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Abstract—In this paper, dielectric resonators possessing sepa-
rable-coordinate geometries immersed in planarly-inhomogeneous
media are analyzed using a volume electric-field integral-equation
(IE)/Galerkin’s technique. A three-dimensional complete entire-
domain basis function set is utilized in numerically solving the IE.
It is shown that a few terms of one physically significant subset
of basis functions are usually sufficient for the accurate determi-
nation of complex resonant frequencies of cylindrical and rectan-
gular resonators immersed in homogeneous and planarly inhomo-
geneous environments. The results using a few basis functions show
good agreement with the previous literature, and new results are
presented for some rectangular resonator geometries.

Index Terms—Dielectric antennas, dielectric resonators, integral
equations, nonhomogeneous media.

I. INTRODUCTION

D IELECTRIC resonators (DR’s) are important elements of
microwave integrated circuits (MIC’s), and are also used

as millimeter-wave resonators and DR antennas. DR’s are useful
due to their small size, mechanical simplicity, relatively large
bandwidth, and their absence of conduction loss [1]. They are
also easily coupled to a wide variety of transmission lines and
waveguides. There are two major differences in the use of DR’s
for resonator and antenna applications: their background struc-
tures and typical permittivity values. For resonator applications,
often a shielded structure is utilized, but for antenna applications
the resonator must be placed in an open environment. In addi-
tion, for antenna applications the permittivity is often fairly low
to provide sufficient impedance bandwidth, while for resonator
applications the permittivity is high so that the physical size of
the resonator is small. In the following, the term “resonator” is
used to denote both resonator and antenna applications.

The analysis method proposed in this paper is applicable to
any resonator possessing a separable coordinate geometry, but
the most common shapes are a sphere, finite cylinder, or rect-
angular parallelepiped. Among those three, the cylindrical res-
onator is probably the most popular, although the rectangular
one is sometimes considered easier to fabricate, and it can be
constructed to avoid mode degeneracies.
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When DR’s are utilized in microwave or millimeter-wave ap-
plications, it is important to determine their resonant frequencies
and quality factors ( -factors). In the previous literature, there
are theoretical and experimental investigations of resonant fre-
quencies and -factors of isolated DR’s [2]–[6]. Theoretically
exact methods exist to obtain characteristics of spherical DR’s
in homogeneous environments [7]. Cylindrical DR’s may be
analyzed by efficient body of revolution integral-equation (IE)
methods, but there have been few rigorous methods presented
for the study of rectangular resonators other than finite elements
or finite-difference techniques [8], [9], although several papers
have presented measurement results [10].

In this paper, a volume electric-field integral equation (EFIE)
formulation in conjunction with an entire-domain Galerkin’s
method-of-moments (MoM) solution is proposed to study the
resonant frequencies and-factors of both cylindrical and rect-
angular DR’s and coupled resonators in multilayered media. A
three-dimensional (3-D) complete entire-domain basis function
set is utilized in numerically solving the integral equation (IE).
The basis set contains as subsets the perfect magnetic conductor
(PMC) and perfect electric conductor (PEC) cavity modes, and
other terms that are also observed to have physical meaning. It
is shown that a few terms of the PMC modes are usually suf-
ficient for the accurate determination of complex resonant fre-
quencies for a very wide range of permittivity values due to the
incorporation of these modes into the theoretically exact EFIE.
The use of PMC models has been considered previously for
DR’s immersed in homogeneous environments [11], and it is
well known that such approximate techniques yield fairly inac-
curate results. The method presented here yields accurate results
for resonators immersed in either homogeneous or inhomoge-
neous background environments principally due to the effect
of processingthe modes as basis and testing functions in the
exact IE, which is shown to result in a stationary implicit equa-
tion for the complex resonance frequencies. Results using a few
basis functions show good agreement with the previous liter-
ature, and new results are presented for some rectangular res-
onator geometries. Since typically only a few PMC basis func-
tions are needed in the expansion of the unknown resonant field,
the method is found to be very computationally efficient. This
is especially true for nonbody-of-revolution geometries, i.e., the
parallelepiped, where, for instance, a surface formulation would
lead to a greater number of unknowns. The drawback of this
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Fig. 1. Geometry ofN dielectric objects immersed in a five-layer
inhomogeneous medium.

method is that it is only applicable to separable-coordinate ge-
ometries, and only for frequencies near the resonance frequen-
cies of the object. However, virtually all DR’s fit into the above
category and, thus, this method is found to be useful in the ma-
jority of practical cases.

