a few PMC basis func-
tions are needed in the expansion of the unknown resonant field,

_ _ the method is found to be very computationally efficient. This
Manuscript received November 23, 1998. . is especially true for nonbody-of-revolution geometries, i.e., the
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Science, University of Wisconsin at Milwaukee, Milwaukee, W1 53211 UsA. Parallelepiped, where, for instance, a surface formulation wou

Publisher Item Identifier S 0018-9480(00)00220-9. lead to a greater number of unknowns. The drawback of this

Index Terms—DPielectric antennas, dielectric resonators, integral
equations, nonhomogeneous media.

0018-9480/00$10.00 © 2000 IEEE



LIN AND HANSON: EFFICIENT FULL-WAVE METHOD FOR ANALYSIS OF DR’S 85

While (3) is valid for any7, the restriction” € V' = Zf;l Vi
leads to the standard formulation for determining the volume po-

&s larization current (2). Subsequent to determinﬁ’fd, the scat-
tering field in any region is easily determined.
When studying natural resonance problems, the incident field
£, vanishes, leading to the homogeneous EFIE
—» —»/ Edi _53] o = 1
== FEF#FHYdV'=0. (4
r)Z/ ) By @
€5 En>V) Assuming theNdielectric objects are homogeneous, the EFIE
can be rewritten as
E(7) — Z [eai = 53] Ge(7, 7Y - B(7")dV' = 0. (5)
v,
0 The unknown electric field can be expanded as
£, E(f) = Z a(m,n,p)K(n% n,p)(ﬂ (6)

(m,n,p)

wheref?(m n, p)(7) is an appropriate set of expansion functions,
which will be detailed in Section Ill. By testing with the same

set of functions, which is Galerkin’s procedure, we arrive at a
block matrix system

Zu(f)| [Ax] = 0. (7)
[ Zu1)]

method is that it is only applicable to separable-coordinate g&e use the Galerkin’s method here since this leads to enhanced

ometries, and only for frequencies near the resonance frequepRvergence of the spectral integrals associated with the

cies of the object. However, virtually all DR’s fit into the aboveGreen’s function, compared to, say, point matching. In (7), the

category and, thus, this method is found to be useful in the ni&- element of the impedance matrix represents the reaction

jority of practical cases. [12] between thdth (m, n, p) mode testing function on the
kth (m, n, p) mode expansion function. After forming the
matrix system, we search for nonstandard eigenvafuesthe

[l. FORMULATION complex frequency plane from

€

Fig. 1. Geometry of N dielectric objects immersed in a five-layer
inhomogeneous medium.

ConsiderN dielectric objects immersed in a planarly inho- det [Z(f)} -0 ©)

mogeneous environment, as depicted in Fig. 1. The total electric

field at points in any region can be representedias £ + £  with complex frequencyf = fieal + j fimag- The Q-factor is

whereF! is an incident field and:* is the field scattered by the defined asfrea1/2fimag. ASSuming that the complex resonant

objects. By the equivalent source theorem, the scattereddield frequency is a simple root of the determinant function (8), the

is maintained by the equivalentinduced polarization currents ivector of unknown coefficients can be determined to within

side of theN dielectric objects, leading te{** assumed and an arbitrary constant by fixing one coefficient #(f)A = 0

suppressed) and solving the resulting set of equations for the remaining un-
eq known.

E(F) = E'(7) + Z / (7, 7" £ v’ (1) Although we do not have the space to discuss many

Jjwes details of the computation here, the Green’s functions are

whereG* is an electric dyadic Green’s function accounting fofhoroughly discussed in [13] for polar coordinates and in
the inhomogeneous environment and relating currents locatéd] for rectangular coordinates. The resulting rectangular
by 7 in region 3 to fields located by in any region, and3j‘1 coordinate Sommerfeld integrals are computed in the polar
is equivalent polarization current induced inside of tfik di- form fﬂ/Q do f;° F(6, \)AdA, which results inF'(6, \) being
electric object, which can be represented as fairly smooth as a function ok for all values off, and good
Se . = R . convergence properties of the semiinfinite integral for all values
Pt = ‘w[gdim_E?’}E(F)’ reVi i=1L N o6 except at the end pointd (& 0, 7/2). Furthermore, the
(2) semiinfinite integral is computed over a path that avoids the
Therefore, (1) may be written as singularities of the integral (see, e.g., [15], [16]). The integrals
are computed using a Romberg procedure modified from [17],
E(F) — Z / ‘Zfe(ﬁ 7'y - M E(F’)dv’ = Ei(F), where the tail of the semiinfinite integral is computed using
i=1 7V €3 an adaptive routine, which truncates the integration when
(3) convergence is satisfied.
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I1l. BASIS FUNCTION SET