II. FORMULATION

Consider dielectric objects immersed in a planarly inho-
mogeneous environment, as depicted in Fig. 1. The total electric
field at points in any region can be represented as
where is an incident field and is the field scattered by the
objects. By the equivalent source theorem, the scattered field
is maintained by the equivalent induced polarization currents in-
side of the dielectric objects, leading to ( assumed and
suppressed)

(1)

where is an electric dyadic Green’s function accounting for
the inhomogeneous environment and relating currents located
by in region 3 to fields located by in any region, and
is equivalent polarization current induced inside of theth di-
electric object, which can be represented as

(2)

Therefore, (1) may be written as

(3)

While (3) is valid for any , the restriction
leads to the standard formulation for determining the volume po-
larization current (2). Subsequent to determining, the scat-
tering field in any region is easily determined.

When studying natural resonance problems, the incident field
vanishes, leading to the homogeneous EFIE

(4)

Assuming the dielectric objects are homogeneous, the EFIE
can be rewritten as

(5)

The unknown electric field can be expanded as

(6)

where is an appropriate set of expansion functions,
which will be detailed in Section III. By testing with the same
set of functions, which is Galerkin’s procedure, we arrive at a
block matrix system

(7)

We use the Galerkin’s method here since this leads to enhanced
convergence of the spectral integrals associated with the
Green’s function, compared to, say, point matching. In (7), the

element of the impedance matrix represents the reaction
[12] between theth mode testing function on the

th mode expansion function. After forming the
matrix system, we search for nonstandard eigenvaluesin the
complex frequency plane from

(8)

with complex frequency . The -factor is
defined as . Assuming that the complex resonant
frequency is a simple root of the determinant function (8), the
vector of unknown coefficients can be determined to within
an arbitrary constant by fixing one coefficient in
and solving the resulting set of equations for the remaining un-
known.

Although we do not have the space to discuss many
details of the computation here, the Green’s functions are
thoroughly discussed in [13] for polar coordinates and in
[14] for rectangular coordinates. The resulting rectangular
coordinate Sommerfeld integrals are computed in the polar
form , which results in being
fairly smooth as a function of for all values of , and good
convergence properties of the semiinfinite integral for all values
of , except at the end points ( ). Furthermore, the
semiinfinite integral is computed over a path that avoids the
singularities of the integral (see, e.g., [15], [16]). The integrals
are computed using a Romberg procedure modified from [17],
where the tail of the semiinfinite integral is computed using
an adaptive routine, which truncates the integration when
convergence is satisfied.
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III. B ASIS FUNCTION SET

To understand the basis set utilized here, first con-
sider the one-dimensional (1-D) problem of a transmis-
sion-line resonator extending over with
short- or open-circuit boundary conditions. Since the
set with

is complete on , any
physically realistic voltage can be
exactly represented (in the -norm sense) as a sum of terms in

. 1-D physical resonances for the short-circuited resonator
take on the form of integer multiples of half-wave sinusoidal
variation, corresponding to for the
term , and for the term

, with the important fundamental resonance
given by , . For an open-circuit
resonator, the resonances are given by for
the term and for the

term. Therefore the complete set contains
resonance-like behavior in the sine (cosine) terms, but not the
cosine (sine) terms for the short (open)-circuited case, although
the missing resonances in either case can be synthesized by the
complete set through a sum of terms as in a Fourier series.

To more efficiently represent the missing voltage res-
onances in , consider the set

with . The terms
in will represent physical resonances for

the short-circuited case, whereas the terms
represent physical resonances for the open-circuited case. The
set , the terms of which represent all possible
physical resonances for both types of boundary conditions, is
an over-complete set containing the complete setand the
additional terms in . The utility of using the set is that
one can accurately model any (ideal) resonance phenomena
with one term of the set for either boundary condition, rather
than possibly needing to synthesize the proper behavior with a
sum of terms of . Therefore, when interested in resonance
phenomena, we can expand any func-
tion in the over-complete set , where generally only one term
would be needed to model any possible resonance assuming
that the proper expansion coefficient can be found. The set
is not linearly independent (orthogonal) on , yet
subsets and are orthogonal among themselves.

An alternative view of the proceeding is to consider the in-
terval , on which the set is now complete and or-
thogonal, and to consider the voltage to have compact support
on (i.e., the physical resonator extends over that
range). In this latter conceptualization, the proper expansion co-
efficients are easily seen to be the Fourier coefficients. Either
viewpoint is applicable to the method presented here.

In the previous transmission-line resonator example one
is usually interested in the short-circuited (electrical wall) or
open-circuited (magnetic wall) case, but not both conditions si-
multaneously. For DR problems, field continuity rather than the
vanishing of tangential electric field (electric wall) or tangential
magnetic field (magnetic wall) is enforced. For a 1-D DR, if
the permittivity ratio occurs, the resonance modes
will behave approximately as open-circuited resonances, while

Fig. 2. Geometry of a rectangular cavity.

for , the resonant modes will behave approximately
as short-circuited resonances. For arbitrary , both types
of resonance terms may occur and, thus, it is useful to expand
the unknown in terms of the set .

Consider now a 3-D rectangular volume, as depicted in
Fig. 2, over which the EFIE (5) will be enforced. Even though
the electric field extends over all space, and for natural-mode
fields (which are associated with complex resonant frequencies
in the upper half temporal Fourier-transform plane) become
unbounded (in the frequency domain) as , the integral
operator acts on a bounded domain within which the field
is bounded and continuous. We will consider the domain of
the integral operator in (5) to be the space ; the space
of square-integrable vector functions . Since
the operator in (5) is indefinite, convergence of a numerical
solution for the unknown electric field cannot perhaps be
proven in a rigorous sense [18]. It may though be desirable to
expand the unknown electric field in a complete set in ;
it is at least necessary for the expansion set to span some
subset of the domain containing the unknown quantity. Since
this cannot be determineda priori, it is useful to consider the
entire space . If

, then the set
, , ,

, ,
is complete in and forms an appropriate basis

set for (5). As in the 1-D example, we consider the over-com-
plete set consisting of terms with the same functional depen-
dence as those in , but with
as the expansion for the unknown field, presented as (A1)
for the geometry depicted in Fig. 2. The individual sine and
cosine terms in (A1) are written in shifted form, but are
mathematically identical to terms of described above. The
shifted representation is used here to facilitate identification of
PMC and PEC terms in the complete expansion. Note that the
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product form (A1) can represent any of the singlet, doublet, or
triplet terms arising from the possible combination of terms in

. Alternatively, as with the 1-D example, one can consider
a larger domain over which is complete and assume the
unknown resonator fields in (5) have compact support in.

Although the question of convergence of the MoM solution
cannot be properly addressed, the MoM formulation for nonho-
mogeneous problems (e.g., scattering) involving complex-sym-
metric operators has been shown to be variational in nature for
secondary calculations [19]. It is also observed from [20] that
since the integral operator is complex symmetric, (8) is a sta-
tionary expression for the complex resonant frequencies such
that second-order accuracy in the calculation of the resonant
frequency is obtained by an approximate expansion of the un-
known field exhibiting first-order error. The stationary nature
of (8) was observed numerically, which is exemplified by the
following example. Consider the PMC cavity solution ,
which can be obtained by standard methods for a closed cavity.
Substituting into Maxwell’s equations leads to the resonance
condition
for the real resonant frequency. This value is 3.932 (GHz) for
the mode with , (mm), and

(mm),−30.4% in error compared to the value 5.6493
(GHz) obtained by solution to the IE here using the full 3-D ex-
pansion (A1), and−30.82% in error compared to the value listed
in [10]. Now consider “processing” the approximate PMC so-
lution through the IE, the solution of which also satisfies
Maxwell’s equations. The result is a determinal equation (8),
which by a numerical root search yields (GHz),
0.63% in error compared with the solution of the IE using (A1),
and 0.018% in error compared to the result in [10]. Thus, for the
geometry considered here, (8) exhibits an error-reducing nature.
It is this feature that makes the IE formulation presented here ef-
ficient since usually just the PMC terms are necessary for good
accuracy, even when the ratio of permittivities is not large.