To understand the basis set utilized here, first cor
sider the one-dimensional (1-D) problem of a transmis
sion-line resonator extending ovef—(a/2), a/2] with
short- or open-circuit boundary conditions. Since the
set 7 = {1, cos((2mm/a)x), sin((2mn /a)x)} with
m = 0,1,2, ---, is complete onL?[—(a/2), a/2], any
physically realistic voltage/(x) € L*[—(a/2), a/2] can be
exactly represented (in the?-norm sense) as a sum of terms in d
S57. 1-D physical resonances for the short-circuited resonat
take on the form of integer multiples of half-wave sinusoida
variation, corresponding tev = 1/2, 3/2,5/2, ---, for the 7_
term cos((2mn/a)z), andm = 1,2, 3, ..., for the term
sin((2mw /a)x), with the important fundamental resonance
given by cos((2mw/a)z), m = 1/2. For an open-circuit b
resonator, the resonances are givermby= 1, 2, 3, ---, for
the cos((2mn /a)x) term andm = 1/2, 3/2, 5/2, - - -, for the .
sin ((2mm /a)z) term. Therefore the complete s&f contains b
resonance-like behavior in the sine (cosine) terms, but not ti_
cosine (sine) terms for the short (open)-circuited case, althou’%’: ,

. . . . 2. Geometry of a rectangular cavity.
the missing resonances in either case can be synthesized by tfie
complete sef7 through a sum of terms as in a Fourier series.

To more efficiently represent the missing voltage reder ;/e3 < 1, the resonant modes will behave approximately
onances inS¥, consider the setS%; = {cos((2mw/a) as short-circuited resonances. For arbitragyss, both types
x),sin((2mn/a)x)} with m = 1/2,3/2,5/2, ---. The terms of resonance terms may occur and, thus, it is useful to expand
cos((2mr fa)x) in S%; will represent physical resonances fothe unknown in terms of the sét.
the short-circuited case, whereas tkie((2mn/a)xz) terms  Consider now a 3-D rectangular volume, as depicted in
represent physical resonances for the open-circuited case. Fige 2, over which the EFIE (5) will be enforced. Even though
setS” = S7 U 5%, the terms of which represent all possibléhe electric field extends over all space, and for natural-mode
physical resonances for both types of boundary conditions filds (which are associated with complex resonant frequencies
an over-complete set containing the complete&etand the in the upper half temporal Fourier-transform plane) become
additional terms inS%, ;. The utility of using the sef” is that unbounded (in the frequency domain)ras- oo, the integral
one can accurately model any (ideal) resonance phenomeparator acts on a bounded domain within which the field
with one term of the set for either boundary condition, rathés bounded and continuous. We will consider the domain of
than possibly needing to synthesize the proper behavior witlthe integral operator in (5) to be the spat&V); the space
sum of terms ofS7. Therefore, when interested in resonancef square-integrable vector functiods: Vv — C3. Since
phenomena, we can expand arty) € L?*[—(a/2), a/2] func- the operator in (5) is indefinite, convergence of a numerical
tion in the over-complete sé&t*, where generally only one termsolution for the unknown electric field cannot perhaps be
would be needed to model any possible resonance assunpngven in a rigorous sense [18]. It may though be desirable to
that the proper expansion coefficient can be found. Thes%et expand the unknown electric field in a complete sefffV);
is not linearly independent (orthogonal) pa(a/2), /2], yet it is at least necessary for the expansion set to span some
subsets57 andS%,; are orthogonal among themselves. subset of the domain containing the unknown quantity. Since