To further examine the terms in the expansion set (A1), it
is seen that each unknown electric-field component has eight
terms. If we inspect (A1) carefully, it is easy to find that there
is one term corresponding to a PMC mode (the sixth term in
(A1) for and the seventh term in (A1) for ), one term
corresponding to a PEC mode [the third term in for and
the second term in (A1) for (A1)], and six other terms in
each eight-term summation corresponding to each electric-field
component. The six other terms may be interpreted as modes
that have mixed PMC and PEC conditions, with the constraint
that opposite walls have identical boundary conditions, as de-
tailed in the Appendix (see Table A1). This fact should not be
surprising when one notes that in a 1-D Fourier series proper
functional behavior is synthesized by a sum of open-circuited
(PMC) and short-circuited (PEC) terms. Thus, the PMC modes,
while motivated by the physics of the problem, actually are part
(one term in eight for each triplet ) of a proper math-
ematical representation for the problem of 3-D resonance with
possible variation in all three orthogonal directions. Therefore,
the role of the PMC terms for the solution of (5) is well moti-
vated both physically and mathematically. A similar discussion
can be made for the cylindrical geometry, but will be omitted
here. Conversely, for , only the PEC terms would be

TABLE I
CONVERGENCE TEST OF A CYLINDRICAL

DR IN FREESPACE, " = 38" (mm),R = 5:25(mm),AND D = 4:6 (mm)

TABLE II
RESONANCEFREQUENCY ANDQ-FACTOR USING PMC MODES IN THEIE

FORMULATION COMPARED TOOTHER RESULTS FOR ACYLINDRICAL DR IN

FREESPACE WITH " = 38" ,R = 5:25 (mm),AND D = 4:6 (mm)

necessary to obtain good accuracy in determining resonant fre-
quencies, although this case is not considered.

The basis set is slightly modified if the rectangular DR is sit-
ting on a ground plane. For this geometry, we have one PEC
wall and five PMC walls. Therefore, we may start at one-quarter
and increase with half-integers in the indexes because the lowest
mode in this direction will be like a quarter-wave and the fol-
lowing higher order modes in this direction will increase in mul-
tiple half-wavenumbers, i.e., .

IV. NUMERICAL RESULTS AND DISCUSSION

A. DR’s in Free Space

Convergence tests are performed to validate the presented
formulation. Since many results for cylindrical resonators im-
mersed in free space are available in the literature, we study
the mode of a cylindrical DR by applying PMC basis
functions (A3). The result of a convergence test for the com-
plex frequency as a function of the number () of basis func-
tions and mode types are shown in Table I. For a DR with

mm mm , where
radius and height, we can see the solution has approxi-
mately converged at . If we look at the null space of (7),
the (0, 1, 0) mode is dominant. The azimuthal indexesare zero
and the radial indexes can be any integers, and only even in-
tegers of the -direction indexes have contributions. The com-
plex resonant frequency is compared to the results from other
methods, and is shown in Table II. The real part shows good
agreement with the other methods. The-factor shows greater
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TABLE III
CONVERGENCETEST OF ARECTANGULAR DR IN FREE SPACE, PMC MODES,

" = 37:84" , a = b = 8:77 (mm),AND d = 3:51 (mm)

TABLE IV
RESONANCEFREQUENCY ANDQ-FACTOR USING PMC MODES IN THEIE

FORMULATION COMPARED TOOTHER RESULTS FOR ARECTANGULAR DR IN

FREESPACE WITH " = 37:84" , a = b = 8:77 (mm),AND d = 3:51 (mm)

variation among methods, although the method presented here
agrees with the null field and one of the FDTD methods. Some
variability of the -factor is to be expected, especially for open
structures, due to the sensitivity of the computation. Also, the
measurement of the-factor is difficult, with different measure-
ment techniques often leading to different value [21]. As such,
the -factor is in general agreement with other methods. The
next convergence test concerns a rectangular DR by again only
applying PMC basis functions (A2). The results for the
mode of a rectangular DR with and dimensions

mm mm are shown in Table III.
The solution has approximately converged at . The (1, 1,
0) mode is dominant as observed by the null space of (7). Only
the modes with odd indexes in the- and -direction and even
indices in the -direction contribute to the solution. In Table IV,
we show measurement results and the results of using the full
3-D expansion set (A1) and using a MoM solution based on a
subdomain pulse basis expansion [22]. In the full 3-D expan-
sion, we use 136 terms in the and 136 terms in the ex-
pansion, although only 34 terms appear to contribute in the null
space; ten PMC modes (20 terms), two PEC terms, and 12 other
terms. Good agreement is seen between the full 3-D expansion
and the eight modes (16 terms) PMC solution.

In Table V, we consider a hybrid mode ( ) of a rectan-
gular DR in free space with cm, cm, for two
different permittivity values, where the resonant frequencies are
compared with results from [22]. The designation is de-

TABLE V
COMPARISON OFCOMPLEX RESONANTFREQUENCIES OF THEHE MODE OF

AN ISOLATED RECTANGULAR DR IN FREE SPACE, COMPUTED WITHN = 8

PMC MODES, WITH a = b = 3 cm,d = 1:5 cm

Fig. 3. Geometry of a cylindrical DR in a MIC environment.

termined by examination of the null space of (7). Good agree-
ment is found among the two methods, with convergence prop-
erties of this hybrid mode being similar to those of the TE mode.

B. DR’s in MIC Environments

When a DR is placed on a microstrip substrate, as depicted
in Fig. 3, the background structure becomes inhomogeneous.
In this case, we use an appropriate Green’s function to account
for the inhomogenity. For the shielded MIC cases, we show the
comparison of our results using only PMC modes and results
from the literature in Table VI(a)and (b) for a cylindrical res-
onator; agreement between all methods is good. Our results de-
viate more from the other results when the permittivity of the
substrate is high. This is due to the fact that the permittivity ratio
(inside to outside) of the DR at the interface becomes lower and
further from a PMC boundary.

In Table VII(a)and (b), we present results for a rectangular
DR in a shielded MIC environment, comparing the results using
a PMC basis to those using the full solution (A1). Agreement is
seen to be good between the two solutions, implying that the ef-
ficient PMC expansion is adequate. It is interesting to note that
when the top and bottom conducting plates are close to the res-
onator, as in cases 1 and 2 in Table VII, in the full 3-D solution
(A1) the terms corresponding to the top and bottom of the res-
onator obeying PEC conditions and the four sides obeying PMC
conditions are dominant in the null space (the second term in
(A1) for and the 3rd term in (A1) for ). When the res-
onator is sufficiently separated from the top and bottom plates,
the terms in (A1) corresponding to PMC conditions on all sides
are dominant, as expected. Since (8) is stationary, the computed
resonance frequency is accurate using just the PMC modes, even
for cases 1 and 2.

Another MIC geometry is an open (unshielded) structure.
Fig. 4 shows the results using this method and the results from
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TABLE VI
(a) COMPARISON OF THERESONANT FREQUENCY(IN GIGAHERTZ) FOR THETE MODE OF A CYLINDRIVAL DR IN A SHIELDED MIC ENVIRONMENT. (b)

COMPARISON OF THEDIELECTRIC QUALITY FACTOR FOR THETE MODE OF A CYLINDRICAL DR IN A SHIELDED MIC ENVIRONMENT

(a)

(b)

TABLE VII
(a) COMPARISON OF THERESONANT FREQUENCY(IN GIGAHERTZ) FOR THETE MODE OF A RECTANGULAR DR IN A SHIELDED MIC ENVIRONMENT. (b)

COMPARISON OF THEDIELECTRICQ FACTOR FOR THETE MODE OF A RECTANGULAR DR IN A SHIELDED MIC ENVIRONMENT

(a)

(b)

the effective dielectric constant (EDC) method and experiment
[26]. Also in Fig. 4, the results for a rectangular DR with the
same permittivity, volume, and height as the cylindrical DR are
shown.

C. Open Coupled DR’s

The complex resonant frequencies of coupled resonators are
now considered. In general, the coupled-resonator structure pos-
sessing symmetry as shown in Fig. 5 can be divided into even
modes and odd modes [27]. The even mode with a electric wall
in the center plane of two DR’s has a higher real resonant fre-
quency and a larger-factor. The odd mode with magnetic wall
in the center plane of the two DR’s has a lower real resonant fre-
quency and a smaller -factor. The resonant frequencies and

-factors versus the separationof two DR’s are shown in
Fig. 6. In the same plot, the comparison to the results using the
null–field method [28] are also given. For the first time, the re-
sults of coupled rectangular resonators are also plotted in Fig. 6.
The comparison shows that the real resonant frequency of the

even mode deviates from the null–field solution when the two
resonators are extremely close. The reason is that the closest end
faces between the two disks for the even mode should become
like a perfect electric wall rather than a perfect magnetic wall.
Therefore, the pure PMC basis function may not be adequate
for this special situation. It is noted that computing resonant fre-
quencies of a single DR above a ground plate can generate the
results for the even modes of coupled DR’s using the same basis
functions to expand the electric field in one DR region.