An alternative view of the proceeding is to consider the irthis cannot be determineapriori, it is useful to consider the
terval [—a, a], on which the setS* is now complete and or- entire spacd?(V). If V = {z, v, 2|z € [-(a/2), a/2],y €
thogonal, and to consider the voltage to have compact suppertt/2), b/2], = € [0, d]}, then the sef; = {S7, SY, 57} =
on[—(a/2), a/2] (i.e., the physical resonator extends over thdtl, cos((2mw=/a)x), sin((2mmx /a)x), cos((2nw /b)y),
range). In this latter conceptualization, the proper expansion etz ((2nw /b)), cos((2pw/d)z), sin((2pw/d)z)}, m, n,p =
efficients are easily seen to be the Fourier coefficients. Eithr1, 2, - - - is complete inL?(V') and forms an appropriate basis
viewpoint is applicable to the method presented here. set for (5). As in the 1-D example, we consider the over-com-

In the previous transmission-line resonator example opéete setS consisting of terms with the same functional depen-
is usually interested in the short-circuited (electrical wall) atence as those ifi;, but withm, n, p =0, 1/2, 1, 3/2, 2, - - -
open-circuited (magnetic wall) case, but not both conditions sis the expansion for the unknown field, presented as (Al)
multaneously. For DR problems, field continuity rather than thfer the geometry depicted in Fig. 2. The individual sine and
vanishing of tangential electric field (electric wall) or tangentiatosine terms in (Al) are written in shifted form, but are
magnetic field (magnetic wall) is enforced. For a 1-D DR, ifnathematically identical to terms o described above. The
the permittivity ratioey/e3 >> 1 occurs, the resonance modeshifted representation is used here to facilitate identification of
will behave approximately as open-circuited resonances, whit®IC and PEC terms in the complete expansion. Note that the

ES
¥



LIN AND HANSON: EFFICIENT FULL-WAVE METHOD FOR ANALYSIS OF DR’S 87

product form (A1) can represent any of the singlet, doublet, or TABLE |

; ici ; ; ; ; CONVERGENCE TEST OF A CYLINDRICAL
triplet term_s arising frqm the possible combination of term; g FREESPACE, = — 38c, (MM). R = 5.25(mm),AND D = 4.6 (mm)
S. Alternatively, as with the 1-D example, one can consider

a larger domain over whicly is complete and assume the N (n,m, p) foou (GHzZ) Soneg (GHZ)

unknown resonator fields in (5) have compact suppoktin 1 ©, 1,0 4.8891 0.06386
Although the question of convergence of the MoM solution = ©.1,2) 48677 0.06164

cannot be properly addressed, the MoM formulation for nonho-— 0.2,0) 13637 0.06012

mogeneous problems (e.g., scattering) involving complex-sym

) L X ©,2,2) 4.8634 0.06007
metric operators has been shown to be variational in nature fc
secondary calculations [19]. It is also observed from [20] thal > ©.3,0 48627 0.05984
since the integral operator is complex symmetric, (8) is a sta © 0,3,2) 4.8627 0.05983
tionary expression for the complex resonant frequencies suc 7 (0, 4,0) 4.8625 0.05977
that second-order accuracy in the calculation of the resonar 38 0,4,2) 4.8625 0.05977
frequency is obtained by an approximate expansion of the un™s ©,5,0) 48624 0.05574
known field exhibiting first-order error. The stationary nature Tg ©,5,2) 38604 0.05974

of (8) was observed numerically, which is exemplified by the
following example. Consider the PMC cavity solutieif, H*,

which can be obtained by standard methods for a closed cavity, ., ANCEFREQUENCY AND EFBALCETO'F: USING PMC MODES IN THE IE
Substituting into Maxwell’s equations leads to the resonanceormuLATION COMPARED TOOTHER RESULTS FOR ACYLINDRICAL DR IN
condition(mw/a)Q + (mr/b)Q + (pﬁ/d)Q _ (27rfr)2 pogq =0 FREE SPACE WITHe4 = 3829, R = 5.25 (mm),AND D = 4.6 (mm)
for the real resonant frequengy. This value is 3.932 (GHz) for