V. CONCLUSION

The EFIE in conjunction with an entire-domain Galerkin’s
MoM is an efficient method for the analysis of separable-co-
ordinate geometry DR’s immersed in inhomogeneous media. It
is shown that the PMC-mode basis functions are usually suffi-
cient for practical DR’s, and lead to solutions exhibiting strong
numerical convergence. The method is particularly useful for
rectangular resonators or, generally, nonbody-of-revolution ge-
ometries. The numerical results show good agreement with the
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(a)

(b)

Fig. 4. Resonant frequencies andQ-factors of theTE mode of a cylindrical
DR with " = 37:1" , R = 4:55 (mm) on a grounded substrate with" =

2:22" , and theTE mode of a rectangular DR with" = 37:1" , a =

b = 8:065 (mm) on a grounded substrate with" = 2:22" . Solid lines:
Cylindrical DR. Dashed lines: Rectangular DR. O:Experimental results. +: EDC
results from [26] for a cylindrical DR.

literature for resonators immersed either in free space or in pla-
narly layered environments.

APPENDIX

3-D basis functions for a rectangular cavity are
shown below.

The full set of product terms are as follows:

(a)

(b)

Fig. 5. Geometry of coupled DR’s and definitions of even and odd modes.

(A1)

where .
PMC cavity terms:

(A2)

modes
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(a)

(b)

Fig. 6. Resonant frequencies andQ-factors for theTE mode of open
coupled cylindrical DR’s and theTE mode of open coupled rectangular
DR’s Cylindrical DR’s:R1 = R2 = 0:8636 (cm),D1 = D2 = 0:762 (cm),
" = 35:74" . Rectangular DR’s:a1 = a2 = b1 = b2 = 2:165 (cm),
d1 = d2 = 0:762 (cm)," = 35:74" . Solid lines: cylindrical DR’s. Dashed
lines: rectangular DR’s. o: results from [28] for cylindrical DR’s.

modes

TABLE A1
BOUNDARY CONDITIONS ENFORCED BY TERMS OF(A1) AT VARIOUS

SIDES OF RECTANGULAR RESONATOR FORCURRENT COMPONENT

K (K )

Cylindrical cavity ( and ) PMC modes

(A3)

modes

where is the Bessel function of the first kind and is
the th root of ; i.e., .

modes

where is the th root of ; i.e., .

REFERENCES

[1] R. Mongia and P. Bhartia, “Dielectric resonator antennas—A review and
general design relations for resonant frequencies and bandwidth,”Int. J.
Microwave Millimeter-Wave Eng., vol. 4, pp. 230–347, July 1994.

[2] A. Glisson, D. Kajfez, and J. James, “Evaluation of mode in dielectric
resonators using a surface integral equation formulation,”IEEE Trans.
Microwave Theory Tech., vol. MTT-31, pp. 1023–1029, Dec. 1983.

[3] J. Pereda, L. Vielva, A. Vegas, and A. Prieto, “Computation of resonant
frequencies and quality factors of open dielectric resonators by a combi-
nation of finite-difference time domain (FDTD) and Prony’s methods,”
IEEE Microwave Guided Wave Lett., vol. 2, pp. 431–433, Nov. 1992.



92 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 1, JANUARY 2000

[4] A. Navarro and M. J. Nunez, “FDTD method coupled with FFT: A gen-
eralization to open cylindrical devices,”IEEE Trans. Microwave Theory
Tech., vol. 42, pp. 870–874, May 1994.

[5] W. Zheng, “Computation of complex resonance frequencies of isolated
composite objects,”IEEE Trans. Microwave Theory Tech., vol. 37, pp.
953–961, June 1989.

[6] R. Mongia, C. Larose, S. Mishra, and P. Bhartia, “Accurate measurement
of Q-factors of isolated dielectric resonators,”IEEE Trans. Microwave
Theory Tech., vol. 42, pp. 1463–1466, Aug 1994.

[7] R. E Collin, Field Theory of Guided Waves, New York:: IEEE Press,
1991.

[8] S. M. Shum and K. M. Luk, “Analysis of aperture coupled rectangular
dielectric resonator antenna,”Electron. Lett., vol. 30, no. 21, pp.
1726–1727, Oct. 1994.