Frequency(GHz -factor
the TE7,, mode withe, = 378450, 0 = b=877(mm), and e o :szgﬂ ) Q45.8
d = 3.51 (mm),—30.4% in error compared to the value 5.6493 Nll-Field Msthod 5] 15507 %1
(GHz) obtained by solution to the IE here using the full 3-D ex- i
pansion (Al), ane30.82% in error compared to the value listed FDTD Method [3] 4862 M
in [10]. Now consider “processing” the approximate PMC so- FPTD Method (4] 4848 4
lution E* through the IE, the solution of which also satisfies Measurement [6] 485 46.6
Maxwell's equations. The result is a determinal equation (8), 'his Method 4.862 4063

which by a numerical root search yielgs = 5.685 (GHz),
0.63% in error compared with the solution of the IE using (Al
and 0.018% in error compared to the resultin [10]. Thus, for t encies, although this case is not considered.

geometry considered here, (8) exhibits an error-reducing natu ®The ba'sis set is slightly modified if the rectangular DR is sit-
Itis this feature that makes the |IE formulation presented hereﬁ ig on a ground plane. For this geometry, we have one PEC
ficient since usually just the.PMC ‘e”T‘S. are necessary for go Il and five PMC walls. Therefore, we may'start at one-quarter
accuracy, even whgn the ratio of perm'twmﬁg@’ IS notlarge. and increase with half-integers in the indexes because the lowest
. To further examine the terms n the expansion set (Al)Z ode in this direction will be like a quarter-wave and the fol-

Is seen that _each unknown electng-f_leld component has ei ing higher order modes in this direction will increase in mul-
terms. If we inspect (A1) carefully, it is easy to find that therﬁ le half-wavenumbers, i.ep, = 1/4, 3/4, 5/4, ---

is one term corresponding to a PMC mode (the sixth term in B R

(Al) for K* and the seventh term in (Al) fd{¥), one term
corresponding to a PEC mode [the third term in f6f and
the second term in (A1) fokx¥(A1)], and six other terms in A. DR’s in Free Space

each eight-term summation corresponding to each electric-fieldconvergence tests are performed to validate the presented
component. The six other terms may be interpreted as moggnulation. Since many results for cylindrical resonators im-
that have mixed PMC and PEC conditions, with the constraiffersed in free space are available in the literature, we study
that opposite walls have identical boundary conditions, as dfie TE,;; mode of a cylindrical DR by applying PMC basis
tailed in the Appendix (see Table Al). This fact should not b@nctions (A3). The result of a convergence test for the com-
surprising when one notes that in a 1-D Fourier series proggiex frequency as a function of the numb@¥)(of basis func-
functional behavior is synthesized by a sum of open-circuitgidns and mode types are shown in Table I. For a DR with
(PMC) and short-circuited (PEC) terms. Thus, the PMC modes, = 38¢,, R = 5.25 (mm), D = 4.6 ( mm), whereR =
while motivated by the physics of the problem, actually are pa#dius and> = height, we can see the solution has approxi-
(one term in eight for each triplet, n, p) of a proper math- mately converged a¥v = 5. If we look at the null space of (7),
ematical representation for the problem of 3-D resonance wiie (0, 1, 0) mode is dominant. The azimuthal indexese zero
possible variation in all three orthogonal directions. Thereforgnd the radial indexes can be any integers, and only even in-
the role of the PMC terms for the solution of (5) is well motitegers of the:-direction indexes have contributions. The com-
vated both physically and mathematically. A similar discussigslex resonant frequency is compared to the results from other
can be made for the cylindrical geometry, but will be omitteghethods, and is shown in Table II. The real part shows good
here. Conversely, for;/e; < 1, only the PEC terms would be agreement with the other methods. Thdactor shows greater

%ecessary to obtain good accuracy in determining resonant fre-

IV. NUMERICAL RESULTS AND DISCUSSION
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TABLE I TABLE V
CONVERGENCETEST OF ARECTANGULAR DR IN FREE SPACE, PMC MODES COMPARISON OFCOMPLEX RESONANT FREQUENCIES OF THEHE ;;; MODE OF
gq = 37.84¢g,a = b = 8.77 (mm),AND d = 3.51 (mm) AN |SOLATED RECTANGULAR DR IN FREE SPACE, COMPUTED WITH N = 8
PMC MODESWITHa = b =3 cm,d = 1.5 cm
N (m,n, p) froa(GHE) onag (GHE) .
1 aT,1,0 5.6851 0.08212 f;zg‘;ﬁz) ﬁgﬂgiz“;z)
PMC (g, =15¢,) 3. .
2 1.1.2) 5.6654 0.07988 Pulse Basis Function {22] 3.68987 0.04616
3 (1,3,0) PMC (g, =20g,) 3.23375 0.02211
T G.1.0) 56591 0.07723 Pulse Basis Function [22] 3.23326 0.02289
5 (1,3,2)
PEC
6 (3,1,2) 5.6587 0.07716
7 (1,5,0)
8 (5,1,0) 5.6578 0.07680 g
9 1,70 2R (@)
S
€
10 (7,1,0) 5.6574 0.07671 ° —
11 (1,9,0) €y D (d)
12 (9,1,0) 5.6573 0.07668
€ §
TABLE IV

RESONANCEFREQUENCY AND (2-FACTOR USING PMC MODES IN THEIE
FORMULATION COMPARED TO OTHER RESULTS FOR ARECTANGULAR DR IN
FREE SPACE WITHe 4 = 37.84¢c0, a = b = 8.77 (mm),AND d = 3.51 (mm)

PEC

Fig. 3. Geometry of a cylindrical DR in a MIC environment.

Frequency(GHz) Q-factor
Measurement [10] X 573 termmed by examination of the null space of (7). Good agree-
e — ] e p— ment is found among the two methods, with convergence prop-
as15 TURGTIONS expansion ' : erties of this hybrid mode being similar to those of the TE mode.
Fuli 3-D expansion 5.6493 36.88
Pulse basts expansion [22] 565002 37.09 B. DR’s in MIC Environments

When a DR is placed on a microstrip substrate, as depicted
in Fig. 3, the background structure becomes inhomogeneous.
variation among methods, although the method presented hieréhis case, we use an appropriate Green'’s function to account
agrees with the null field and one of the FDTD methods. Sonfier the inhomogenity. For the shielded MIC cases, we show the
variability of the@-factor is to be expected, especially for opesomparison of our results using only PMC modes and results
structures, due to the sensitivity of the computation. Also, tlieom the literature in Table VI(a)and (b) for a cylindrical res-
measurement of th@-factor is difficult, with different measure- onator; agreement between all methods is good. Our results de-
ment techniques often leading to different value [21]. As suchiate more from the other results when the permittivity of the
the @-factor is in general agreement with other methods. Thsibstrate is high. This is due to the fact that the permittivity ratio
next convergence test concerns a rectangular DR by again ofihgide to outside) of the DR at the interface becomes lower and
applying PMC basis functions (A2). The results for fhE7,; further from a PMC boundary.
mode of a rectangular DR with; = 37.84¢, and dimensions In Table Vll(a)and (b), we present results for a rectangular
a =b =877 (mm), d = 3.51 (mm) are shown in Table Ill. DR in a shielded MIC environment, comparing the results using
The solution has approximately convergedvat 8. The (1, 1, a PMC basis to those using the full solution (A1). Agreementis
0) mode is dominant as observed by the null space of (7). Ordgen to be good between the two solutions, implying that the ef-
the modes with odd indexes in the andy-direction and even ficient PMC expansion is adequate. It is interesting to note that
indices in thez-direction contribute to the solution. In Table IV,when the top and bottom conducting plates are close to the res-
we show measurement results and the results of using the fulator, as in cases 1 and 2 in Table VII, in the full 3-D solution
3-D expansion set (A1) and using a MoM solution based on(A1l) the terms corresponding to the top and bottom of the res-
subdomain pulse basis expansion [22]. In the full 3-D expaaonator obeying PEC conditions and the four sides obeying PMC
sion, we use 136 terms in the, and 136 terms in thé&, ex- conditions are dominant in the null space (the second term in
pansion, although only 34 terms appear to contribute in the n(d1) for K* and the 3rd term in (A1) fo#k(¥). When the res-
space; ten PMC modes (20 terms), two PEC terms, and 12 otheator is sufficiently separated from the top and bottom plates,
terms. Good agreement is seen between the full 3-D expansiba terms in (A1) corresponding to PMC conditions on all sides
and the eight modes (16 terms) PMC solution. are dominant, as expected. Since (8) is stationary, the computed