[9] R. W. Lyon and J. Helszajn, “Finite element analysis of planar circulators
using arbitrarily shaped resonators,”IEEE Trans. Microwave Theory
Tech., vol. MTT-30, pp. 1964–1974, Nov. 1982.

[10] R. Mongia and A. Ittiiboon, “Theoretical and experimental investiga-
tion of rectangular dielectric resonator antennas,”IEEE Trans. Antenna
Propagat., vol. 45, pp. 1348–1356, Sept. 1997.

[11] C. A. Balanis,Advanced Engineering Electromagnetics, New York:
Wiley, 1989.

[12] V. H. Rumsey, “The reaction concept in electromagnetic theory,”Phys.
Rev., vol. 94, pp. 1483–1491, June 1954.

[13] E. W. Blumbergs, “Integral equation formulation for natural modes of a
circular patch antenna in layered environment,” Ph.D. dissertation, Dept.
Elect. Eng., Michigan State Univ., Ann Arbor, MI, 1989.

[14] S.-L. Lin, “Propagation characteristics of anisotropic dielectric waveg-
uides in the bound and leaky regimes,” Ph.D. dissertation, Dept. Elect.
Eng. Comput. Sci., Univ. Wisconsin at Milwaukee, Milwaukee, WI,
1995.

[15] W. C. Chew,Waves and Fields in Inhomogeneous Media, New York:
Van Nostrand, 1990, pp. 118–120.

[16] E. H. Newman and D. Forrai, “Scattering from a microstrip patch,”IEEE
Trans. Antenna Propagat., vol. AP-35, pp. 245–251, Mar. 1987.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Nu-
merical Recipes. Cambridge, U.K.: Cambridge Univ. Press, 1992, p.
134.

[18] D. G. Dudley, “Comments on variational nature of Galerkin and non-
Galerkin moment method solutions,”IEEE Trans. Antenna Propagat.,
vol. 45, pp. 1062–1063, June 1997.

[19] A. F. Peterson, D. R. Wilton, and R. E. Jorgenson, “Variational nature
of Galerkin and non-Galerkin moment method solutions,”IEEE Trans.
Antenna Propagat., vol. 44, pp. 500–503, Apr. 1996.

[20] I. V. Lindell, “Variational methods for nonstandard eigenvalue problems
in waveguide and resonator analysis,”IEEE Trans. Microwave Theory
Tech., vol. MTT-30, pp. 1194–1204, Aug. 1982.

[21] A. W. Glisson, “Integral equation techniques,” inDielectric Resonators,
D. Kajfez and P. Guillon, Eds. Norwood, MA: Artech House, 1986, ch.
6.

[22] K. Walters, private communication, June 1998.
[23] S. Maj and J. W. Modelski, “Application of a dielectric resonator on

microstrip line for a measurement of complex permittivity,” inIEEE
MTT-S Int. Microwave Symp. Dig., 1984, pp. 525–527.

[24] M. Jaworski and M. W Pospieszalski, “An accurate solution of the cylin-
drical dielectric resonator problem,”IEEE Trans. Microwave Theory
Tech., vol. MTT-27, pp. 639–643, July 1979.

[25] J.-M. Guan and C.-C. Su, “Precise computations of resonant frequen-
cies and quality factors for dielectric resonators in MIC’s with tuning
elements,”IEEE Trans. Microwave Theory Tech., vol. 45, pp. 439–442,
Mar. 1997.

[26] R. K. Mongia, “Resonant frequency of cylindrical dielectric resonator
placed on MIC environment,”IEEE Trans. Microwave Theory Tech.,
vol. 38, pp. 802–804, June 1990.

[27] J. Van Bladle, “Weakly coupled dielectric resonators,”IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-30, pp. 1907–1914, Nov. 1982.

[28] W. Zhang, “Direct and inverse resonance problems for shielded com-
posite objects treated by means of the null-field method,”IEEE Trans.
Microwave Theory Tech., vol. 37, pp. 1732–1739, Nov. 1989.

Shu-Li Lin was born in Hsinchu, Taiwan, R.O.C., in 1962. He received the
B.S. degree in physics from the Tunghai University, Taiwan, R.O.C., in 1985,
the M.S. degree in engineering from the University of Wisconsin at Milwaukee,
in 1995, and is currently working toward the Ph.D. degree at the University of
Wisconsin at Milwaukee.

George W. Hanson(S’85–M’91–SM’98), for photograph and biography, see
this issue, p. 75.