In Table V, we consider a hybrid mod&¥; ;) of a rectan- resonance frequency is accurate using justthe PMC modes, even
gular DR in free space with = b = 3cm,d = 1.5 cm, fortwo for cases 1 and 2.
different permittivity values, where the resonant frequencies areAnother MIC geometry is an open (unshielded) structure.
compared with results from [22]. The designatidR,;; is de- Fig. 4 shows the results using this method and the results from
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TABLE VI
(a) COMPARISON OF THERESONANT FREQUENCY (IN GIGAHERTZ) FOR THETEq:1s MODE OF ACYLINDRIVAL DR IN A SHIELDED MIC ENVIRONMENT. (b)
COMPARISON OF THEDIELECTRIC QUALITY FACTOR FOR THETEq;s MODE OF ACYLINDRICAL DR IN A SHIELDED MIC ENVIRONMENT

Case € € R(mm) | D(mm) { s(mm) g(mm) Mode FD-SIC [25] This
4 g Matching Method
1 34.19 9.6 7.49 7.48 0.7 0.72 4.348 23] 4.351 4.3645
2 3421 9.6 6.995 6.95 0.7 125 4.523 [23]) 4.524 4.5422
3 34.02 9.6 5.995 5.98 0.7 2.215 5.050 [23] 5.052 5.0869
4 36.13 9.6 3.015 421 0.7 10.10 8.220 [23] 8.223 8.2670
5 36.2 1.0 2.03 5.15 2.93 2.93 10.50 [24) 10.50 10.521
6 36.2 1.0 4.00 2.14 4.43 443 7.76 [24)] 7.751 7.760
(@)
Case tand ,, x10* FD-SIC [25] This Method
1 3.02 3333 3337
2 3.19 3159 3163
3 3.47 2915 2918
4 4.22 2454 2437
(b)
TABLE VII

(a) COMPARISON OF THERESONANT FREQUENCY (IN GIGAHERTZ) FOR THETE?, , MODE OF ARECTANGULAR DR IN A SHIELDED MIC ENVIRONMENT. (b)
COMPARISON OF THEDIELECTRIC () FACTOR FOR THETE$, , MODE OF ARECTANGULAR DR IN A SHIELDED MIC ENVIRONMENT

Case g, £, a=b (mm) | d (mm) s(mm) | g(mm) PMC Full 3-D Dif?:/re;nce
1 34.19 9.6 14.98 7.48 0.7 0.72 42244 42096 0.3?5
2 3421 9.6 13.99 6.95 0.7 1.25 43868 4.3746 028
3 34.02 9.6 11.99 5.98 0.7 2.215 4.8936 4.8834 0.21
4 36.13 9.6 6.03 421 0.7 10.10 7.8455 7.8330 0.16
5 36.2 1.0 4.06 5.15 2.93 293 9.8580 9.8426 0.16
6 36.2 1.0 8.00 2.14 4.43 4.43 7.4023 7.3978 0.06

(@)
Case tan ,p x 10° PMC Full 3-D Difference (%)
1 3.02 3341 3340 0.03
2 3.19 3167 3166 0.03
3 347 2923 2921 0.07
4 4.22 2453 2448 0.21
(b)

the effective dielectric constant (EDC) method and experimesen mode deviates from the null-field solution when the two
[26]. Also in Fig. 4, the results for a rectangular DR with theesonators are extremely close. The reason is that the closest end
same permittivity, volume, and height as the cylindrical DR affaces between the two disks for the even mode should become

shown. like a perfect electric wall rather than a perfect magnetic wall.
Therefore, the pure PMC basis function may not be adequate
C. Open Coupled DR’s for this special situation. It is noted that computing resonant fre-

The complex resonant frequencies of coupled resonators gpgncies of a single DR above a ground plate can generate the

now considered. In general, the coupled-resonator structure prgzss_ults for the even modes of coupled DR's using the same basis

sessing symmetry as shown in Fig. 5 can be divided into evféWCt'onS to expand the electric field in one DR region.
modes and odd modes [27]. The even mode with a electric wall
in the center plane of two DR’s has a higher real resonant fre-
quency and a large&p-factor. The odd mode with magnetic wall The EFIE in conjunction with an entire-domain Galerkin’s
in the center plane of the two DR’s has a lower real resonant fitdoM is an efficient method for the analysis of separable-co-
quency and a smallgp-factor. The resonant frequencies andrdinate geometry DR’s immersed in inhomogeneous media. It
Q-factors versus the separatignof two DR’s are shown in is shown that the PMC-mode basis functions are usually suffi-
Fig. 6. In the same plot, the comparison to the results using ttient for practical DR’s, and lead to solutions exhibiting strong
null-field method [28] are also given. For the first time, the reaumerical convergence. The method is particularly useful for
sults of coupled rectangular resonators are also plotted in Figréctangular resonators or, generally, nonbody-of-revolution ge-
The comparison shows that the real resonant frequency of tmetries. The numerical results show good agreement with the

V. CONCLUSION
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wherea = z, y, 2.
literature for resonators immersed either in free space or in plaPMC cavity terms:
narly layered environments.

K(m,n,p) (r) = ‘%Kg}m, n,p) (m +Z}Kélnlynzp) (m

APPENDIX STE
+ZK(rn,n,p)(F)' (A2)

3-D basis functions for a rectangular cavigyx b x d]] are
shown below.
The full set of product terms are as follows:

TE;np modes

—jwpo(nm/b)
e ( 7+ (m)?
K(rnnp)(r)
PK KY (7) + 2K (7) ) b pr
=z (mnp)(r)‘f‘y (m,n, p)\ B (1, n, p) Sln— 2 COST y+§ cos Fz
K
(m,n,p)(r) ) ’ _ lwﬂo(m'ﬁ/a)
:azllnp sin % (x—i— g) sin n% <y—|— 5) sin %z (o) ( ) (”W)Q
+a%? s m( —1—3)(305E —|—9 sin 27 COS— + )si nr —|—E cos 21
Gpnp S — = (@ + 3 , vt g D=z x2nby2 R



LIN AND HANSON: EFFICIENT FULL-WAVE METHOD FOR ANALYSIS OF DR’S 91
. . . . . . . : : TABLE Al
381 1 BOUNDARY CONDITIONS ENFORCED BY TERMS OF (A1) AT VARIOUS
SIDES OF RECTANGULAR RESONATOR FORCURRENT COMPONENT
26 B I&(l‘m,,n,p) (A(ym,n,p))
N Term Number Top/Bottom BC x-Sides BC y-Sides BC
34 Even Mode
_ i PEC (PEC) PMC (PEC) PEC (PMC)
N
5 r- T—e.. T T -
%3‘2 """" 2 PEC (PEC) PMC (PEC) PMC (PEC)
2 R - =S
sl -7 3 PEC (PEC) PEC (PMC) PEC (PMC)
P 4 PEC (PEC) PEC (PMC) PMC (PEC)
28 QOdd Mode
5 PMC (PMC) PMC (PEC) PEC (PMC)
26¢ 1 6 PMC (PMC) PMC (PEC) PMC (PEC)
o4 , . . . ; . , . } 7 PMC (PMC) PEC (PMC) PEC (°PMC)
0 0.2 0.4 0.6 08 1 1.2 1.4 1.8 1.8 2
glem) 8 PMC (PMC) PEC (PMC) PMC (PEC)
(@)
10* ; : . : . . : ;
K7 _ mw a nw b
Gy = = 08 7 (2 5 ) eos T (v
N
-sin —- 2.
d
3 . . . . .
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Fig. 6. Resonant frequencies aftHactors for theTEq., mode of open WhereJ,,(z) is the Bessel function of the first kind amel,., is
coupled cylindrical DR's and th&Ef, ; mode of open coupled rectangularthe mth root of J,,(x) = 0; i.e., J,.(ppm) = 0.

DR’s Cylindrical DR's:R1 = R2 = 0.8636 (cm),D1 = D2 = 0.762 (cm), TM, modes

€4 = 35.74¢,. Rectangular DR'sul = a2 = bl = b2 = 2.165 (cm), mp

dl = d2 = 0.762 (cm),e4 = 35.74¢,. Solid lines: cylindrical DR’s. Dashed

lines: rectangular DR’s. o: results from [28] for cylindrical DR’s. 7w /D i
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wherep/, ., is themth root of J/ (z) = 0; i.e., J/ (},,,) = 0.

2 _ _(mn/a)(pr/d) Ko, m,p) =
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